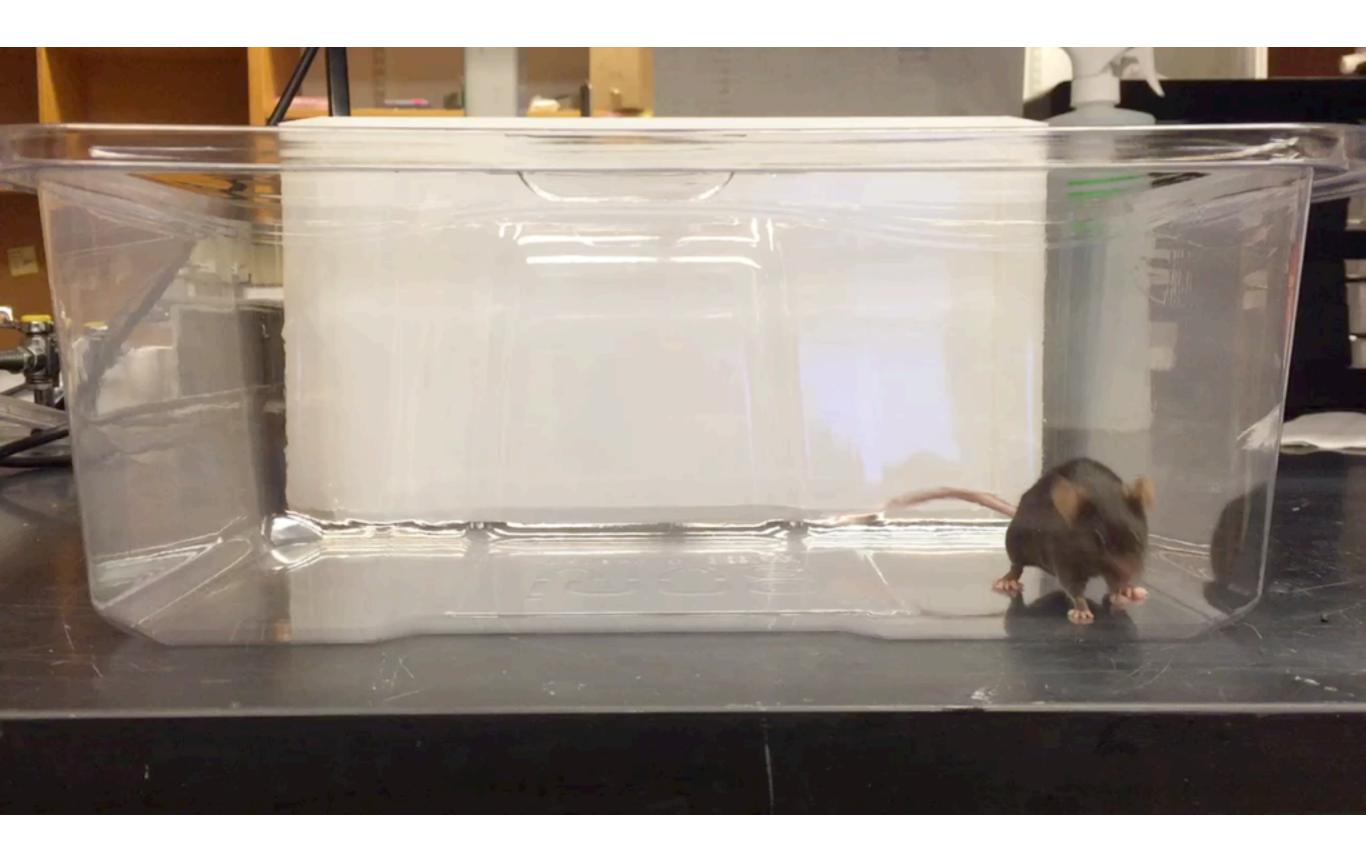
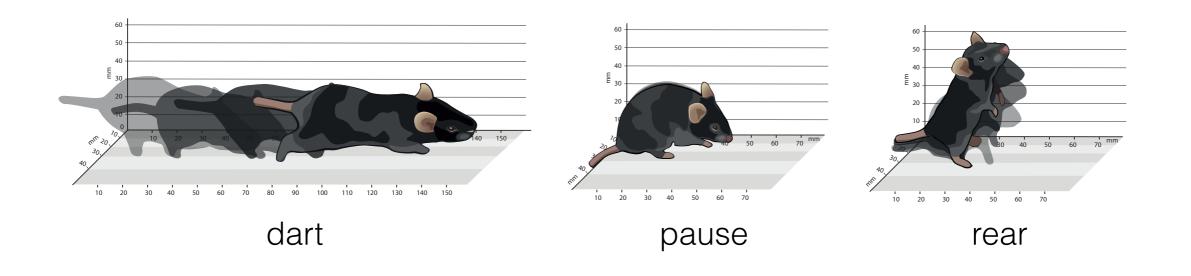
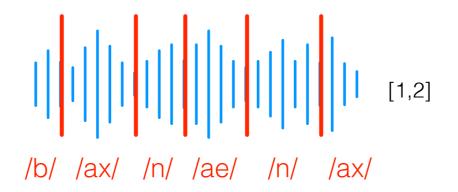
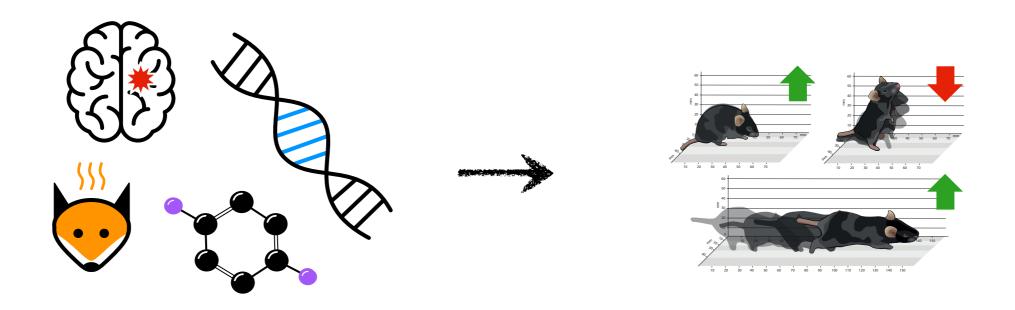
Composing graphical models with neural networks for structured representations and fast inference

Matt Johnson, David Duvenaud, Alex Wiltschko, Bob Datta, Ryan Adams

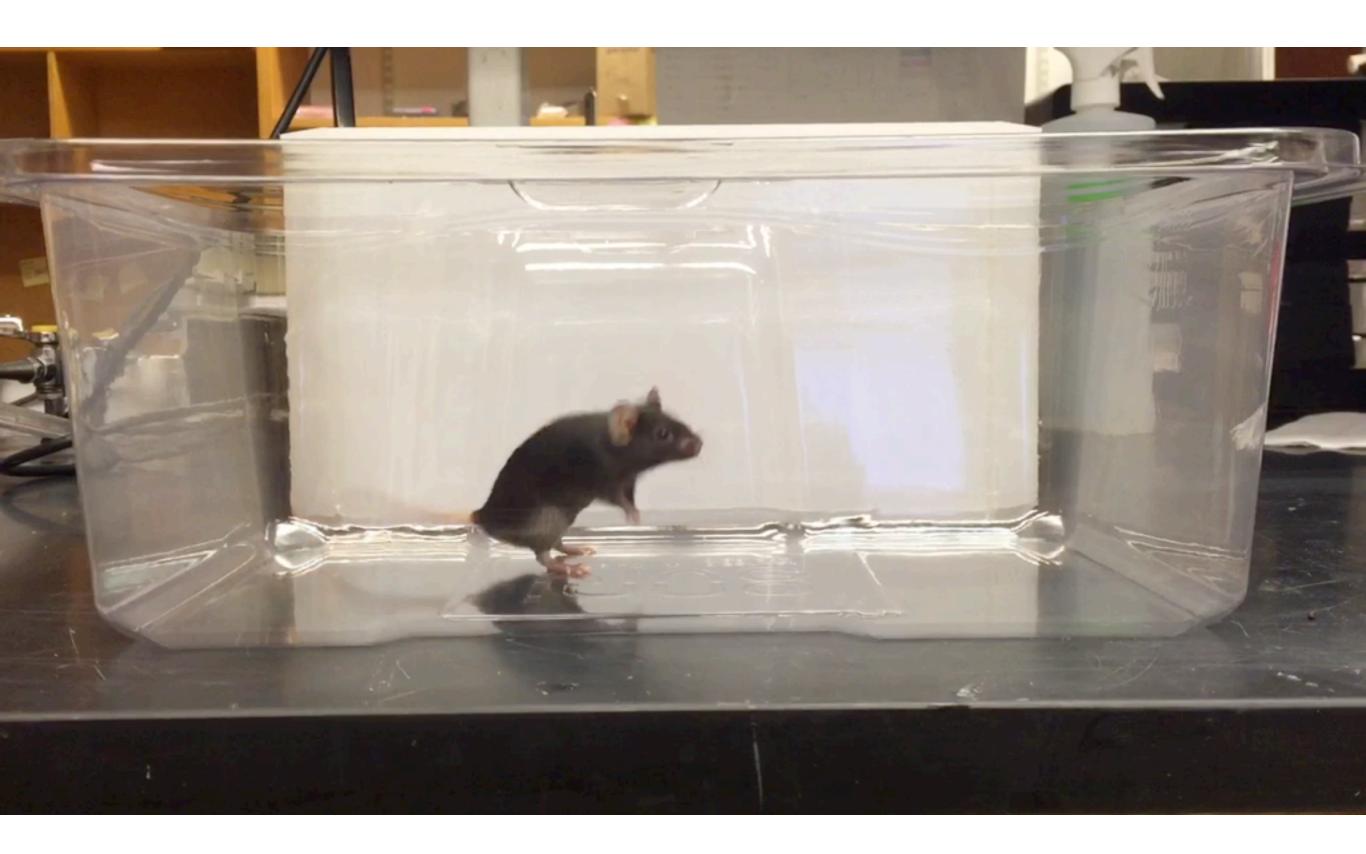






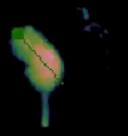


[1] Lee and Glass. A Nonparametric Bayesian Approach to Acoustic Model Discovery. ACL 2012. [2] Lee. Discovering Linguistic Structures in Speech: Models and Applications. MIT Ph.D. Thesis 2014.

