Latent Stochastic Differential Equations

Xuechen Li, Leonard Wong, Ricky Chen, David Duvenaud
University of Toronto, Vector Institute,
Google Brain Toronto
Summary

• New-ish model class for continuous-time generative models:
 • Neural net dynamics and likelihoods
 • Well-defined model, tractable marginal likelihood estimates

• 2020: Adjoint sensitivity method for SDEs.
 • $O(1)$ training memory cost, adaptive compute

• 2021: Asymptotically-zero variance gradient estimator

• Exploring this model class: Time series, BNNs, multi-scale
Motivation: Irregularly-timed datasets

- Most patient data, business data irregularly sampled through time.
- Most large parametric models in ML are discrete time: RNNs, HMMs, DKFs
- How to handle these data without binning?
Ordinary Differential Equations

- Vector-valued \mathbf{z} changes in time
- Time-derivative: $\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t)$
- Initial-value problem: given $\mathbf{z}(t_0)$, find:
 \[\mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) \, dt \]
- Euler approximates with small steps:
 \[\mathbf{z}(t + h) = \mathbf{z}(t) + hf(\mathbf{z}, t) \]
Autoregressive continuous-time

Standard RNN:

\[h'_i = h_{i-1} \]
\[h_i = \text{RNNCell}(h'_i, x_i) \]

ODE-RNN:

\[h'_i = \text{ODESolve}(f_{\theta}, h_{i-1}, (t_{i-1}, t_i)) \]
\[h_i = \text{RNNCell}(h'_i, x_i) \]
Limitations of RNN-based models

• Hidden state h represents model's belief about system's future, not the same thing as system state.

• Not a well-defined generative model.

• No explicit use of Bayes' rule, just makes predictions (but robust to mis-specification!)

\[
h_i' = \text{ODESolve}(f_\theta, h_{i-1}, (t_{i-1}, t_i))
\]

\[
h_i = \text{RNNCell}(h'_i, x_i)
\]
Latent variable models

- Kalman Filters, Hidden Markov Models, Deep Markov Models

- specify $p(z)$, $p(x|z)$

\[p(x) = \int p(x|z)p(z)dz \]

- Can integrate out z however you want!

- Recognition net can give approx. posterior

[Krishnan, Shalit & Sontag '15]

https://pyro.ai/examples/dmm.html
ODE latent-variable model

- \(z(t) \) is state of system at time \(t \)
- Need to approximate posterior \(p(z_{t0} \mid x_{t1} \ldots) \)
- Well-defined state at all times, dynamics separate from inference

\[
\begin{align*}
 z_{t0} &\sim p(z_{t0}) \\
 z_{t1}, z_{t2}, \ldots, z_{tN} &= \text{ODESolve}(z_{t0}, f, \theta_f, t_0, \ldots, t_N) \\
 \text{each } x_{ti} &\sim p(x \mid z_{ti}, \theta_x)
\end{align*}
\]
Physionet: Predictive accuracy

![Graph showing time (hours) vs. values for different parameters like Lactate, Mg, MAP, MechVent, Na, NIDiasABP.]

Table 4: Test MSE (mean ± std) on PhysioNet. **Autoregressive** models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Interp ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN Δ_t</td>
<td>3.520 ± 0.276</td>
</tr>
<tr>
<td>RNN-Impute</td>
<td>3.243 ± 0.275</td>
</tr>
<tr>
<td>RNN-Decay</td>
<td>3.215 ± 0.276</td>
</tr>
<tr>
<td>RNN GRU-D</td>
<td>3.384 ± 0.274</td>
</tr>
<tr>
<td>ODE-RNN (Ours)</td>
<td>2.361 ± 0.086</td>
</tr>
</tbody>
</table>

