Sanity Checks

David Duvenaud

Cambridge University
Computational and Biological Learning Lab

April 24, 2013
A Simple Example

Comparing Models of Prawn Minds

- Paper: Comparing evidence for different models of prawn behavior.
- Requires inference conditioned on results of experiments.
- Author’s highest-impact publication venue so far.

Actual Experiments:

102 repetitions of prawn flocking:
function [logP, samples] = logP_mc_ring_memory(theta, direction, N, modelidx, type)

if nargin < 5
 type = 1;

 if nargin <4
 modelidx = 1;
 end
end

%downsample inputs, coreelation length is ~10 frames
for i = 1:numel(theta)
 theta = theta(:, 1:2:end);
 direction = direction(:, 1:2:end);
end

logP = zeros(N, 1, 'double');
samples = zeros(N, 6, 'double');

priormin = [0, 1, -2, -2, 0, -7.5];
priormax = [pi, 5, 2, 2, 1, -7.49];
priorrange = priormax-priormin;

switch modelidx
 case 0
 log_l_pdf = @(x) logP_ring_null(theta, direction, x(1), x(2), x(3:4), x(5), x(6));
 case 1
 log_l_pdf = @(x) logP_ring_mf(theta, direction, x(1), x(2), x(3:4), x(5), x(6));
 case 2
 log_l_pdf = @(x) ...
 .
 .
end
Is anything amiss?

```matlab
% downsample inputs,
% correlation length is ~10 frames
for i = 1:numel(theta)
    theta = theta(:, 1:2:end);
    direction = direction(:, 1:2:end);
end
```

- theta is a cell array, one cell per experiment, each iteration discards half the experiments!
- At the end of the loop, only 1 of 102 experiments left.
- So many pointless experiments!

[update: Was fixed and re-published: www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002961]
Is anything amiss?

% downsample inputs, % coreelation length is ~10 frames
for i = 1:numel(theta)
 theta = theta(:, 1:2:end);
 direction = direction(:, 1:2:end);
end

- theta is a cell array, one cell per experiment, each iteration discards half the experiments!
- At the end of the loop, only 1 of 102 experiments left.
- So many pointless experiments!

The lesson: never release your code

[update: Was fixed and re-published: www.ploscompbioi.org/article/info:doi/10.1371/journal.pcbi.1002961]
Very Common

In Machine Learning

• 2009: Oxford vision group retraction after including test cases in training set.

• A unnamed lab member almost didn’t include results in NIPS paper because of sign error in plots.

• Retraction Watch Blog: retractionwatch.wordpress.com

In General

• Your code will have bugs!

• My rate: about 1 per line of matlab.

How to trust anything?
When writing code

<table>
<thead>
<tr>
<th>Standard Advice</th>
<th>Carl’s Advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Write Unit Tests</td>
<td>• Re-write your code until it uses the right data structure.</td>
</tr>
<tr>
<td>• Physicists have good protocols.</td>
<td>• Keep your code short and simple, no corner cases.</td>
</tr>
<tr>
<td>• Compute same thing in different ways.</td>
<td>• Ideally, everything fits on one page.</td>
</tr>
<tr>
<td>• Use checkgrad!</td>
<td></td>
</tr>
</tbody>
</table>
When writing code

<table>
<thead>
<tr>
<th>Standard Advice</th>
<th>Carl’s Advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Write Unit Tests</td>
<td>• Re-write your code until it uses the right data structure.</td>
</tr>
<tr>
<td>• Physicists have good protocols.</td>
<td>• Keep your code short and simple, no corner cases.</td>
</tr>
<tr>
<td>• Compute same thing in different ways.</td>
<td>• Ideally, everything fits on one page.</td>
</tr>
<tr>
<td>• Use checkgrad!</td>
<td></td>
</tr>
</tbody>
</table>

These methods work but slow you down
When running experiments

Things to always compare against:

- A random guesser (finds bugs in evaluation code)
- Always guesses mean/mode (finds too-easy problems)
- 1-nearest neighbour (finds bugs in train/test splitting)

Datasets to include:

- A trivial-to-predict dataset (finds major bugs in any method)
- A dataset with no signal (finds bugs in evaluation code)
- A translated, scaled version of dataset (finds bugs in implementation of model)

Can detect problems without looking at code
In General

Notice Confusion

- Notice when you’re confused
- Notice when you’re rationalizing
- **Red flag:** Looking at only one number and making up a story about why it goes up or down (i.e. cog sci)

Empirical Rates

- Look at details until they aren’t suprising
Main Takeaways

<table>
<thead>
<tr>
<th>To keep in mind</th>
<th>To practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You probably have bugs</td>
<td>• Include simple baselines</td>
</tr>
<tr>
<td>• Finding them early saves time</td>
<td>• Check invariants</td>
</tr>
<tr>
<td>• Finding them before you publish saves retractions</td>
<td>• Plot everything</td>
</tr>
<tr>
<td></td>
<td>• Keep things simple</td>
</tr>
</tbody>
</table>

A few sanity checks go a long way