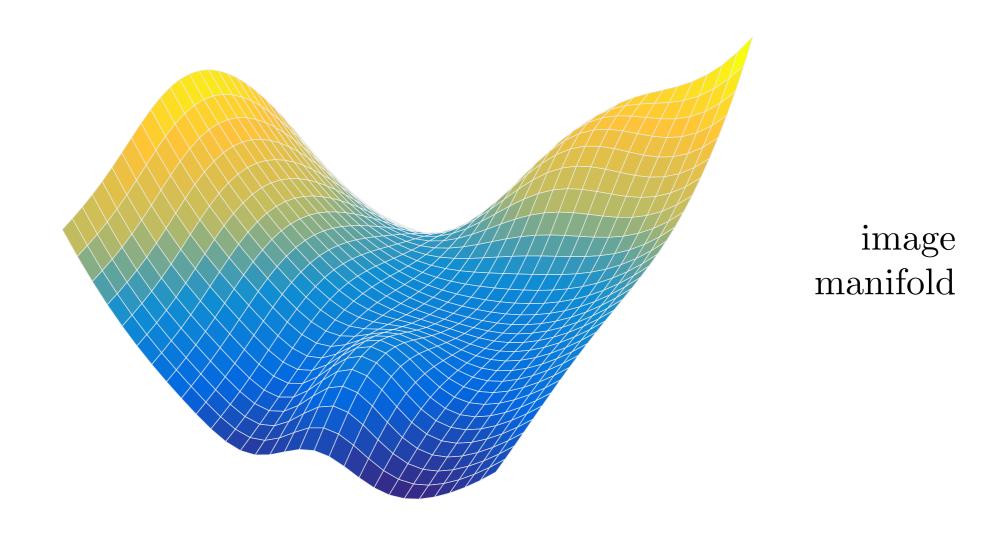


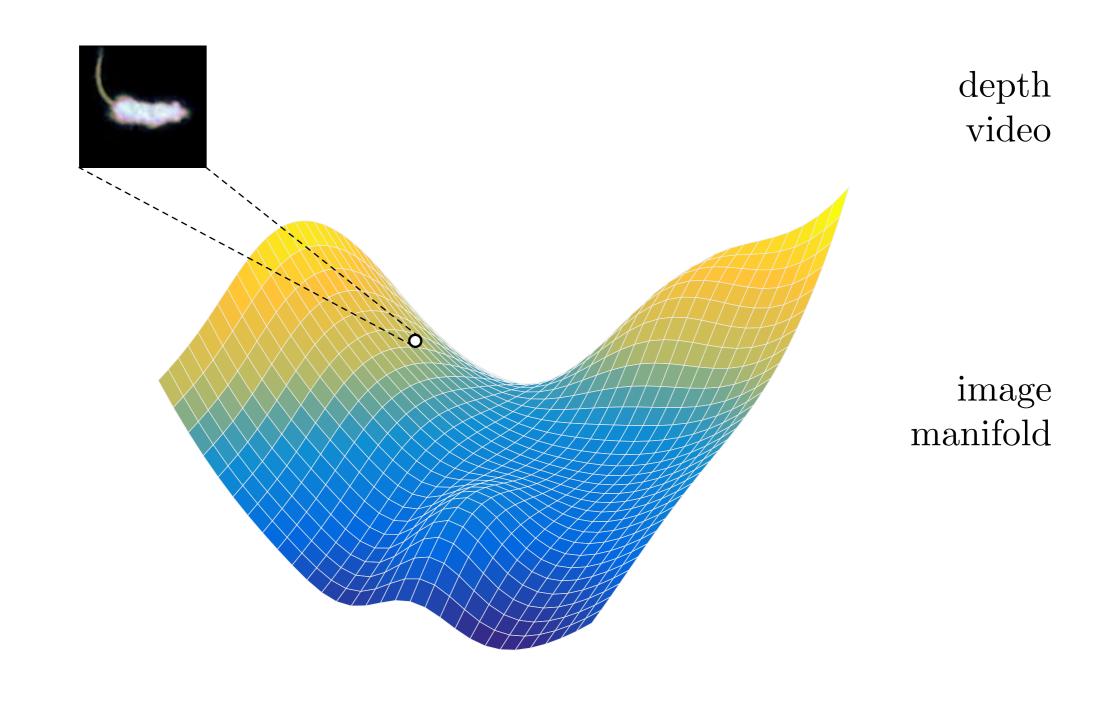
Frame 0

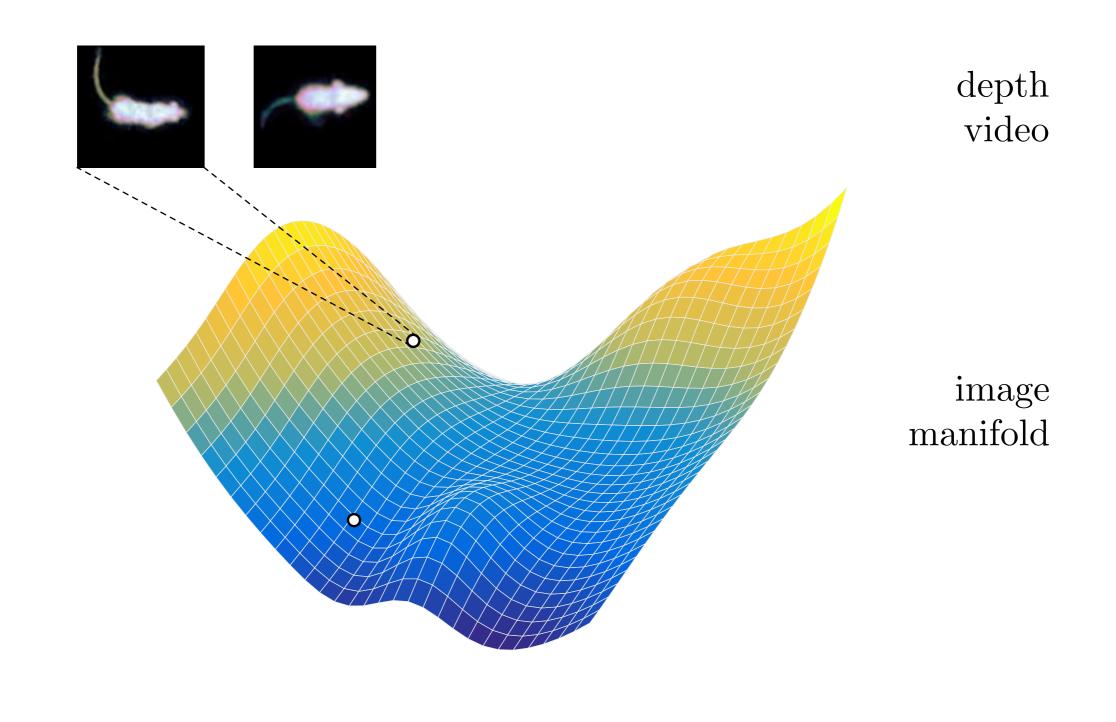


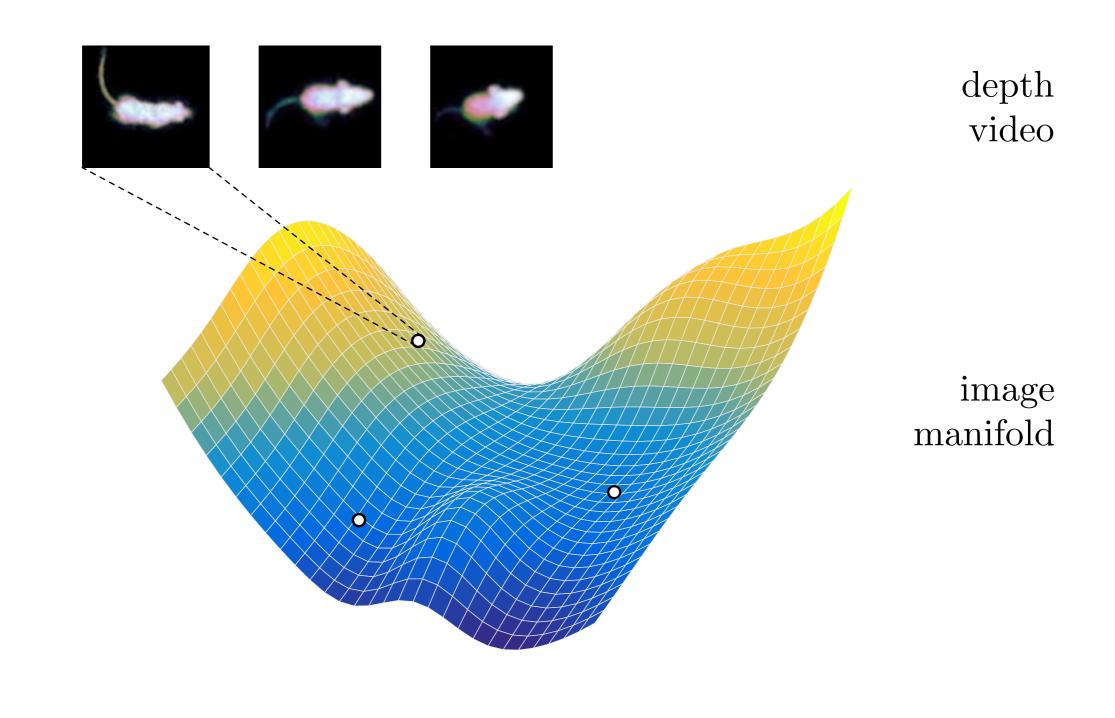


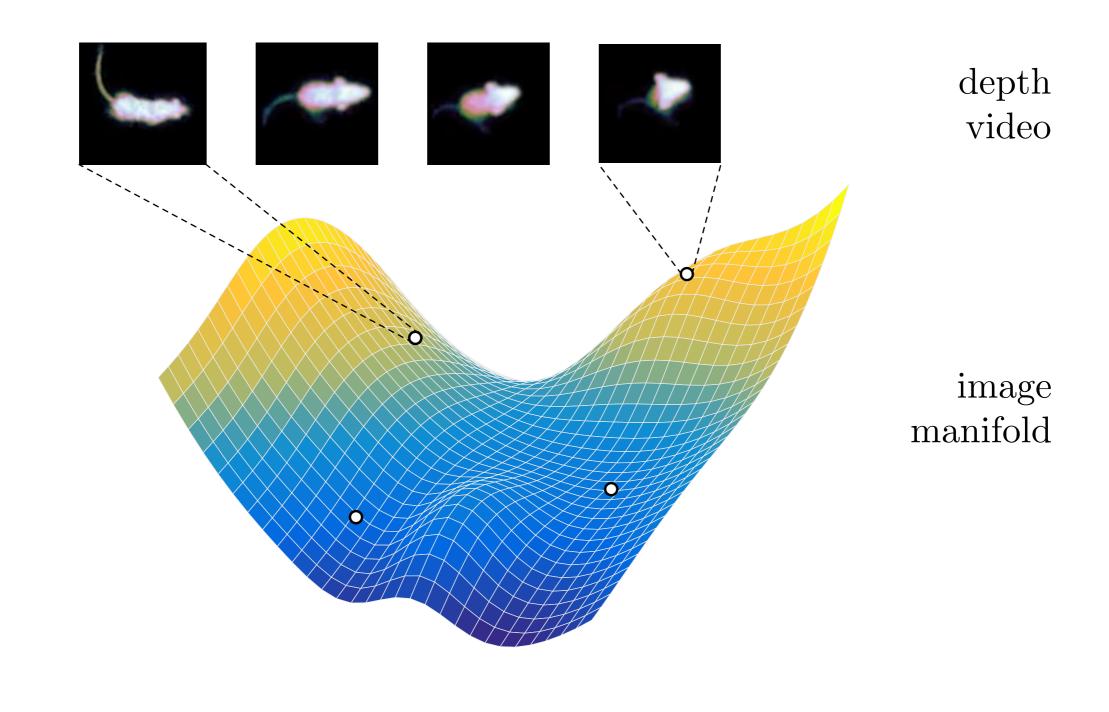
Alexander Wiltschko, **Matthew Johnson**, et al., Neuron 2015.

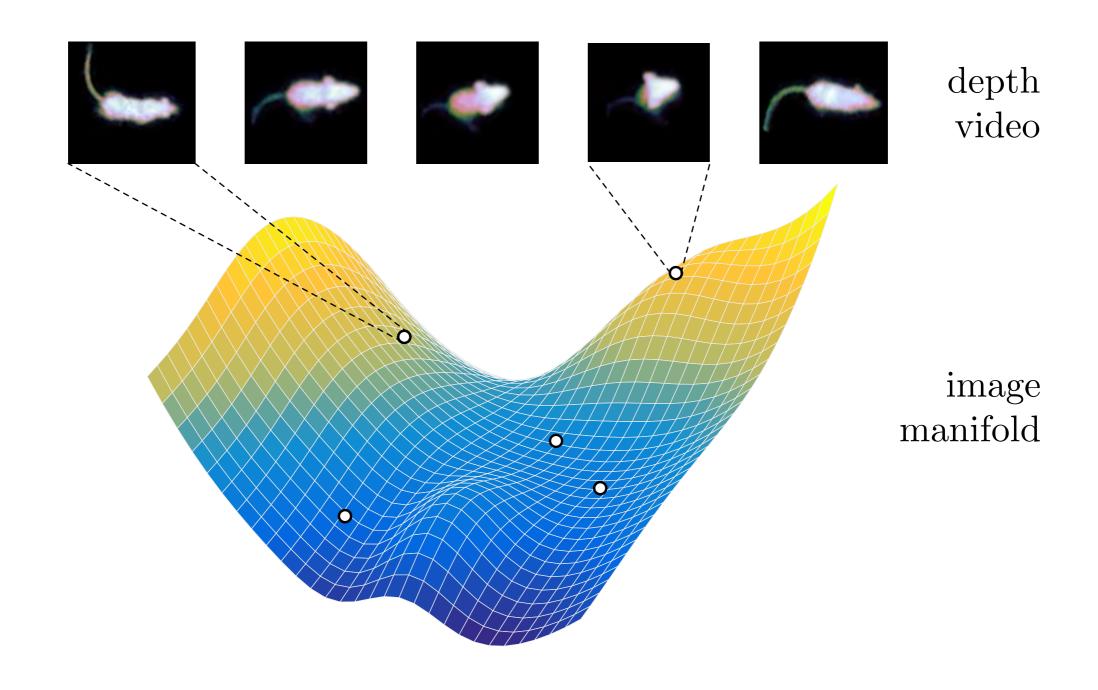


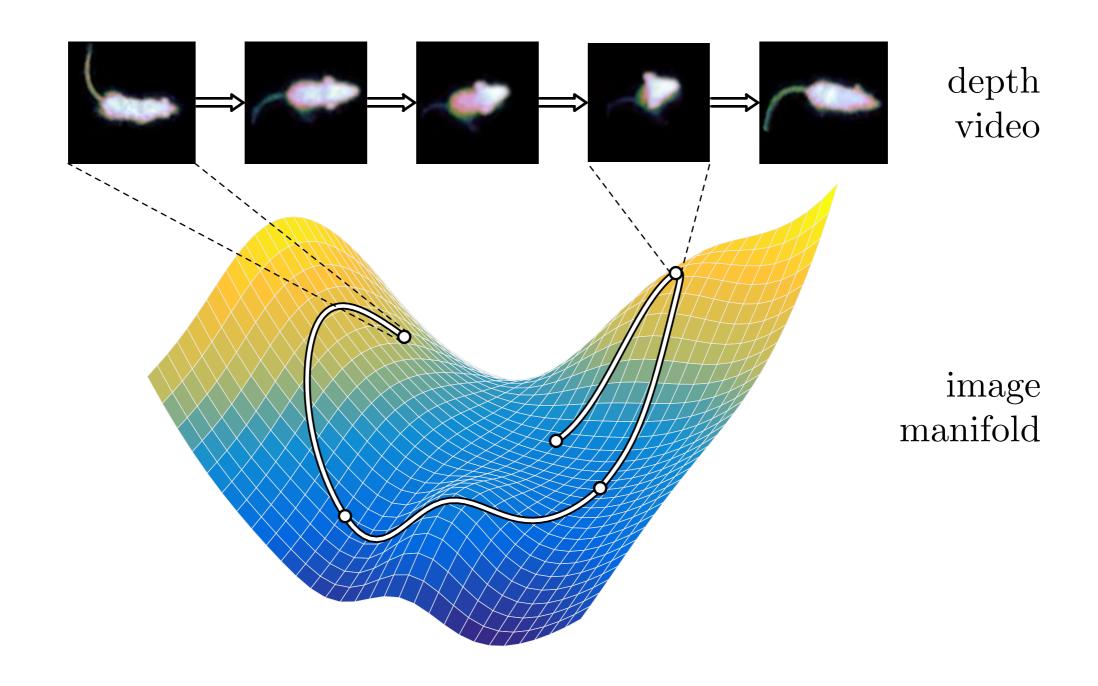


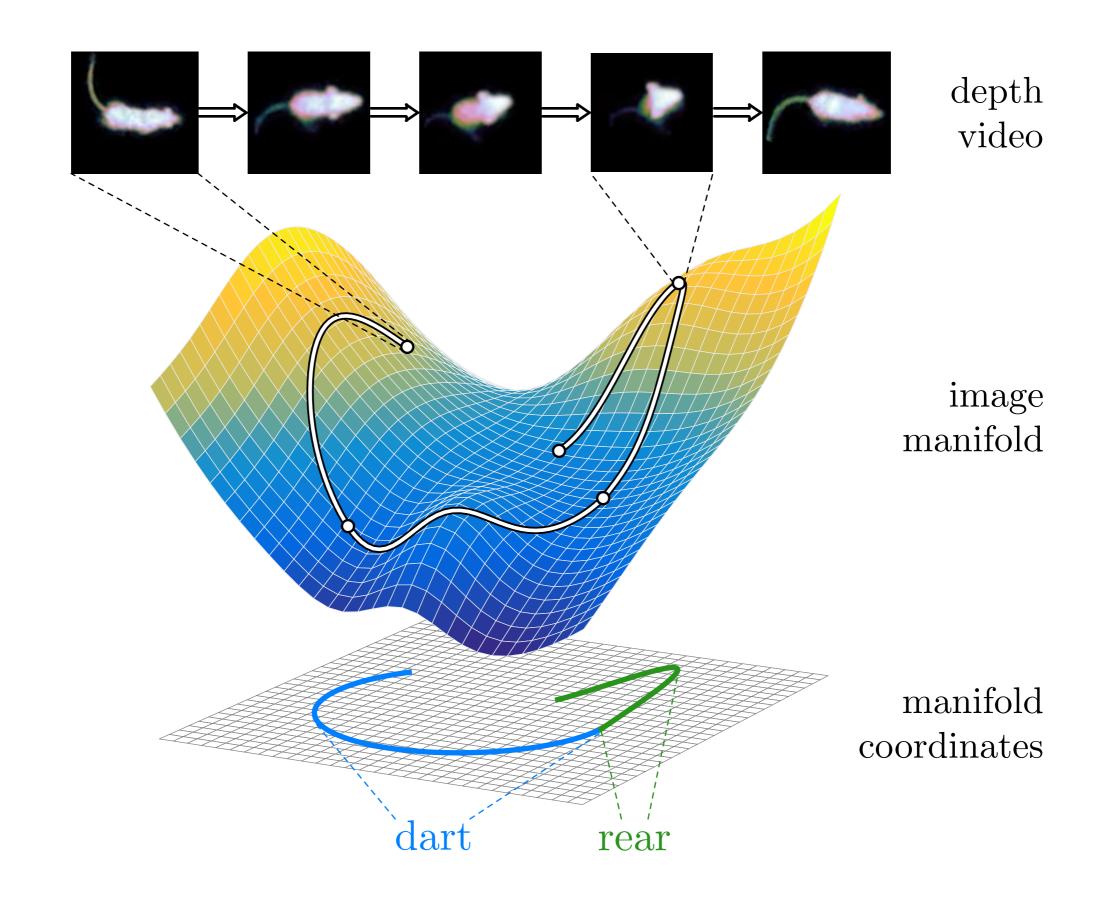












Recurrent neural networks? [1,2,3]