Table 5: Test MSE (mean ± std) on PhysioNet. **Encoder-decoder** models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Interp ($\times 10^{-3}$)</th>
<th>Extrap ($\times 10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN-VAE</td>
<td>5.930 ± 0.249</td>
<td>3.055 ± 0.145</td>
</tr>
<tr>
<td>Latent ODE (RNN enc.)</td>
<td>3.907 ± 0.252</td>
<td>3.162 ± 0.052</td>
</tr>
<tr>
<td>Latent ODE (ODE enc)</td>
<td>2.118 ± 0.271</td>
<td>2.231 ± 0.029</td>
</tr>
<tr>
<td>Latent ODE + Poisson</td>
<td>2.789 ± 0.771</td>
<td>2.208 ± 0.050</td>
</tr>
</tbody>
</table>
Limitations of Latent ODEs

- Deterministic dynamics!
- State size grows with sequence length
- Special time t_0

\[\text{ODE Solve}(z_{t_0}, f, \theta_f, t_0, \ldots, t_N) \]

\[\hat{x}_{t_0} \rightarrow \hat{x}_{t_1} \rightarrow \hat{x}_{t_i} \rightarrow \hat{x}_{t_N} \]
Stochastic transition dynamics

- Nonlinear latent variable with noise at each step:
 \[z_{t+1} = z_t + f_\theta(z_t) + \epsilon \]

- Could add more steps between observations.

- Infinitesimal limit some sort of stochastic ODE...?

https://pyro.ai/examples/dmm.html
Stochastic Differential Equations

\[
\frac{dz}{dt} = f(z(t)) + "\epsilon"
\]

\[
dz = f(z(t))dt + \sigma(z(t))dB(t)
\]

- Drift
- Diffusion

- Implicit distribution over functions.
What are SDEs good for?

- natural fit for many small, unobserved interactions:
 - motion of molecules in a liquid
 - allele frequencies in a gene pool
 - prices in a market
- Interactions don’t need to be Gaussian if CLT kicks in
- Let’s put neural nets in SDE dynamics and fit to data!

\[dz = f_\theta(z(t))dt + \sigma_\theta(z(t))dB(t) \]
How to fit ODE params?

\[L(\theta) = L \left(\int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt \right) \]

\[\frac{\partial L}{\partial \theta} = ? \]

• Don’t backprop through solver: High memory cost, numerical error

• Alexey Radul: Approximate the derivative, don’t differentiate the approximation!
Continuous-time Backpropagation

- Can build adjoint dynamics with autodiff, compute gradients with second ODE solve:

\[
\frac{\partial}{\partial t} \frac{\partial L}{\partial \mathbf{z}(t)} = \sum_{t} \frac{\partial L}{\partial \mathbf{z}(t)} \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \mathbf{z}(t)}
\]

\[
\frac{\partial L}{\partial \theta} = \int_{t_1}^{t_0} \frac{\partial L}{\partial \mathbf{z}(t)} \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \theta} dt
\]

Adjoint sensitivities: (Pontryagin et al., 1962):

\[
\frac{\partial}{\partial t} \frac{\partial L}{\partial \mathbf{z}(t)} = \frac{\partial L}{\partial \mathbf{z}(t)} \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \mathbf{z}(t)}
\]

\[
\frac{\partial L}{\partial \theta} = \int_{t_1}^{t_0} \frac{\partial L}{\partial \mathbf{z}(t)} \frac{\partial f(\mathbf{z}(t), \theta)}{\partial \theta} dt
\]
O(1) Memory Gradients

• No need to store activations, just run dynamics backwards from output.

• Easy to run ODE backwards, just run negate dynamics and time:

 • $\text{back}_f(z, t) = -f(z, -t)$
Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ, start time t_0, stop time t_1, final state z_{t_1}, loss gradient $\partial L / z_{t_1}$, dynamics $f(z, t, \theta)$.

```python
def \( \bar{f}([z_t, a_t, :], t, \theta) \):  
    \( v = f(z_t, -t, \theta) \)
    return \( [-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta] \)
```

- Final algorithm for ODE grads: Solve one big augmented system backwards in time.

- Mostly worked out by Pontryagin (1961)
Why not repeat same trick?

• If an SDE is just “an ODE with noise”, why not use same adjoint method?

• "Unfortunately, there is no straightforward way to port this construction to SDEs." - Tzen & Raginsky (2019)

• (alternative: Rough path theory. ask later)
What is “running an SDE backwards”?