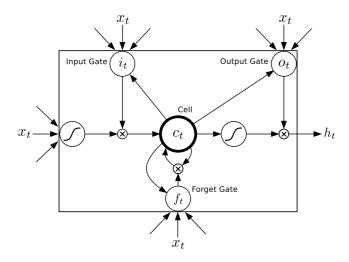


Figure 1. LSTM unit

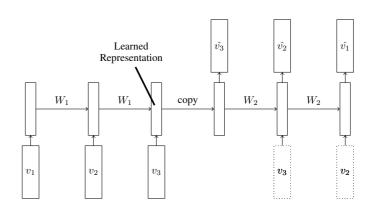
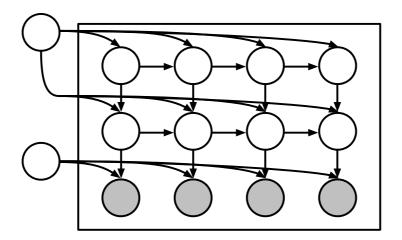
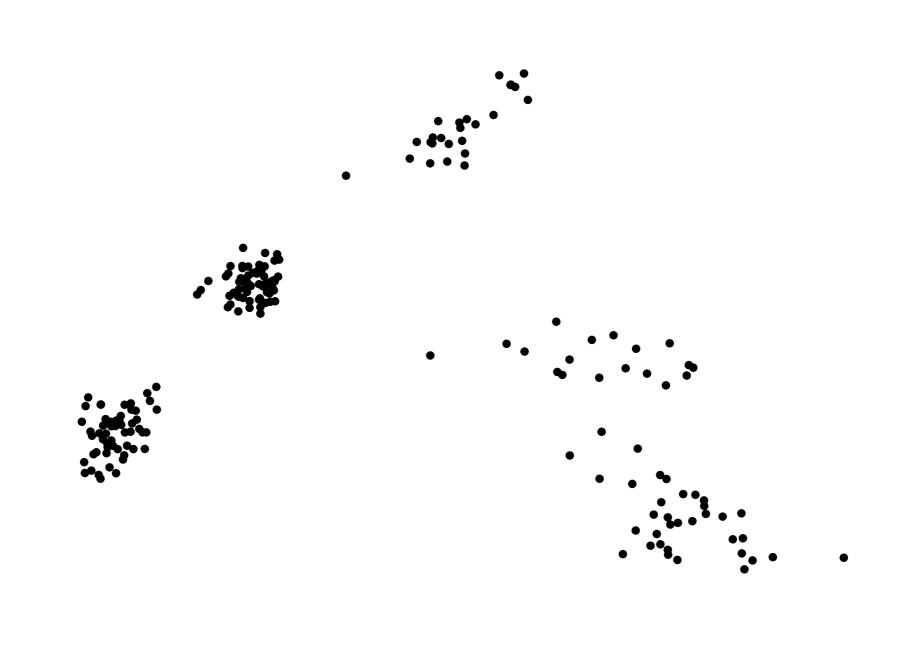


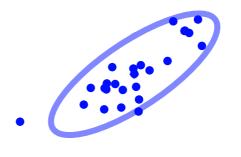
Figure 2. LSTM Autoencoder Model

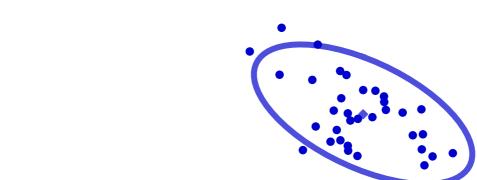
Probabilistic graphical models? [4,5,6]



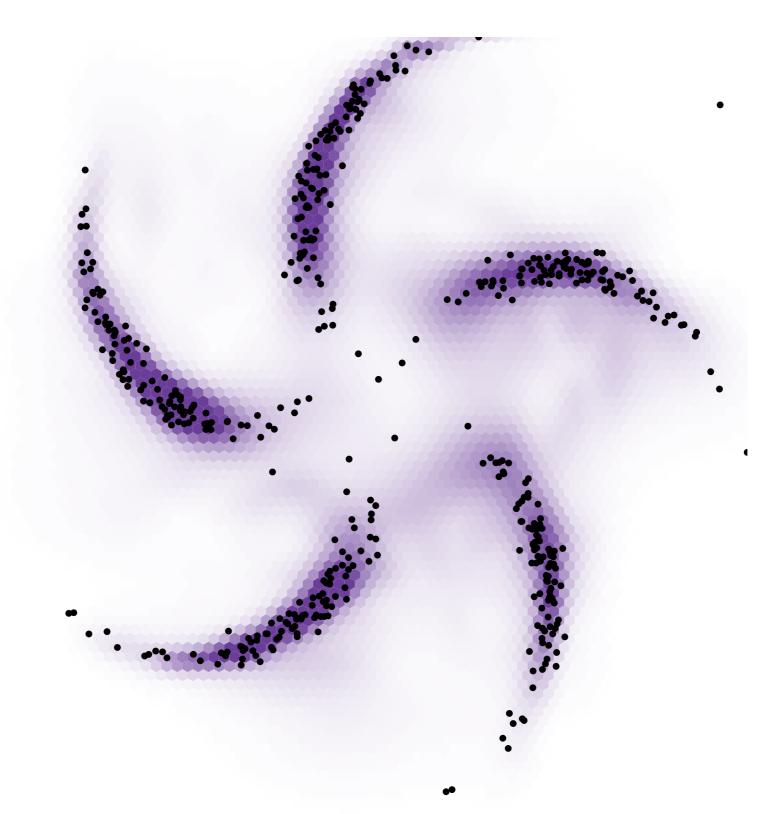
- [1] Srivastava, Mansimov, Salakhutdinov. Unsupervised learning of video representations using LSTMs. ICML 2015.
- [2] Ranzato, MarcAurelio, et al. Video (language) modeling: a baseline for generative models of natural videos. Preprint 2015.
- [3] Sutskever, Hinton, and Taylor. The Recurrent Temporal Restricted Boltzmann Machine. NIPS 2008.
- [4] Fox, Sudderth, Jordan, Willsky. Bayesian nonparametric inference of switching dynamic linear models. IEEE TSP 2011.
- [5] Johnson and Willsky. Bayesian nonparametric hidden semi-Markov models. JMLR 2013.
- [6] Murphy. Machine learning: a probabilistic perspective. MIT Press 2012.



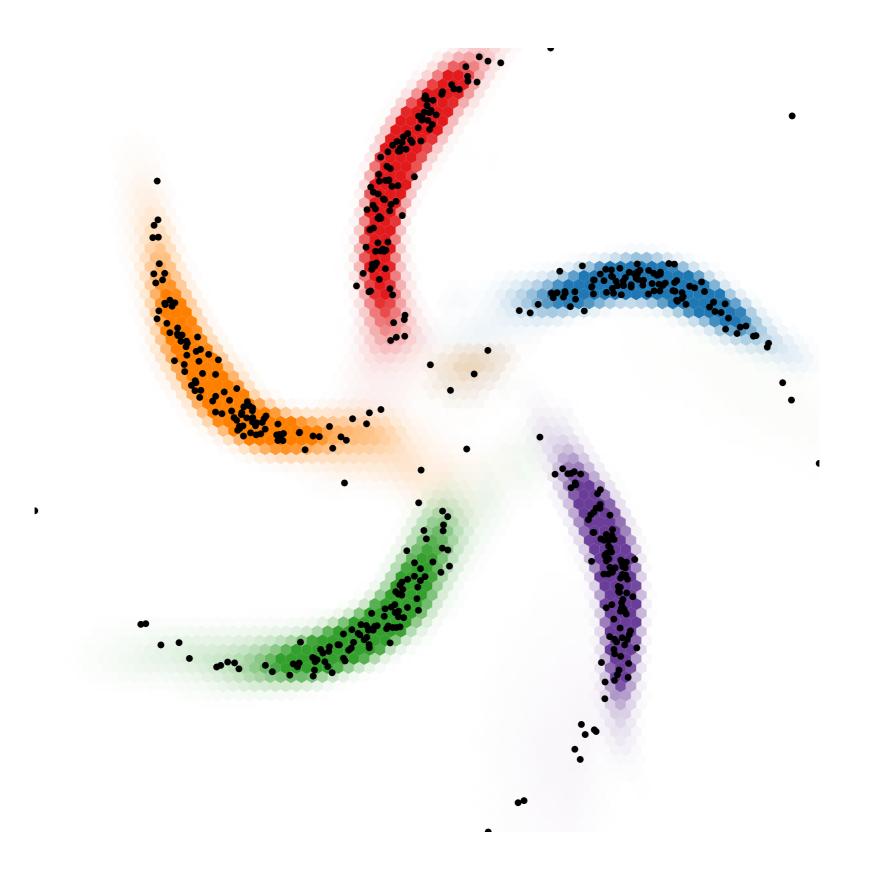


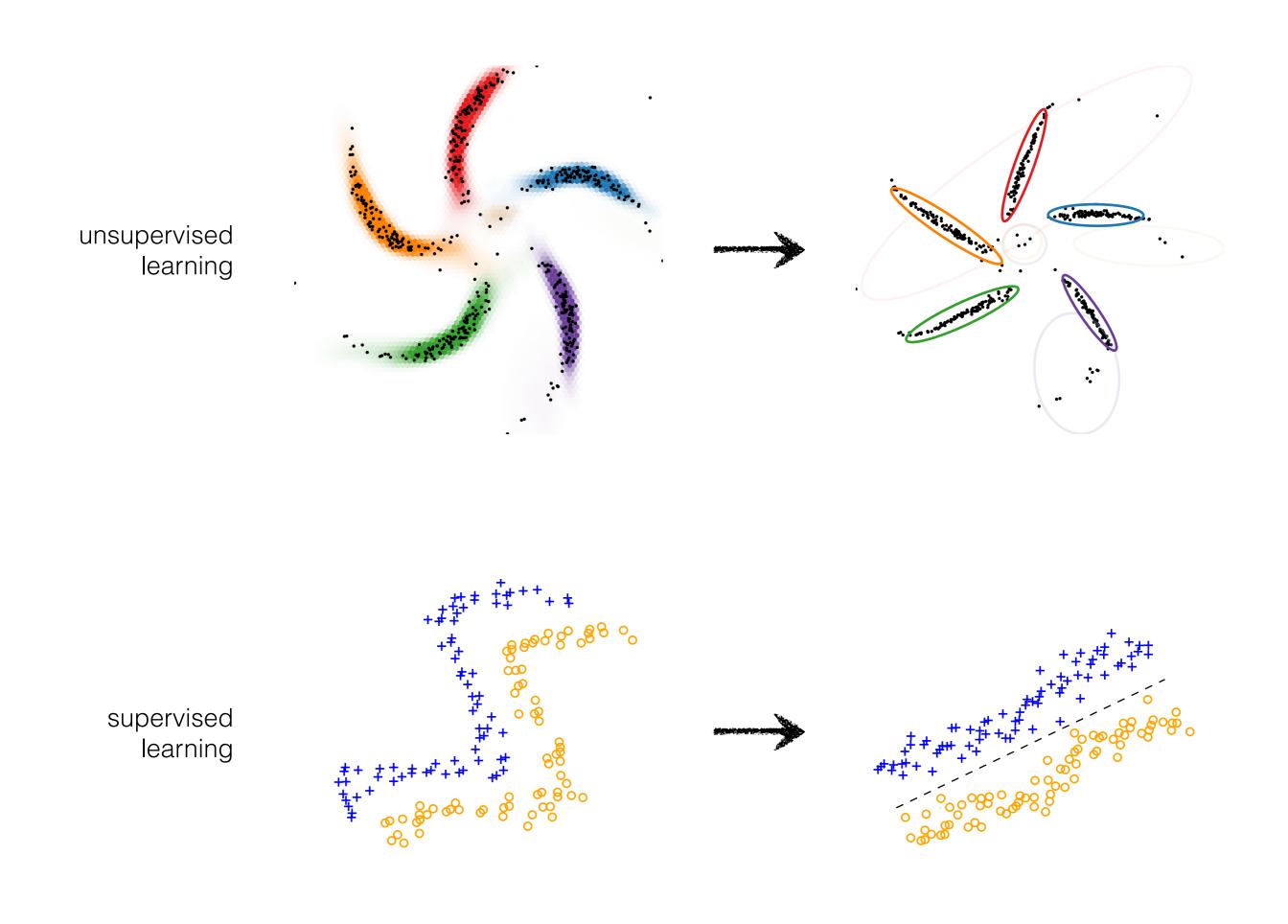


Þ



Þ





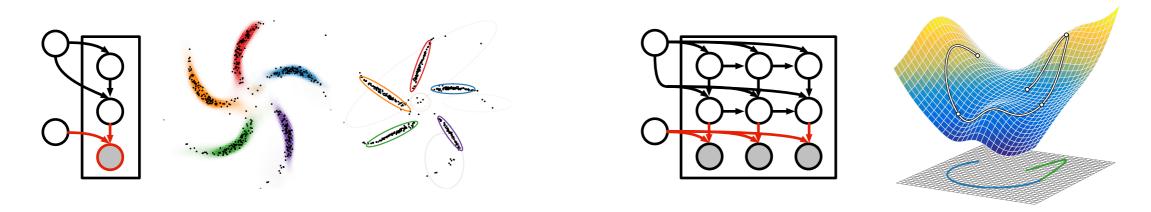
Probabilistic graphical models

- structured representations
- priors and uncertainty
- data and computational efficiency
- rigid assumptions may not fit
- feature engineering
- top-down inference

Deep learning

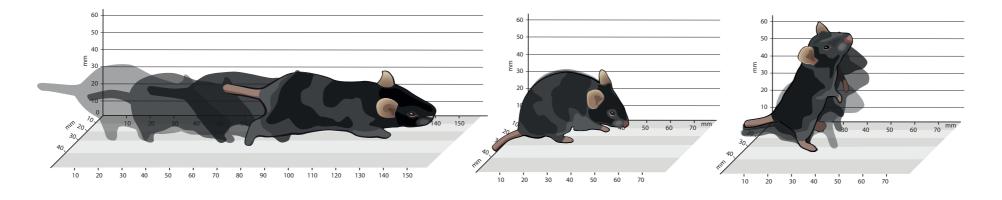
- neural net "goo"
- difficult parameterization
- can require lots of data
- + flexible
- + feature learning
- + recognition networks

Modeling idea: graphical models on latent variables, neural network models for observations

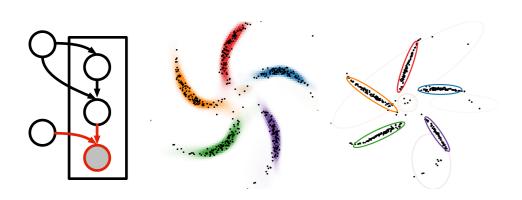


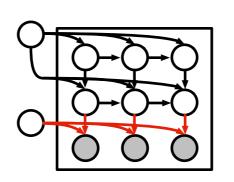
Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

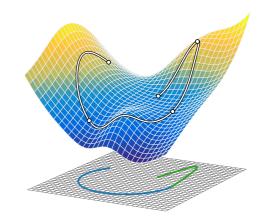
Application: learn syllable representation of behavior from video

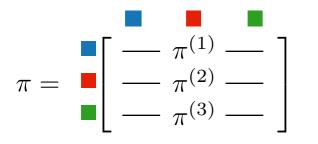


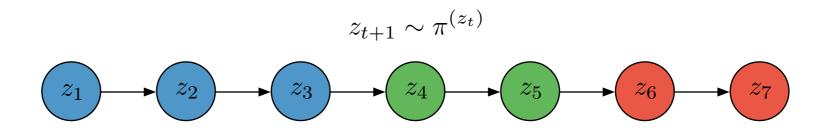
Modeling idea: graphical models on latent variables, neural network models for observations