• Me: Let’s just slap negative signs on everything and hope for the best

• Xuechen Li and Leonard Wong: What does that even mean?

• Much later: Nvm that’s correct.

• Builds on Kunita (2019)

\[
dz = -f(z(-t))dt + \sigma(z(-t))dB(-t)
\]
Need to store noise

- Reparameterization trick: Use same noise from forward pass on reverse pass
- Infinite reparameterization trick: Use same Brownian motion sample on forward and reverse passes.
- Need to sample entire function
Virtual Brownian Tree

- Can ‘zoom in’ arbitrarily close at any point.
- $O(1)$ memory, $O(\log(1/\epsilon))$ time
- Splittable random seed ensures all entire sample is consistent
Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ, start time t_0, stop time t_1, final state z_{t_1}, loss gradient $\partial L/\partial z_{t_1}$, dynamics $f(z,t,\theta)$.

```python
def \bar{f}(\{z_t, a_t, \cdot\}, t, \theta):
    \triangleright Augmented dynamics
    v = f(z_t, -t, \theta)
    return [-v, a_t \partial v/\partial z, a_t \partial v/\partial \theta]
```

\[
\begin{bmatrix}
z_{t_0} \\
\partial L/\partial z_{t_0} \\
\partial L/\partial \theta
\end{bmatrix} = \text{odeint}\left(\begin{bmatrix}
z_{t_1} \\
\partial L/\partial z_{t_1} \\
0_p
\end{bmatrix}, \bar{f}, -t_1, -t_0\right)
\]

return $\partial L/\partial z_{t_0}, \partial L/\partial \theta$
Algorithm 1 ODE Adjoint Sensitivity

Input: Parameters θ, start time t_0, stop time t_1, final state z_{t_1}, loss gradient $\partial L / \partial z_{t_1}$, dynamics $f(z, t, \theta)$.

```python
def f([z_t, a_t, :], t, \theta):
    v = f(z_t, -t, \theta)
    return [-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta]
```

$$\begin{bmatrix}
 z_{t_0} \\
 \partial L / \partial z_{t_0}
\end{bmatrix} = \text{odeint}
\begin{bmatrix}
 z_{t_1} \\
 \partial L / \partial z_{t_1}
\end{bmatrix}, \bar{f}, -t_1, -t_0
$$

return $\partial L / \partial z_{t_0}, \partial L / \partial \theta$

Algorithm 2 SDE Adjoint Sensitivity (Ours)

Input: Parameters θ, start time t_0, stop time t_1, final state z_{t_1}, loss gradient $\partial L / z_{t_1}$, drift $f(z, t, \theta)$, diffusion $\sigma(z, t, \theta)$, Wiener process sample $w(t)$.

```python
def f([z_t, a_t, :], t, \theta):
    v = f(z_t, -t, \theta)
    return [-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta]
```

```python
def \sigma([z_t, a_t, :], t, \theta):
    v = \sigma(z_t, -t, \theta)
    return [-v, a_t \partial v / \partial z, a_t \partial v / \partial \theta]
```

```python
def \bar{w}(t):
    return [-w(-t), -w(-t), -w(-t)]
```

$$\begin{bmatrix}
 z_{t_0} \\
 \partial L / \partial z_{t_0}
\end{bmatrix} = \text{sdeint}
\begin{bmatrix}
 z_{t_1} \\
 \partial L / \partial z_{t_1}
\end{bmatrix}, \bar{f}, \bar{\sigma}, \bar{w}, -t_1, -t_0
$$

return $\partial L / \partial z_{t_0}, \partial L / \partial \theta$
Time and memory cost

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward pathwise [14, 60]</td>
<td>$O(1)$</td>
<td>$O(LD)$</td>
</tr>
<tr>
<td>Backprop through solver [11]</td>
<td>$O(L)$</td>
<td>$O(L)$</td>
</tr>
<tr>
<td>Stochastic adjoint (ours)</td>
<td>$O(1)$</td>
<td>$O(L \log L)$</td>
</tr>
</tbody>
</table>