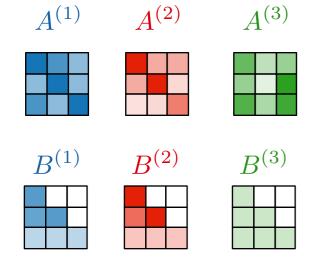


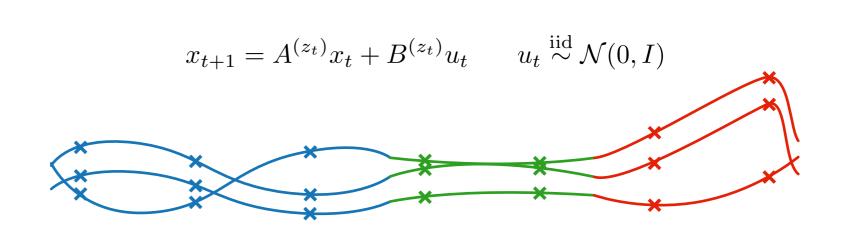


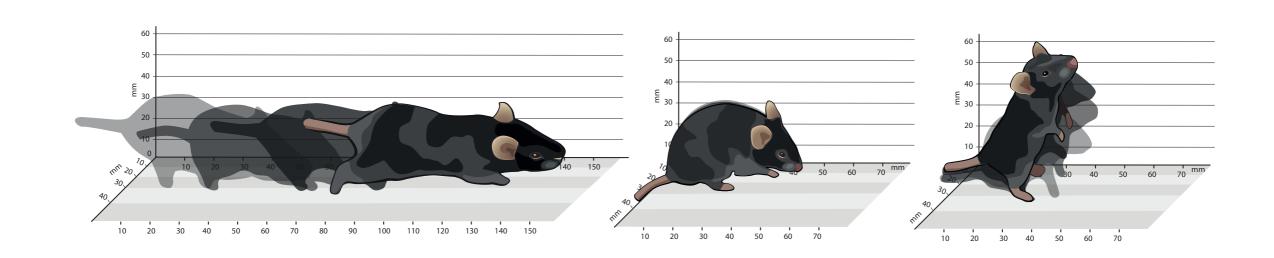


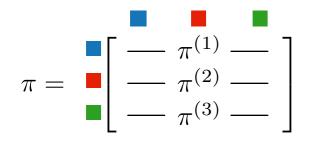


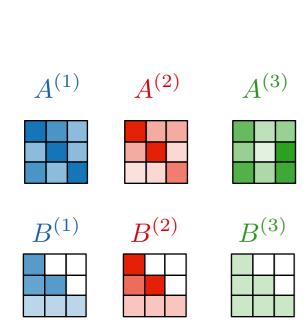


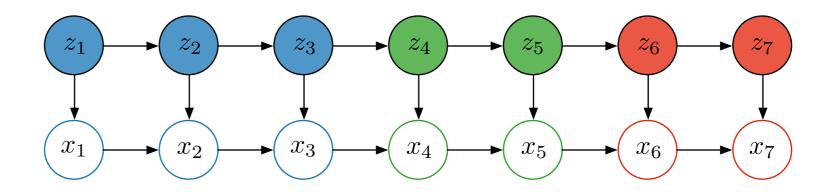


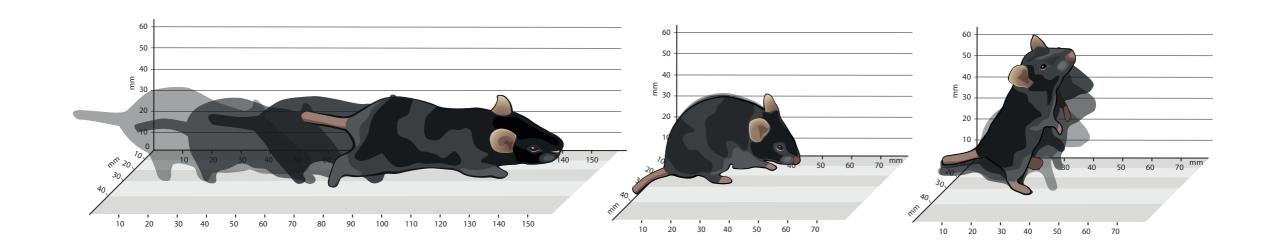


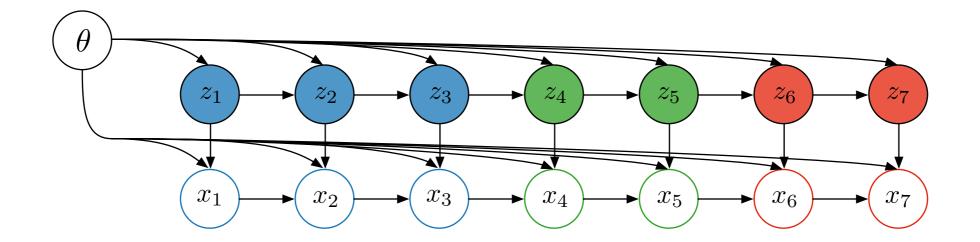


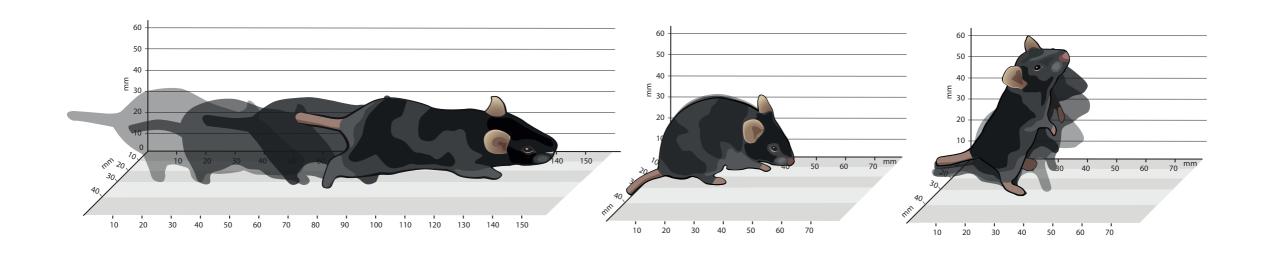


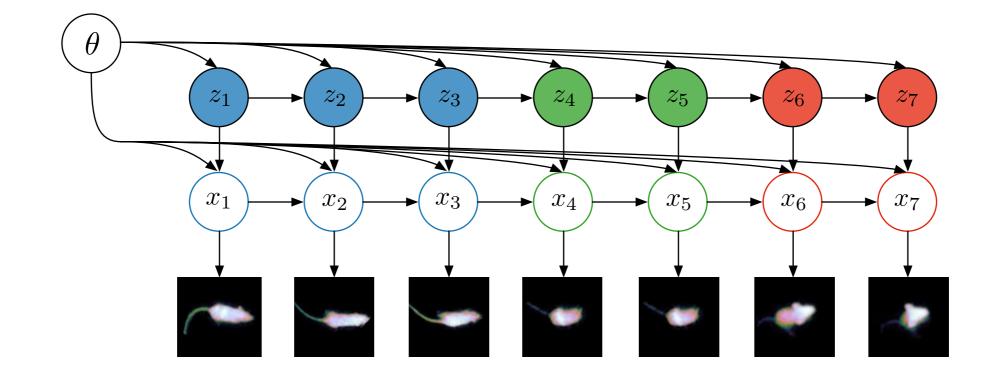


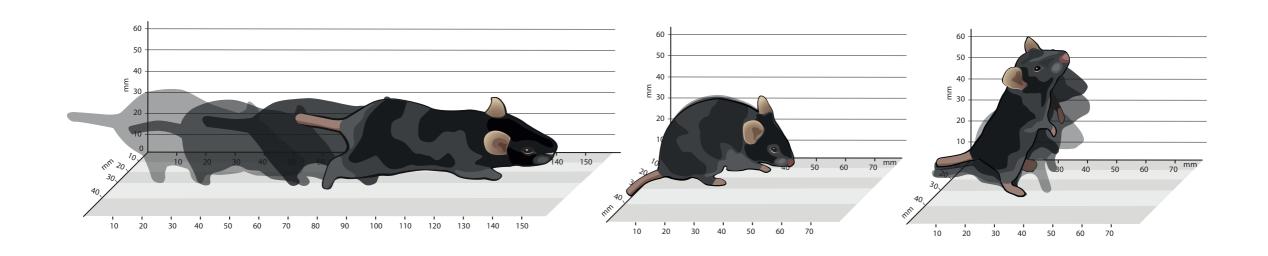


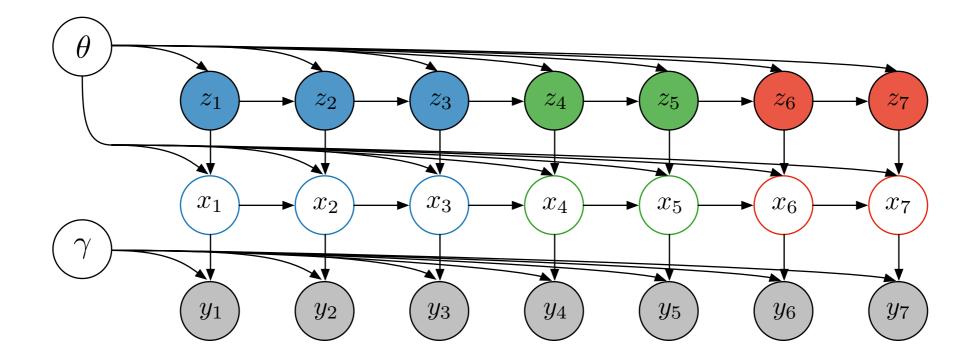


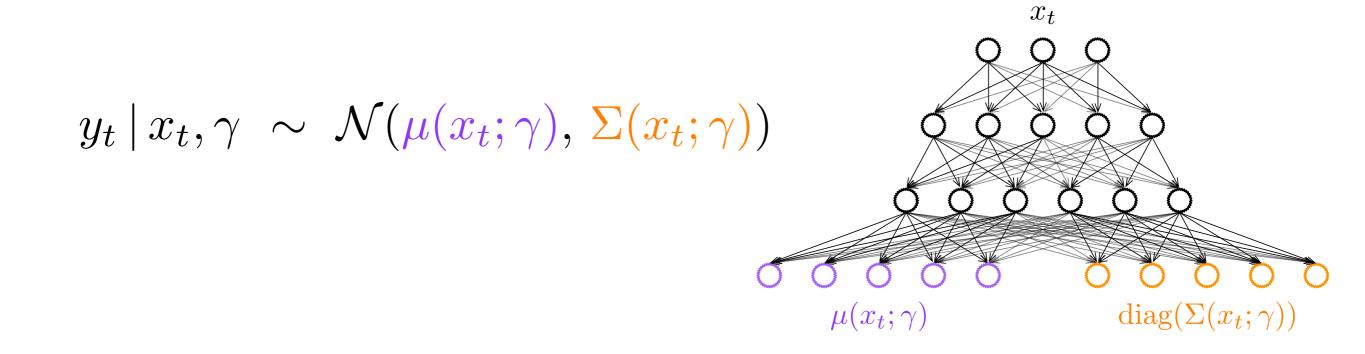


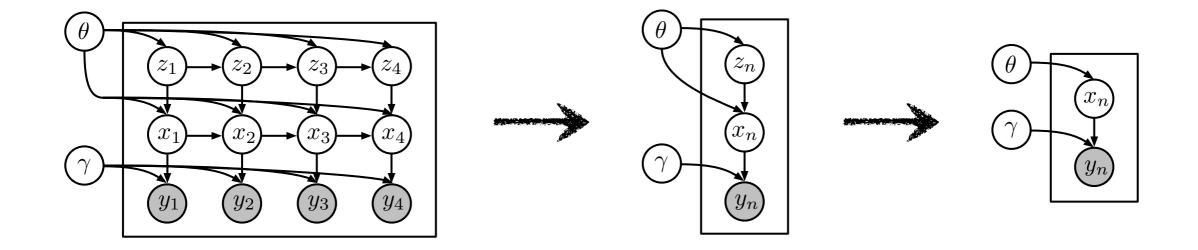


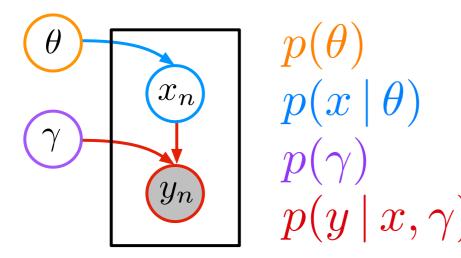




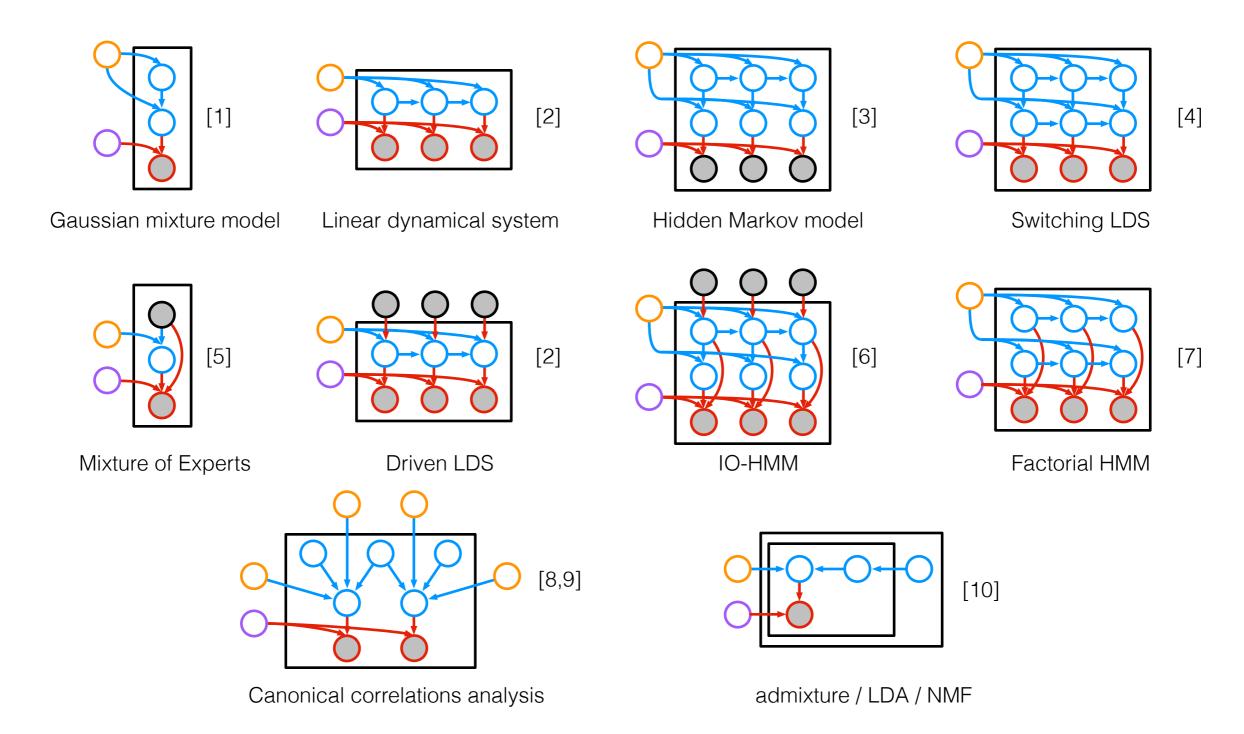




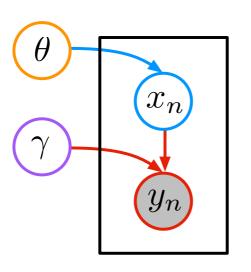




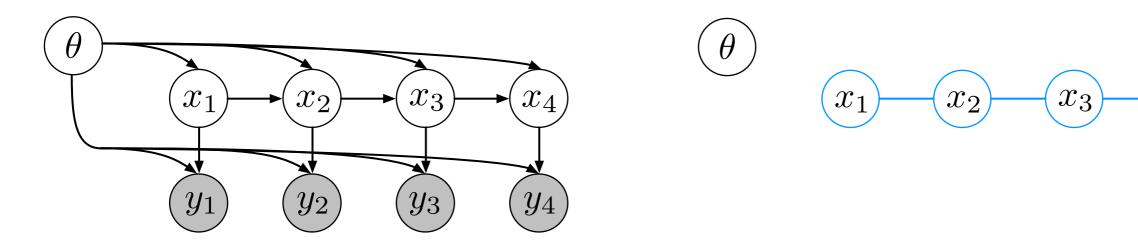
 $p(\theta)$ conjugate prior on global variables $p(x \mid \theta)$ exponential family on local variables $p(\gamma)$ any prior on observation parameters $p(y \mid x, \gamma)$ neural network observation model



- [1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
- [2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
- [3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
- [4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
- [5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
- [6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
- [7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
- [8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
- [9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
- [10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.



Inference?



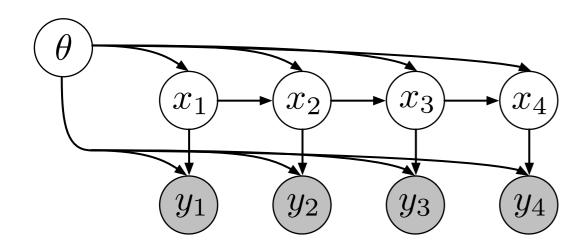
 $p(x \mid \theta)$ is linear dynamical system $p(y \mid x, \theta)$ is linear-Gaussian $p(\theta)$ is conjugate prior

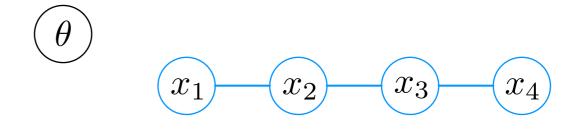
$$q(\theta)q(x) \approx p(\theta, x \mid y)$$

 x_4

$$\mathcal{L}[q(\theta)q(x)] \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

$$q(\theta) \leftrightarrow \eta_{\theta} \qquad q(x) \leftrightarrow \eta_{x}$$





 $p(x | \theta)$ is linear dynamical system $p(y | x, \theta)$ is linear-Gaussian $p(\theta)$ is conjugate prior

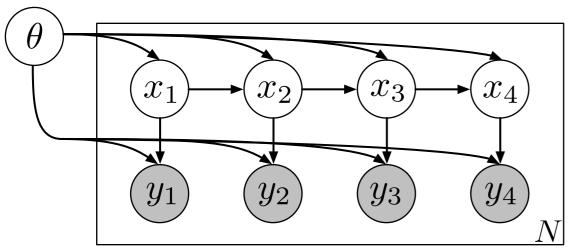
$$q(\theta)q(x) \approx p(\theta, x \mid y)$$

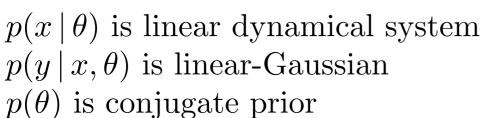
$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

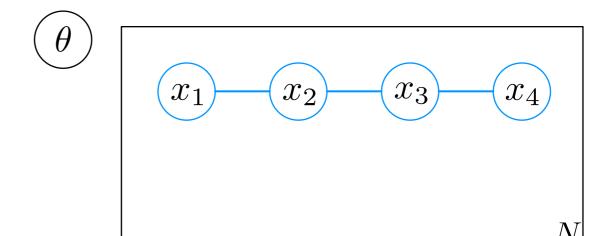
$$\eta_x^*(\eta_\theta) \triangleq \arg\max_{\eta_x} \mathcal{L}(\eta_\theta, \eta_x) \qquad \mathcal{L}_{SVI}(\eta_\theta) \triangleq \mathcal{L}(\eta_\theta, \eta_x^*(\eta_\theta))$$

Proposition (natural gradient SVI of Hoffman et al. 2013)

$$\widetilde{\nabla} \mathcal{L}_{SVI}(\eta_{\theta}) = \eta_{\theta}^{0} + \mathbb{E}_{q^{*}(x)}(t_{xy}(x, y), 1) - \eta_{\theta}$$







$$q(\theta)q(x) \approx p(\theta, x \mid y)$$

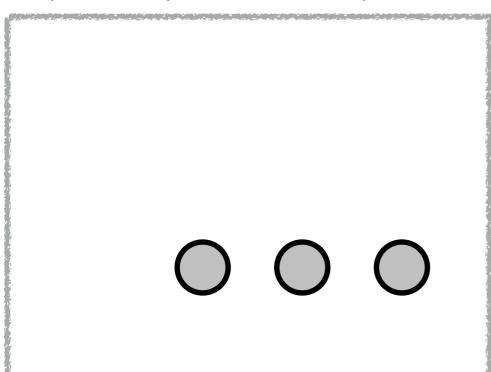
$$\mathcal{L}(\eta_{\theta}, \eta_{x}) \triangleq \mathbb{E}_{q(\theta)q(x)} \left[\log \frac{p(\theta, x, y)}{q(\theta)q(x)} \right]$$

$$\eta_x^*(\eta_\theta) \triangleq \arg\max_{\eta_x} \mathcal{L}(\eta_\theta, \eta_x) \qquad \mathcal{L}_{SVI}(\eta_\theta) \triangleq \mathcal{L}(\eta_\theta, \eta_x^*(\eta_\theta))$$

Proposition (natural gradient SVI of Hoffman et al. 2013)

$$\widetilde{\nabla} \mathcal{L}_{SVI}(\eta_{\theta}) = \eta_{\theta}^{0} + \sum_{n=1}^{N} \mathbb{E}_{q^{*}(x_{n})}(t_{xy}(x_{n}, y_{n}), 1) - \eta_{\theta}$$

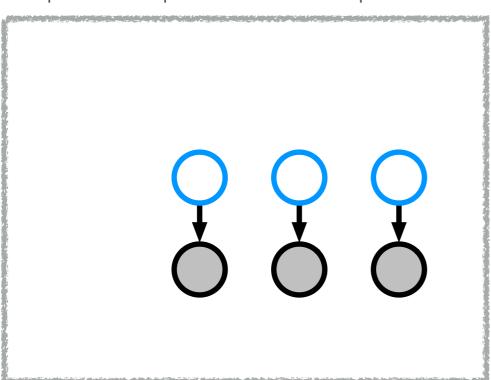
Step 1: compute evidence potentials



^[1] **Johnson** and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014.

^[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.

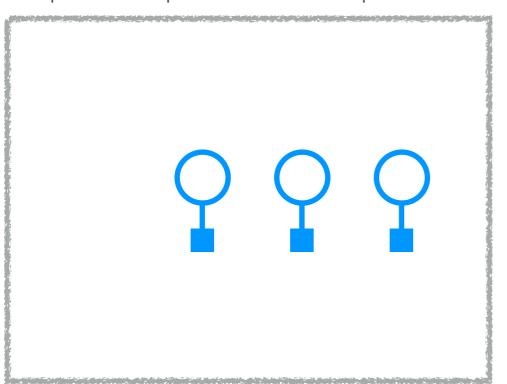
Step 1: compute evidence potentials



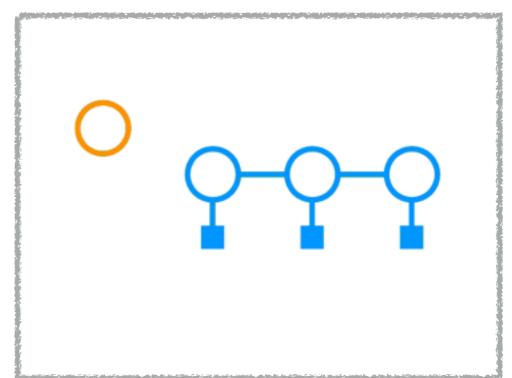
^[1] **Johnson** and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014.

^[2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.

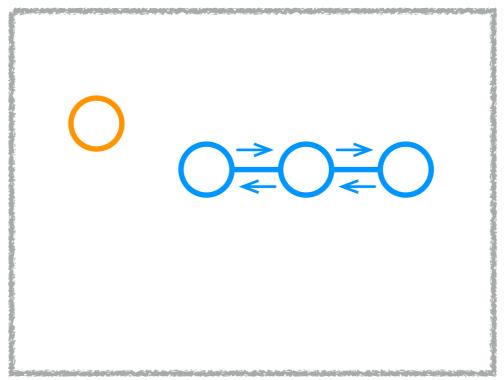
Step 1: compute evidence potentials



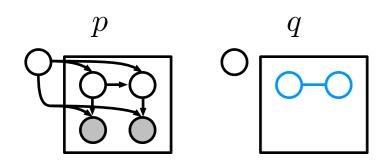
Step 2: run fast message passing

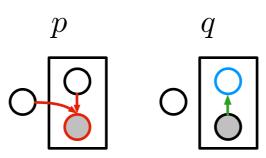


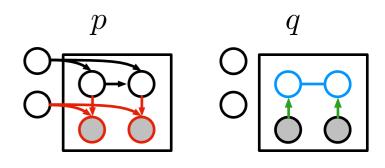
Step 3: compute natural gradient



- [1] **Johnson** and Willsky. Stochastic variational inference for Bayesian time series models. ICML 2014.
- [2] Foti, Xu, Laird, and Fox. Stochastic variational inference for hidden Markov models. NIPS 2014.







$$q^*(x) \triangleq \underset{q(x)}{\text{arg max}} \mathcal{L}[q(\theta)q(x)] \qquad q^*(x) \triangleq \mathcal{N}(x \mid \mu(y; \phi), \Sigma(y; \phi))$$

$$q^*(x) \triangleq \mathcal{N}(x \mid \mu(y; \phi), \Sigma(y; \phi))$$

$$q^*(x) \triangleq ?$$

Natural gradient SVI

Variational autoencoders [1,2]

Structured VAEs

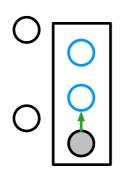
- + optimal local factor
- expensive for general obs.
- + exploits conj. graph structure
- + natural gradients

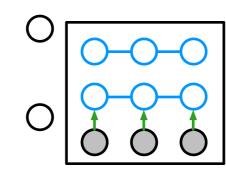
- suboptimal local factor
- + fast for general obs.
- $-\phi$ does all local inference
- no natural gradients

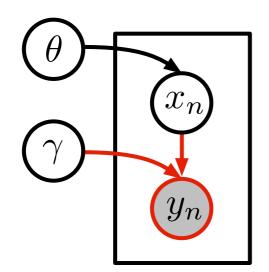
- ± optimal given conj. evidence
- + fast for general obs.
- + exploits conj. graph structure
- + natural gradients on η_{θ}

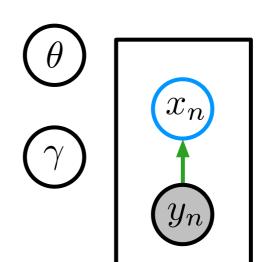
- [1] Kingma and Welling. Auto-encoding variational Bayes. ICLR 2014.
- [2] Rezende, Mohamed, and Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014