- Time more like $O(L)$ when dynamics are expensive
- Can now fit large SDE models by gradient descent!
Latent-variable model

• Can handle arbitrary likelihoods. Infinite-dimensional VAE.
Latent SDE Model

- Generative model (decoder) defined implicitly by:
 - an SDE \(dz = f_\theta(z(t))dt + \sigma_\theta(z(t))dB(t) \)
 - A likelihood (noise model) \(p(x_t | z_t) \)
Variational inference

- Recognition model (encoder) takes in data, outputs:
 - Distribution over initial state $q(z_0 | x_1.. x_N)$
 - Params of SDE defining approximate posterior
 \[dz_q = f_\phi(z(t)) dt + \sigma_\theta(z(t)) dB'(t) \]
- Like Neural Processes, but actually a well-defined probabilistic model
Variational inference

- To optimize ELBO, need unbiased estimate of KL divergence between

 • prior: \(dz_p = f_\theta(z(t))dt + \sigma_\theta(z(t))dB(t) \)
 • approximate posterior: \(dz_q = f_\phi(z(t))dt + \sigma_\theta(z(t))dB'(t) \)

\[
\mathcal{L}_{\text{VI}} = \mathbb{E}\left[\frac{1}{2} \int_0^T |u(Z_t, t)|^2 \, dt - \sum_{i=1}^N \log p(y_{t_i} | z_{t_i}) \right]
\]

\[
u(t) = \left| \frac{f_\theta(z(t)) - f_\phi(z(t))}{\sigma_\theta(z(t))} \right|_2^2
\]
1D Latent SDE

- Ornstein-Uhlenbeck prior, Laplace likelihood
- Posterior SDE steers sample paths to data
Latent SDEs: An unexplored model class

• Define implicit prior + posterior over functions

• Define observation likelihoods. Anything differentiable wrt latent state (e.g. text models!)

• Train everything with stochastic variational inference.

• Can use adaptive-step SDE solvers.

• Should scale to millions of params, huge states. Can use adaptive Milstein solver (only diagonal noise).
GPs vs Markov SDEs

- mean and kernel funcs
- Not closed over marginal transforms.
 \[\exp(f(x) \sim GP) \]
 not a GP
- Multi-dim input fine

- Drift and diffusion funcs
- Closed over marginal transforms.
 \[\exp(f(x) \sim SDE) \]
 still an SDE
- Only single-dim input
Early latent SDE results: Mocap

- 50D data, 6D latent space, sharing dynamics and recognition params across time series (11000 params)

<table>
<thead>
<tr>
<th>Method</th>
<th>Test MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>npODE [18]</td>
<td>22.96†</td>
</tr>
<tr>
<td>NeuralODE [4]</td>
<td>22.49 ± 0.88†</td>
</tr>
<tr>
<td>ODE2VAE [61]</td>
<td>10.06 ± 1.4†</td>
</tr>
<tr>
<td>ODE2VAE-KL [61]</td>
<td>8.09 ± 1.95†</td>
</tr>
<tr>
<td>Latent ODE [4, 50]</td>
<td>5.98 ± 0.28</td>
</tr>
<tr>
<td>Latent SDE (this work)</td>
<td>4.03 ± 0.20</td>
</tr>
</tbody>
</table>
SVI Gradient variance

- Sticking the landing [Roeder, Wu, Duvenaud, NIPS 2017]
 SVI gradient estimator whose variance goes to zero as $q(z) \rightarrow p(z|x)$
SVI Gradient variance

- New for ICML 2021: We extended "Sticking the Landing" to SDEs

- Reminder: Approx posterior can be arbitrarily close to true posterior!
Takeaway

• Large SDE-based latent-variable models now practical-ish

• Should handle real irregularly-sampled time series!
 • Can condition on time of observations
 • Can answer any query, not just forward prediction

• In practice, start with an RNN!