Inference: recognition networks output conjugate potentials, then apply fast graphical model inference







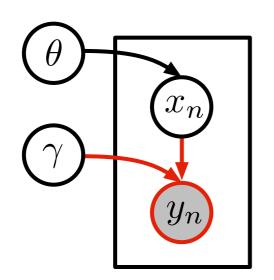


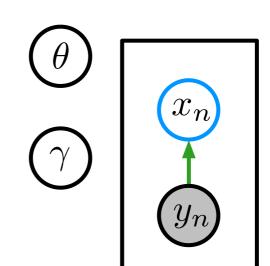
$$\mathcal{L}[q(\theta)q(\gamma)q(x)] \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta,\gamma,x)p(y \mid x,\gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$q(\theta) \leftrightarrow \eta_{\theta} \qquad q(\gamma) \leftrightarrow \eta_{\gamma} \qquad q(x) \leftrightarrow \eta_{x}$$

$$q(\gamma) \leftrightarrow \eta_{\gamma}$$

$$q(x) \leftrightarrow \eta_x$$



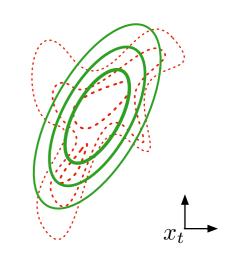


$$\mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \frac{\eta_{x}}{\eta_{x}}) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x)p(y \mid x, \gamma)}{q(\theta)q(\gamma)q(x)} \right]$$

$$\widehat{\mathcal{L}}(\eta_{\theta}, \frac{\eta_{x}}{\eta_{x}}, \phi) \triangleq \mathbb{E}_{q(\theta)q(\gamma)q(x)} \left[\log \frac{p(\theta, \gamma, x) \exp\{\psi(x; y, \phi)\}}{q(\theta)q(\gamma)q(x)} \right]$$

where $\psi(x; y, \phi)$ is a conjugate potential for $p(x \mid \theta)$

 $\mathbb{E}_{q(\gamma)}\log p(y_t \mid x_t, \gamma)$



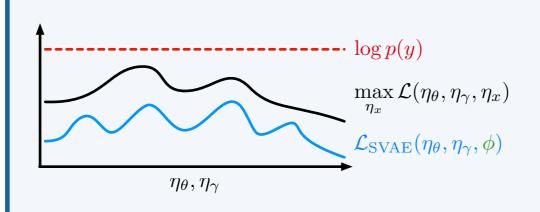
$$\psi(x_t; y_t, \phi)$$

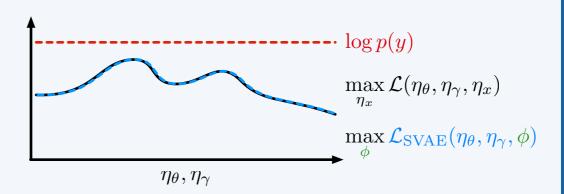
$$\eta_x^*(\eta_\theta, \phi) \triangleq \arg\max_{\eta_x} \widehat{\mathcal{L}}(\eta_\theta, \eta_x, \phi) \qquad \mathcal{L}_{\text{SVAE}}(\eta_\theta, \eta_\gamma, \phi) \triangleq \mathcal{L}(\eta_\theta, \eta_\gamma, \eta_x^*(\eta_\theta, \phi))$$

Fact (conjugate graphical models are easy)

The local variational parameter $\eta_x^*(\eta_\theta, \phi)$ is easy to compute.

Proposition (log evidence lower bound)





if $\exists \phi \in \mathbb{R}^m$ with $\psi(x; y, \phi) = \mathbb{E}_{q(\gamma)} \log p(y \mid x, \gamma)$

Proposition (reparameterization trick)

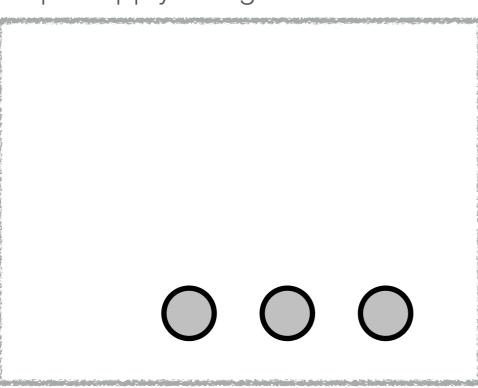
Estimate $\nabla_{\eta_{\gamma},\phi} \mathcal{L}_{SVAE}(\eta_{\theta},\eta_{\gamma},\phi)$ with samples $\hat{\gamma} \sim q(\gamma)$ and $\hat{x} \sim q^*(x \mid \phi)$ via

$$\mathcal{L}_{\text{SVAE}}(\eta_{\theta}, \eta_{\gamma}, \phi) \approx \log p(y \mid \hat{x}, \hat{\gamma}) - \text{KL}(q(\theta)q(\gamma)q^*(x \mid \phi) \parallel p(\theta, \gamma, x))$$

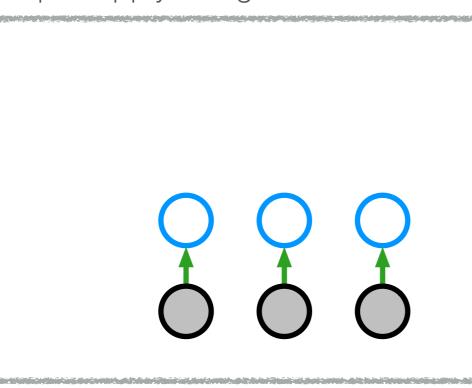
Proposition (easy natural gradient)

$$\widetilde{\nabla}_{\eta_{\theta}} \mathcal{L}_{\text{SVAE}}(\eta_{\theta}, \eta_{\gamma}, \phi) = (\eta_{\theta}^{0} + \mathbb{E}_{q^{*}(x \mid \phi)}(t_{x}(x), 1) - \eta_{\theta}) + (\nabla_{\eta_{x}} \mathcal{L}(\eta_{\theta}, \eta_{\gamma}, \eta_{x}^{*}(\eta_{\theta}, \phi)), 0)$$

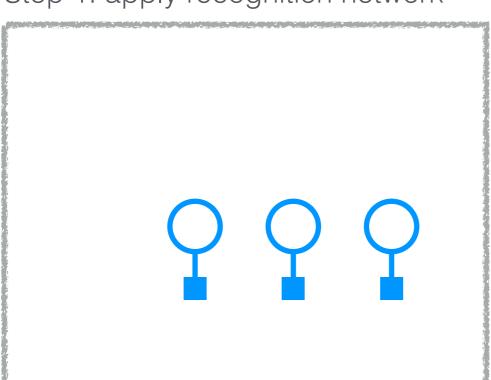
Step 1: apply recognition network



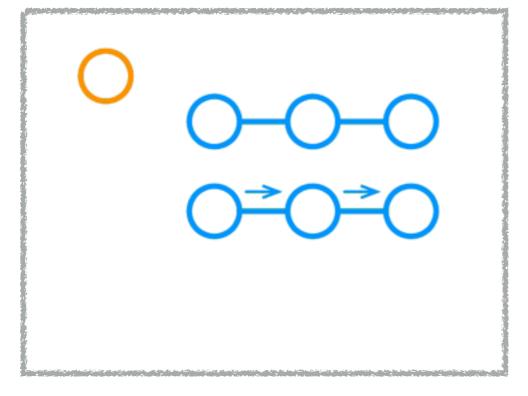
Step 1: apply recognition network



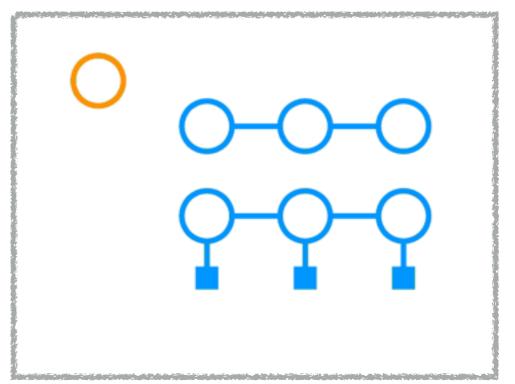
Step 1: apply recognition network



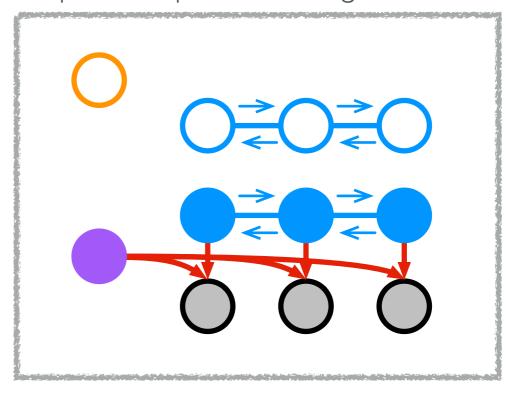
Step 3: sample, compute flat grads



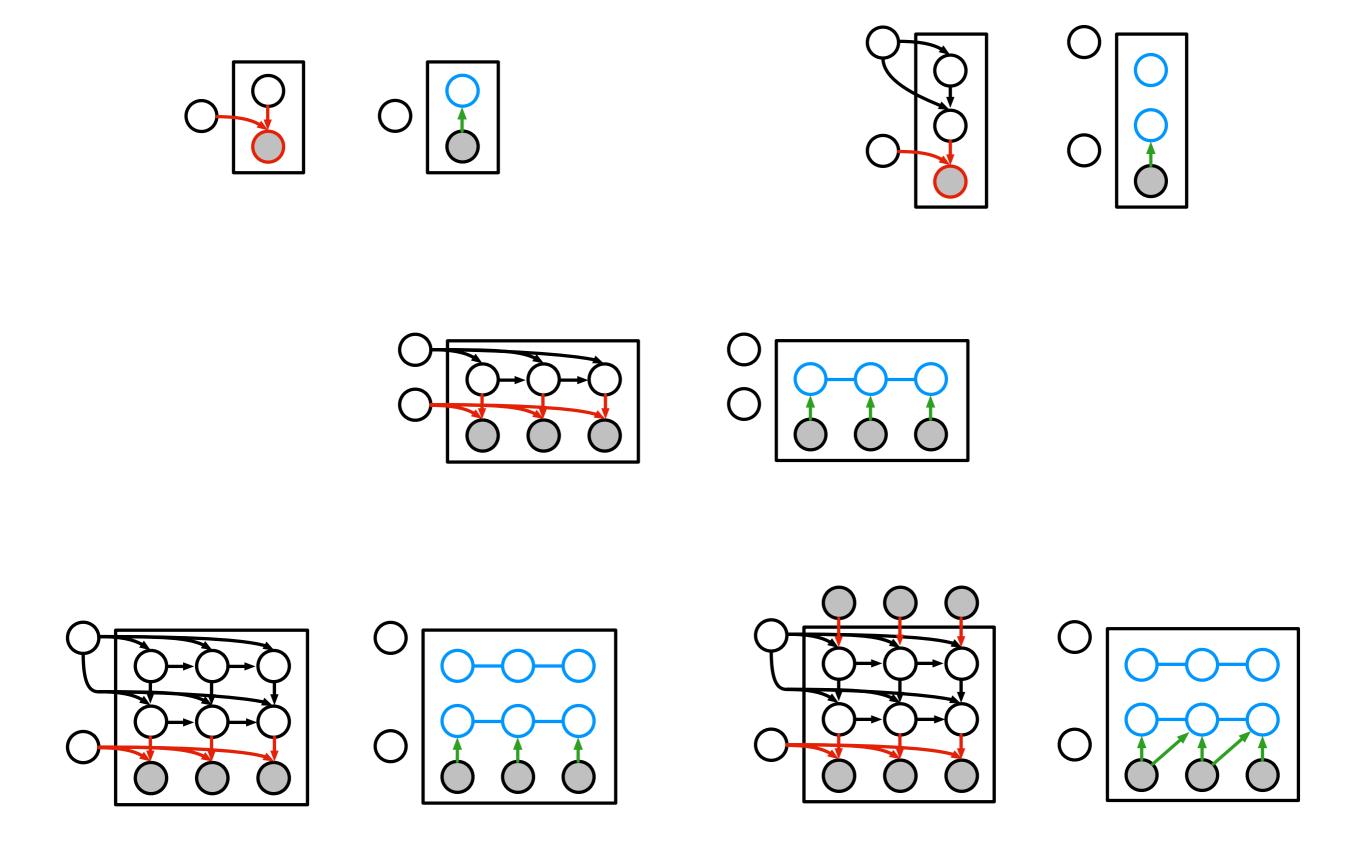
Step 2: run fast PGM algorithms



Step 4: compute natural gradient

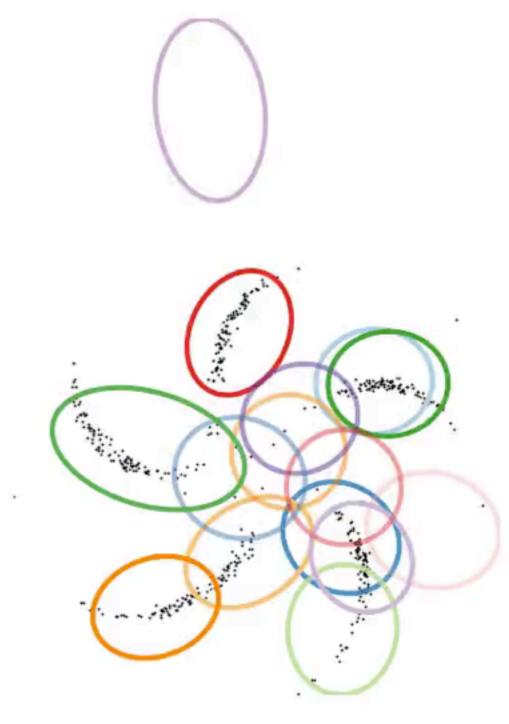


```
from autograd import value_and_grad as vgrad
from util import add, sub, scale, unbox
def make_gradfun(run_inference, recognize, loglike, eta_prior, return_flat=False):
    saved = lambda: None
    def mc_vlb(eta, gamma, phi, y_n, N, L):
        T = y_n.shape[0]
        nn potentials = recognize(y n, phi)
        samples, stats, global_kl, local_kl = run_inference(
            eta_prior, eta, nn_potentials, num_samples=L)
        saved.stats = scale(N, unbox(stats))
        return -global_kl + N * (-local_kl + loglike(y_n, samples, gamma))
    def gradfun(y_n, N, L, eta, gamma, phi):
        objective = lambda (gamma, phi): mc_vlb(eta, gamma, phi, y_n, N, L)
        vlb, (gamma_grad, phi_grad) = vgrad(objective)((gamma, phi))
        eta_natgrad = sub(add(eta_prior, saved.stats), eta)
        return vlb, (eta_natgrad, gamma_grad, phi_grad)
    return gradfun
```