• Code: https://github.com/google-research/torchsde
Next steps

• Modeling:
 • Multi-timescale SDE - skip low-level details
 • Jump processes, SPDEs

• Applications:
 • Population genetics, finance, epidemiology? User traces? Let's talk!
 • Infinitely deep Bayesian neural networks
Building an infinitely-deep BNN

• Start with a ResNet:

\[h_{t+\epsilon} = h_t + \epsilon f_h(h_t, w_t) \]

• Take limit as \(\epsilon \to 0 \), number of layers grows.

• Given a process over weights, activations \(h \) follow a random ODE:

\[dh_t = f_h(h_t, w_t) \]
Building an infinitely-deep BNN

- Prior on weights is a OU process

\[dw_t = -w_t dt + dB_t \]

- Likelihood depends on activation at time 1:

\[p(y \mid x, w) = \mathcal{N}(y \mid h_1, w) \]

- Define approximate posterior on weights:

\[dw_t = f_w(w_t, \phi) dt + dB_t \]
Building an infinitely-deep BNN

- Can sample weights from approx posterior and evaluate network output in one SDE solve:

\[
\begin{bmatrix} w_t \\ h_t \end{bmatrix} \quad \begin{bmatrix} f_w(w_t, \phi) \\ f_h(h_t, w_t) \end{bmatrix} dt + \begin{bmatrix} I \\ 0 \end{bmatrix} dB_t
\]

- Start \(h_0 \) at input to neural network \(x \).
- \(h_1 \) is output of neural network.
Training an infinitely-deep BNN

- Predictive Posterior Density $p(y|x)$
- Sampled Latent Dynamics 1 (independent)
- Sampled Latent Dynamics 1 (fixed)
- Posterior over weights $q(w)$
- Sampled Latent Dynamics 2 (independent)
- Sampled Latent Dynamics 2 (fixed)
Practical Advantages (in theory)

- Continuous-time formulation allows use of adaptive SDE solvers.
- Can adjust adaptive solver tolerance at test time, trades off speed vs precision.
- Arbitrarily-flexible approx posterior with no $O(D^3)$ scaling.
- (True scaling unknown!?)
At least scales to CIFAR10

<table>
<thead>
<tr>
<th>Model</th>
<th>MNIST</th>
<th>CIFAR-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy (%)</td>
<td>ECE ($\times 10^{-2}$)</td>
</tr>
<tr>
<td>ResNet32</td>
<td>99.46 ± 0.00</td>
<td>2.88 ± 0.94</td>
</tr>
<tr>
<td>ODENet</td>
<td>98.90 ± 0.04</td>
<td>1.11 ± 0.10</td>
</tr>
<tr>
<td>HyperODENet</td>
<td>99.04 ± 0.00</td>
<td>1.04 ± 0.09</td>
</tr>
<tr>
<td>Mean Field ResNet32</td>
<td>99.44 ± 0.00</td>
<td>2.76 ± 1.28</td>
</tr>
<tr>
<td>Mean Field ODENet</td>
<td>98.81 ± 0.00</td>
<td>2.63 ± 0.31</td>
</tr>
<tr>
<td>Mean Field HyperODENet</td>
<td>98.77 ± 0.01</td>
<td>2.82 ± 1.34</td>
</tr>
<tr>
<td>SDE BNN</td>
<td>99.30 ± 0.09</td>
<td>0.63 ± 0.10</td>
</tr>
<tr>
<td>SDE BNN (+ STL)</td>
<td>99.10 ± 0.09</td>
<td>0.78 ± 0.12</td>
</tr>
</tbody>
</table>
Multi-Scale Continuous-time

\[d a = f_a(a(t)) \ dt + \sigma_a(a(t)) \ dW(t) \]
\[d b = f_b(a(t), b(t)) \ dt + \sigma_b(a(t), b(t)) \ dW(t) \]

- Conjecture: Infinitesimal time limit of Markov models give SDE with variable dependence same as parents in graph.
Example: Infant Electrocardiograms

- Jointly compute $p(\text{ECG of time } N, \text{ ECG of time } N + 10000)$

- Phase of ECG in between are irrelevant, heart size is sufficient statistic
Example: Infant Electrocardiograms
Example: Infant Electrocardiograms
Example: Infant Electrocardiograms
Example: Infant Electrocardiograms

Diagram:

- a
 - [diagram of a time series with labels: data, skip over mixed, prediction]
- b
 - [more complex diagram with labels: time]
Hope #1: Low levels Mix Fast

- Away from observations, fine-grained details usually uncorrelated given high-level properties. I.e. conditional independence of fine given coarse

- E.g. in some GPs, we mix back to prior away from data

- Not always true (e.g. in computers) but that situation is always hard
Skipping over irrelevant details

- Expensive part is simulation of finer levels
- Away from data, these variables have KL of 0 given coarse grained trajectories!

\[
KL(q || p) = \mathbb{E}_{a(\cdot), b(\cdot) | a(\cdot)} \left[\int_0^T u(a(t)) \, dW_t + \int_0^T u(a(t), b(t)) \, dW_t \right]
\]

coarse grained \hspace{5cm} fine grained
Skipping over irrelevant details

- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

\[
KL(q||p) = \mathbb{E}_{a(\cdot)} \left[\int_0^T u(a(t)) \, dW_t \right] + \mathbb{E}_{a(\cdot), b(\cdot)|a(\cdot)} \left[\int_0^T u(a(t), b(t)) \, dW_t \right] \\
= KL(q_a||p_a) + KL(q_b||p_b)
\]
Skipping over irrelevant details

- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

\[
KL(q_b || p_b) = \mathbb{E}_{a(\cdot), b(\cdot) | a(\cdot)} \left[\int_{\text{unmixed}} u(a(t), b(t)) \, dW_t \right] + \mathbb{E}_{a(\cdot), b(\cdot) | a(\cdot)} \left[\int_{\text{mixed}} u(a(t), b(t)) \, dW_t \right]
\]
Skipping over irrelevant details

- Expensive part of ELBO is detailed simulation of finer levels away from data
- But these variables have KL of 0 given coarse grained trajectories!

\[KL(q_b || p_b) = \mathbb{E}_{a(\cdot), b(\cdot) | a(\cdot)} \left[\int_{\text{unmixed near data}} u(a(t), b(t)) \, dW_t \right] + \mathbb{E}_{a(\cdot), b(\cdot) | a(\cdot)} \left[\int_{\text{mixed away from data}} u(a(t), b(t)) \, dW_t \right] \]
Refinement: Auxiliary Variables

- Why are there extraneous coarse-grained variables in our model?
 - Should only exist in approximation.
 - E.g. In Ising model, temperature isn't a separate variable in model
- Answer: Put only fine-grained variables in model p, both sets in approx q
 - Standard trick in variational inference (auxiliary vars in variational dist)
- Can have as many time scales as we want.
Unsolved Problems

• How to estimate marginals to sample from when we "fade back in"

• How to regularize approx. posterior dynamics to be fast to mix?

Learning Differential Equations that are Easy to Solve
Jacob Kelly*, Jesse Bettencourt*, Matthew Johnson, David Duvenaud
Xuechen Li, Winnie Xu, Leonard Wong, Ricky Chen, Yulia Rubanova, David Duvenaud

Thanks!
Connections to BNN theory

• "Liberty or Depth" (Farquhar, Smith, Gal, 2020): Infinite depth mean-field gives arbitrarily good predictive posteriors?

• Mean-field (Brownian motion) sufficient in SDEs for arbitrary expressiveness. But true and approximate posterior not Gaussian.

\[dz = f(z(t))dt + \sigma(z(t))dB(t) \]
Putting it all together:

• Break model into coarse (slow) and fine (fast) vars.

• When sampling:

 • Recognition nets look at local data and give posterior over coarse and fine variables

 • Sample entire coarse trajectory (only using approximate dynamics, never real ones!)