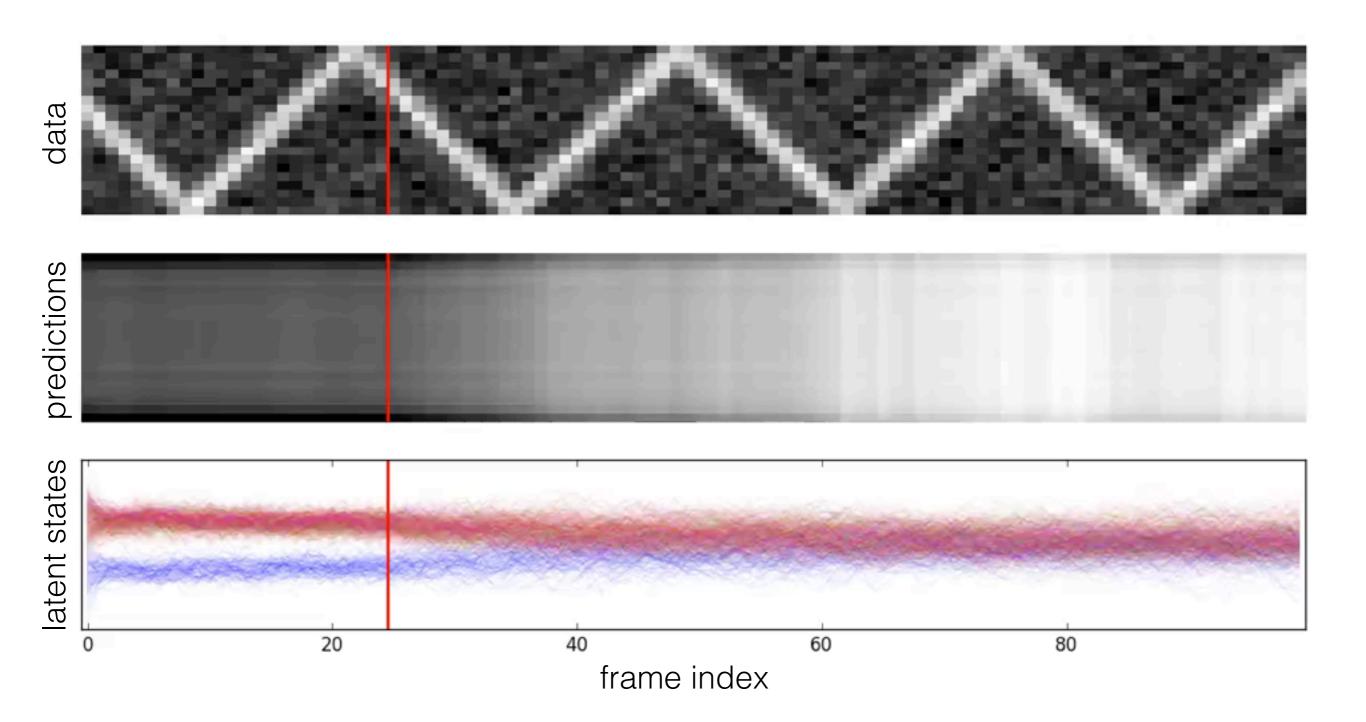


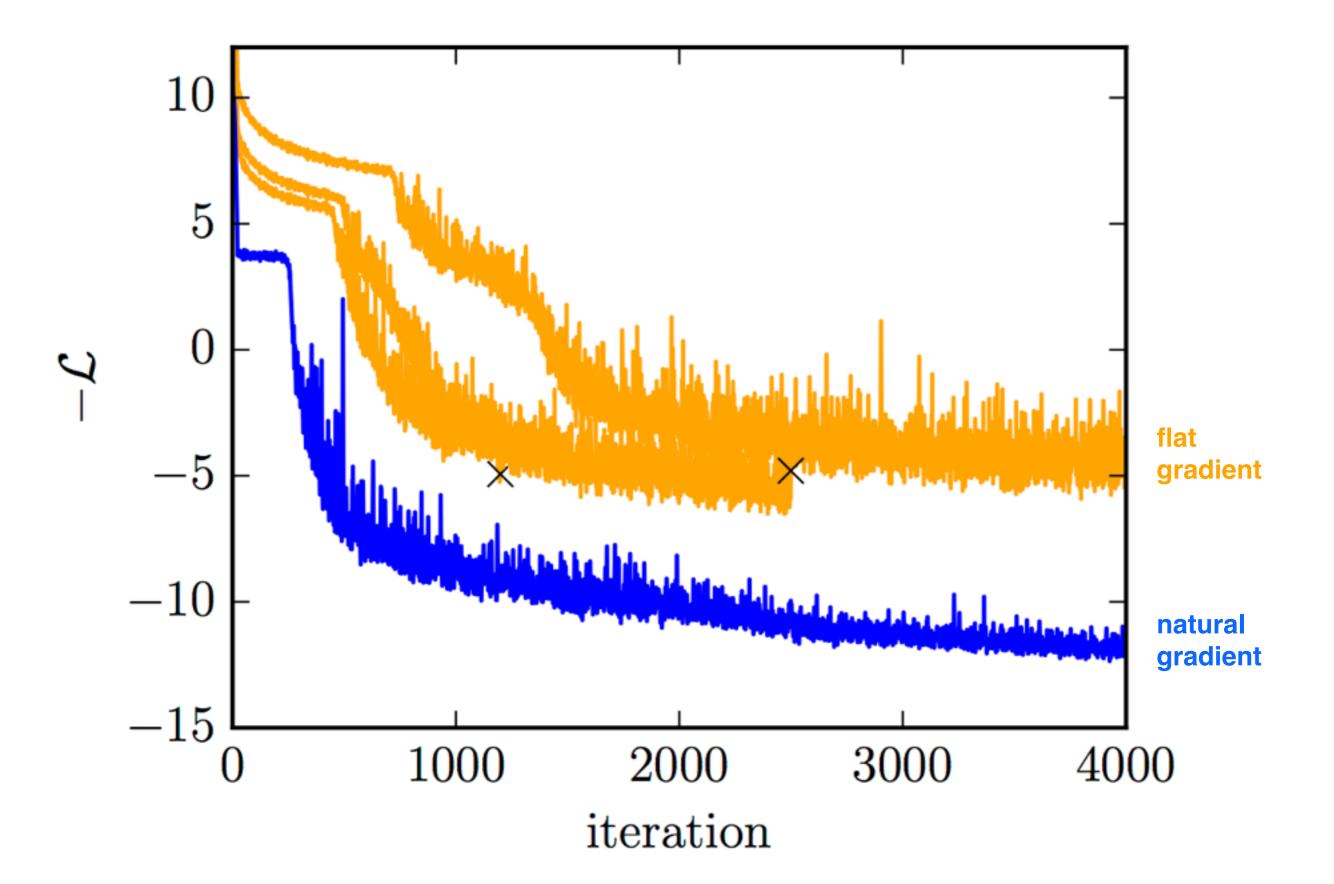


data space

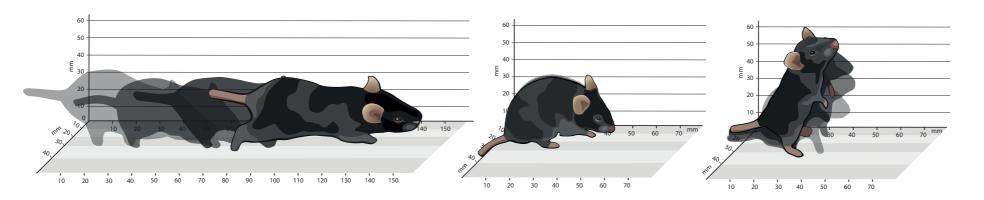


latent space



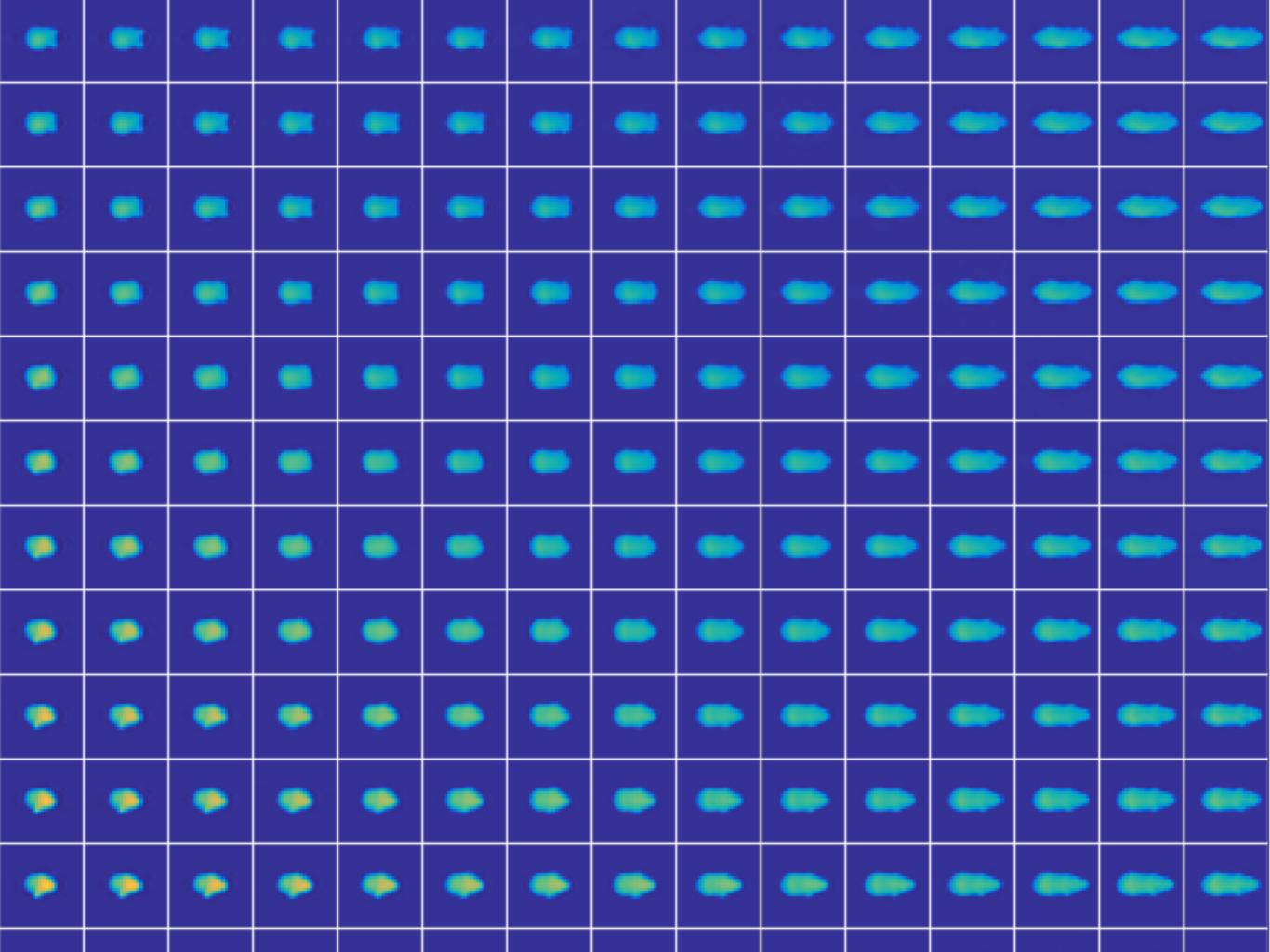


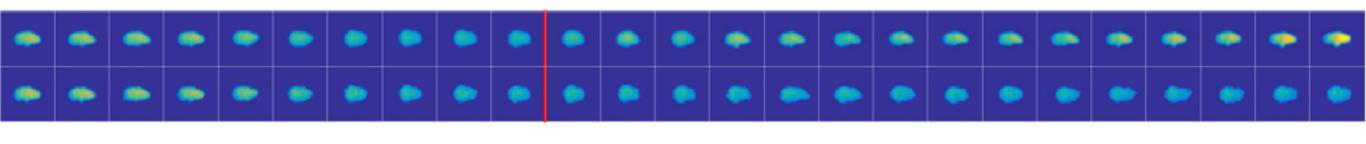
Application: learn syllable representation of behavior from video

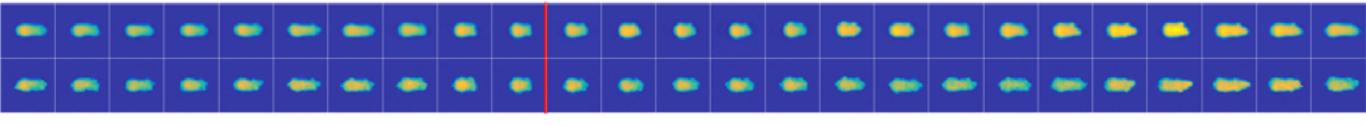


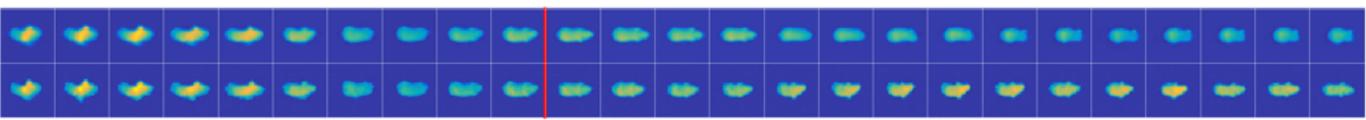
	•	*	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	-	•	-	•	•	•	•	•	•	•	
•	•	•	•	•	•	-	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	-	•
	•	•	•	-	•	•	•	•	•	•	•	•	•	•
•	•	-	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	-	•	•	•	•	*	•	•	•	•	•	•	-	
•	-	•	•	•	•	•	•	-	•	•	•	•	•	•
	•	-	•	•	•	•	•	•	•	•	•	-	•	•
•	•	-	•	-	•	•	•	-	•	•	•	•	•	•