 • Sample fine trajectory starting just before and ending just after areas with data

 • Gives (almost) unbiased estimates of ELBO and predicted trajectories

\[da = f_a(a(t)) \, dt + \sigma_a(a(t)) \, dW(t) \]
\[db = f_b(a(t), b(t)) \, dt + \sigma_b(a(t), b(t)) \, dW(t) \]
Poisson Process Likelihoods

\[\log p(t_1, \ldots, t_N | t_{\text{start}}, t_{\text{end}}) \]

\[= \sum_{i=1}^{N} \log \lambda(z(t_i)) - \int_{t_{\text{start}}}^{t_{\text{end}}} \lambda(z(t)) dt \]

- Model \(p(\text{obs, time}) \) instead of \(p(\text{obs | time}) \)
- Non-intervention model
- E.g. hurricanes

Graphs showing diastolic arterial blood pressure and partial pressure of arterial O2 over time.
Achieving the dream

- Jointly learn true fine-grained expensive model and flexible approximation strategy from raw fine-grained data.
- Auxiliary coarse-grained variables might be interpretable.
- Can combine high-level and low-level info automatically?
Example: Infant Electrocardiograms
Example: Infant Electrocardiograms
Dex: a typed array language built for speed

```python
def map (f : a->b) (xs : n=>a) : n=>b =
    for i. f x.i
```

Flexibility
- Ragged and sparse arrays
- Algebraic data types (e.g. Value|NaN|Missing)

Correctness
- Dependent types for compile-time debugging (e.g. shape checking)
- Composable, zero-cost abstractions (e.g. run on any vector space)

Performance
- Fast nested loops + gradients (e.g. CTC loss)
- CPU, GPU, TPU backends, JAX interop

Ray tracer written in Dex
google-research.github.io/dex-lang/raytrace.html
Related work 1

- Peluchetti + Favaro: Worked out SDE corresponding to infinitely-deep convnets with uncertain weights

- Jia + Benson: Added countably many discrete jumps to latent ODEs
Related work 2

• Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri Lähdesmäki. *Learning unknown ODE models with gaussian processes.*

• All use Euler discretizations. Not clear what limiting algorithm is (e.g. enforces invariants?), and not memory-efficient.

• Not even going to discuss methods that require solving a PDE - not scalable.

• We want to use adaptive, (high-order?) SDE solvers.
Limitations

- SDE solvers generally lower-order convergence than ODE solvers
 - (e.g. Milstein order 1 vs RK4)
- Non-diagonal noise requires Levy areas
- Diagonal noise requires funny parameterization
- Need jump-style noise? (e.g. hit by a car)
- Only one input dimension (unlike GPs)
SDEs vs GPs

- Distinct sets of priors over functions
- Easy to construct non-Gaussian SDE
Mujoco: State versus Belief states

- States are more interpretable than belief states
- True dynamics are deterministic

<table>
<thead>
<tr>
<th>Truth</th>
<th>Latent ODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|f(z)|$</td>
<td>$|\Delta h|$</td>
</tr>
<tr>
<td>(ODE)</td>
<td>(RNN)</td>
</tr>
</tbody>
</table>

Time
An ODE latent-variable model

- Can do VAE-style inference with an RNN encoder
Latent variable models

- Can use a neural net to guess optimal variational params from data
- Structure of recognition net an implementation detail
- Only there to speed things up.
- Just needs to output a normalized distribution over z

https://pyro.ai/examples/dmm.html
Multi-scale RNNs: 2016

Hierarchical Multiscale Recurrent Neural Networks

Junyoung Chung, Sungjin Ahn & Yoshua Bengio *

Penn Treebank Line 3
Multi-scale Markov models: 2020

Videoflow: A Conditional Flow-Based Model for Stochastic Video Generation

Manoj Kumar*, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, Durk Kingma
Google Research, Brain Team

Figure 1: **Left: Multi-scale prior** The flow model uses a multi-scale architecture using several levels of stochastic variables. **Right: Autoregressive latent-dynamic prior** The input at each timestep x_t is encoded into multiple levels of stochastic variables $(z_t^{(1)}, \ldots, z_t^{(L)})$. We model those levels through a sequential process $\prod_t \prod_t p(z_t^{(l)} | z_{<t}^{(l)}, z_t^{(>l)})$.
Problems with Discrete Time

• Need to choose discretizations, mixing times without gradients
 • Probably want state-dependent step sizes
• Finest scale determined by sampling rate
• Can't apply to irregularly sampled data easily