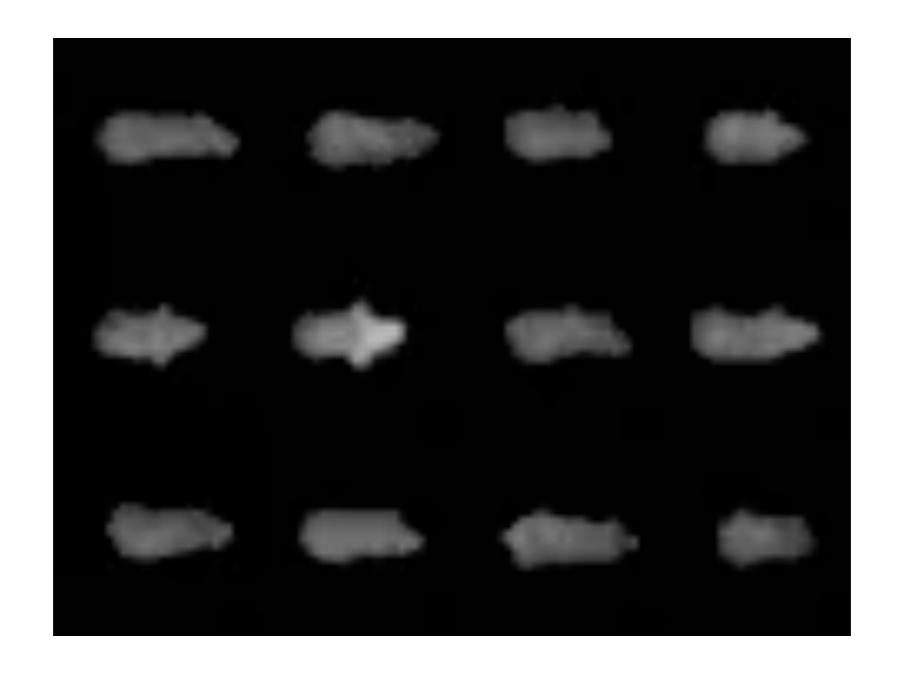
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	•	•	-	•	•	•	•	•	•
•	•	•	-	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•



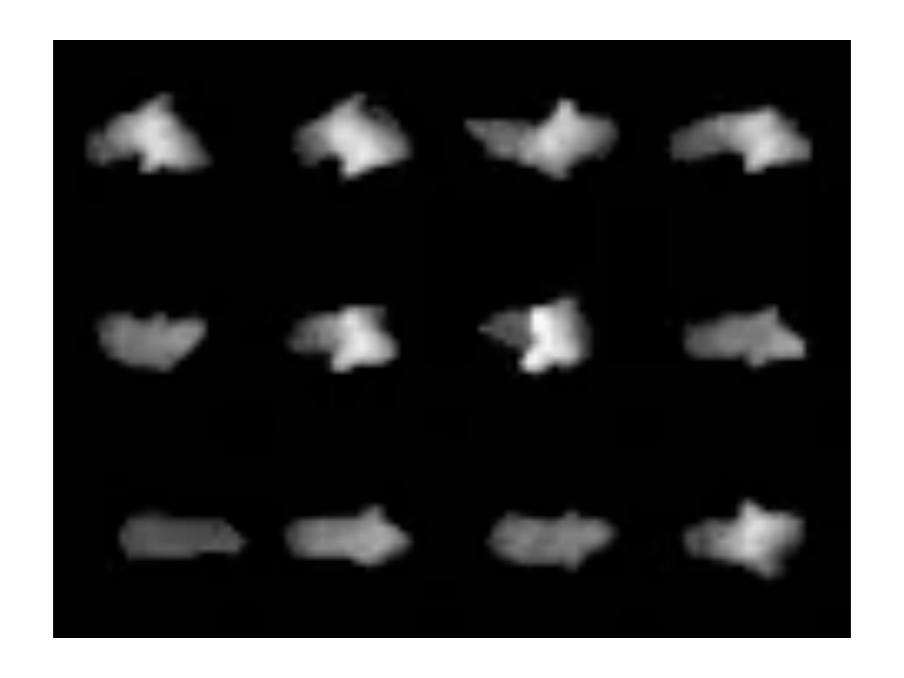




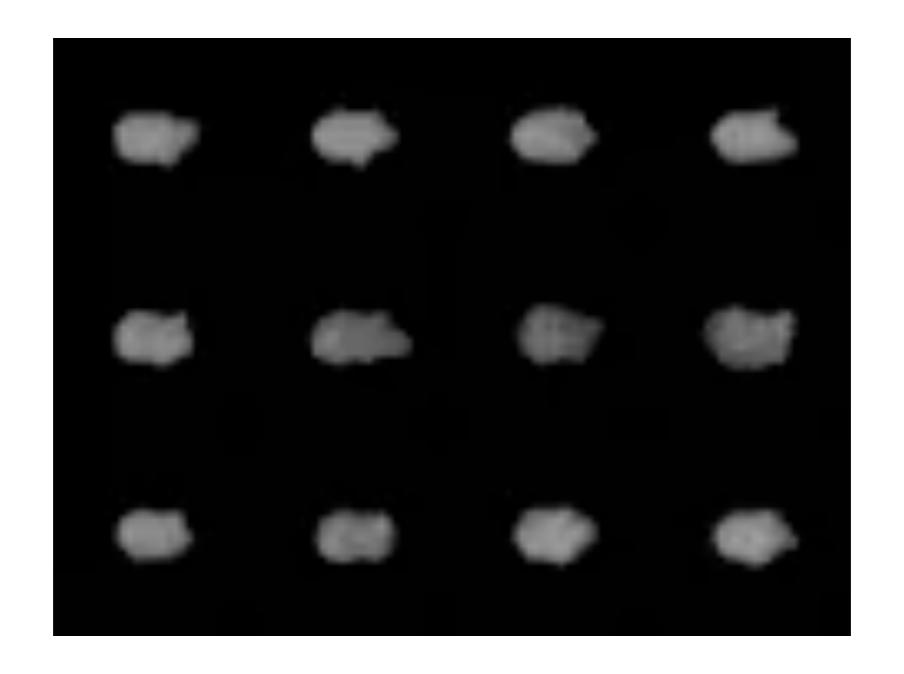




start rear

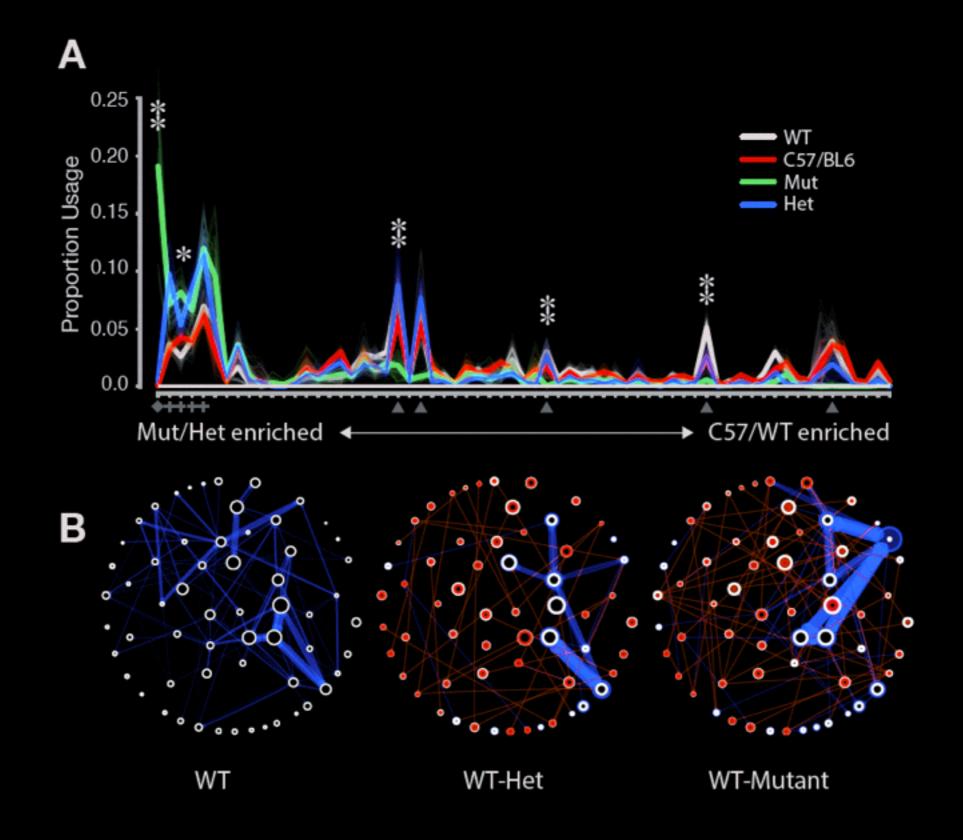


fall from rear



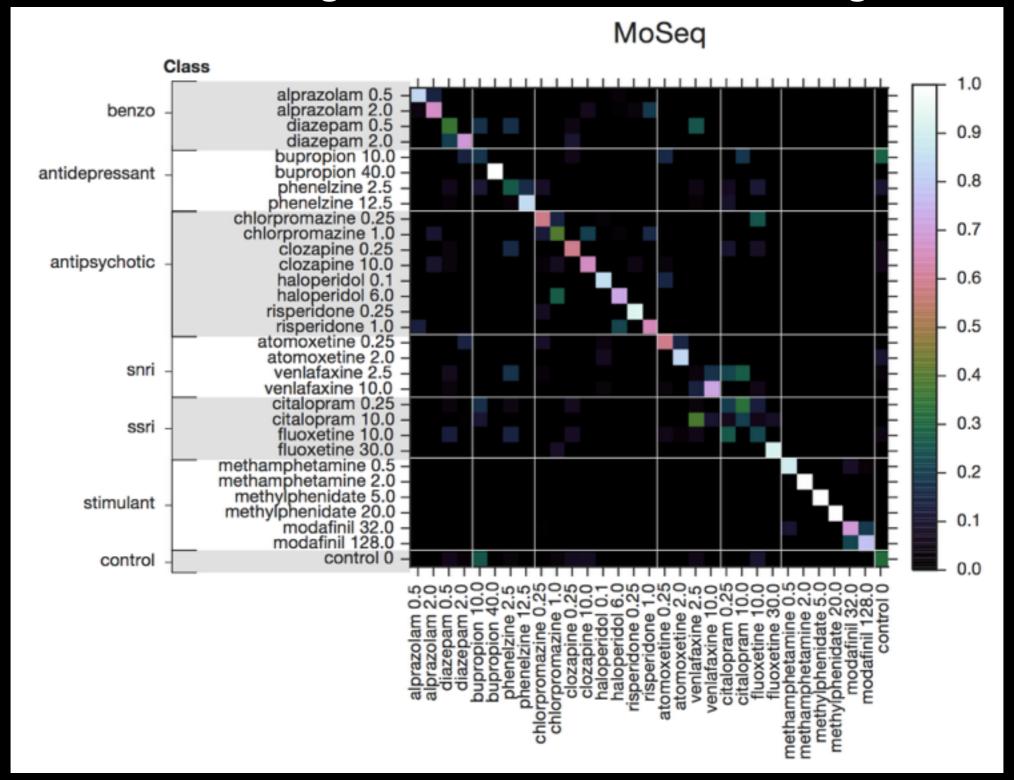
grooming

Discovery of Heterozygous Phenotypes in Rorlb Mice

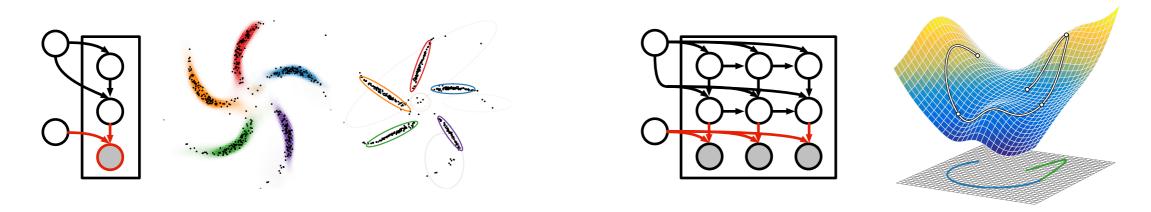


Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.

... and high and low doses of each drug

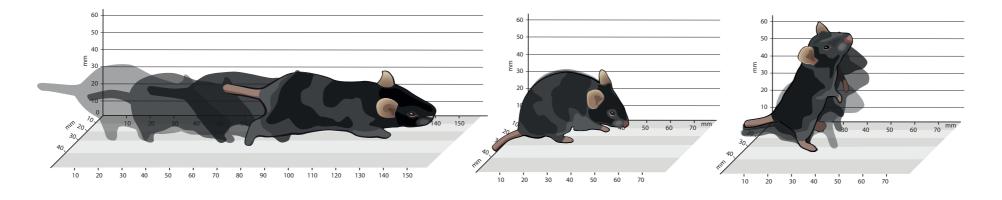


Modeling idea: graphical models on latent variables, neural network models for observations



Inference: recognition networks output conjugate potentials, then apply fast graphical model inference

Application: learn syllable representation of behavior from video



Limitations and future work

- How expressive is latent linear structure?
- capacity
 word embeddings [1], analogical reasoning in image models
 SVAE can use nonlinear latent structure

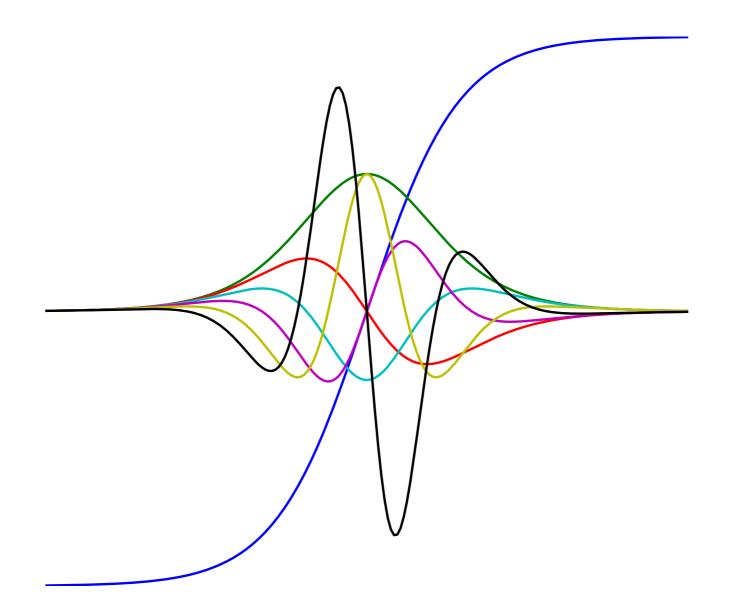
- PGMs get complicated
 SVAE keeps complexity modular

- model-based reinforcement learning
- future work
 automatic structure search [2,3]
 semi-supervised applications

^[1] Hashimoto, Alvarez-Melis, and Jaakkola, Word, graph and manifold embedding from Markov processes, Preprint 2015.

^[2] Grosse et al., Exploiting compositionality to explore a large space of model structures, UAI 2012.

^[3] Duvenaud et al., Structure discovery in nonparametric regression through compositional kernel search, ICML 2013.



github.com/hips/autograd

Thanks!

