Residual Flows for Invertible Generative Modeling

<u>Ricky T. Q. Chen</u>, Jens Behrmann, David Duvenaud, Jörn-Henrik Jacobsen

Pathways to Designing a Normalizing Flow

- 1. Require an invertible architecture.
 - Coupling layers, autoregressive, etc. -

2. Require efficient computation of a change of variables equation.

$$\log p(x) = \log p(f(x)) + \log \left| \det \frac{df(x)}{dx} \right|$$

<Model distribution>

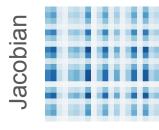
<Base distribution>

(or a continuous version) $\log p(x(t_N)) = \log p(x(t_0)) + \int_{t_0}^{t_N} \operatorname{tr}\left(\frac{\partial f(x(t), t)}{\partial x(t)}\right) dt$

1. Det Identities

Planar NF Sylvester NF

. . .



(Low rank)

1. Det Identities 2. Coupling Blocks

. . .

Planar NF Sylvester NF

. . .

(Low rank)

NICE Real NVP Glow

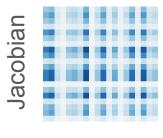


(Lower triangular + structured)

1. Det Identities 2. Coupling Blocks 3. Autoregressive

Planar NF Sylvester NF

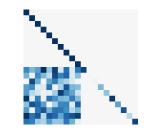
. . .



(Low rank)

NICE Real NVP Glow

. . .



(Lower triangular + structured)

Inverse AF Neural AF Masked AF

. . .

(Lower triangular)

1. Det Identities	2. Coupling Blocks	3. Autoregressive	4. Unbiased Estimation
Planar NF Sylvester NF 	NICE Real NVP Glow	Inverse AF Neural AF Masked AF 	FFJORD Residual Flows
Jacobian			
(Low rank)	(Lower triangular + structured)	(Lower triangular)	(Arbitrary)

Unbiased Estimation → Flow-based Model

Benefits of Flow-based Generative Models:

- Trainable with either the reverse- or forward-KL (a.k.a. maximum likelihood).
- Generally possible to sample from the model.

Maximum Likelihood Training:

Stochastic Gradients $\nabla_{\theta} \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log p_{\theta}(x) \right] = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\nabla_{\theta} \log p_{\theta}(x) \right]$ Log-Likelihood $\log p_{\theta}(x) = \log p(f(x)) + \log \left| \det \frac{df_{\theta}(x)}{dx} \right|$

Invertible Residual Networks (i-ResNet)

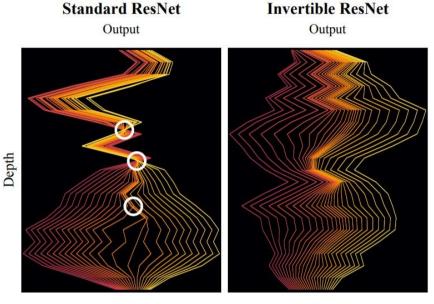
It can be shown that residual blocks

$$y = f(x) = x + g(x)$$

can be inverted by fixed-point iteration

$$x^{(i)} = y - g(x^{(i-1)})$$

and has a unique inverse (ie. invertible) if $\operatorname{Lip}(g) < 1$



Input

Input

Satisfying Lipschitz Condition on g(x)

Parametering g(x) as a deep neural network with pre-activation:

$$z_l = W_l h_{l-1} + b_l$$
 and $h_l = \phi(z_l)$

The Lipschitz constant of g(x) can be expressed as:

$$||J_g(x)||_2 = ||W_L \dots W_2 \phi'(z_1) W_1 \phi'(z_2)||_2$$

$$\leq ||W_L||_2 \dots ||W_2||_2 ||\phi'(z_1)||_2 ||W_1||_2 ||\phi'(z_2)||_2$$

- 1. Choose Lipschitz-constrained activation functions $\phi'(z) \leq 1$.
- 2. Bound the spectral norm of weight matrices.

Applying Change of Variables to i-ResNets If y = f(x) = x + g(x)

Then

$$\log p(x) = \log p(f(x)) + \log \left| \det \frac{df(x)}{dx} \right|$$
$$\log p(x) = \log p(f(x)) + \sum_{i=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr}([J_g(x)]^k)$$

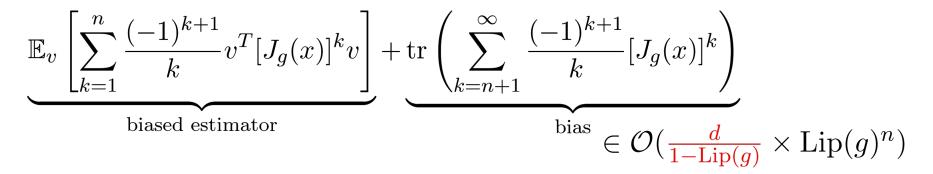
Applying Change of Variables to i-ResNets

$$\operatorname{tr}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} [J_g(x)]^k\right)$$
$$= \mathbb{E}_v\left[\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} v^T [J_g(x)]^k v\right]$$
$$\approx \mathbb{E}_v\left[\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} v^T [J_g(x)]^k v\right]$$

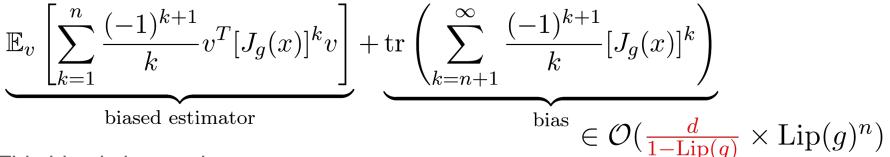
Skilling-Hutchinson trace estimator:

$$\operatorname{tr}(M) = \mathbb{E}\left[v^T M v\right]$$

The i-ResNet used a biased estimator of the log-likelihood.



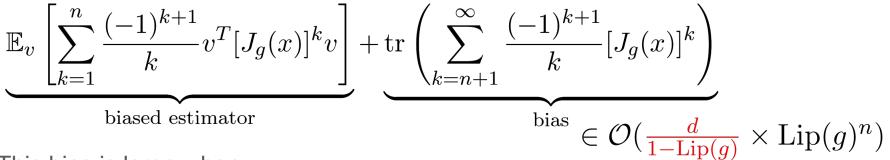
The i-ResNet used a biased estimator of the log-likelihood.



This bias is large when:

- Scaling to higher dimensional data.
- The Lipschitz constant of network is large.

The i-ResNet used a biased estimator of the log-likelihood.



This bias is large when:

- Scaling to higher dimensional data.
- The Lipschitz constant of network is large.

Thus, requires carefully trading off between bias and expressiveness.

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k$$
 (Require $\sum_{k=1}^{\infty} |\Delta_k| < \infty$)

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad (\text{Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty)$$

Flip a coin b with probability q.

$$\mathbb{E}\left[\Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right]\mathbb{1}_{b=0} + [0]\mathbb{1}_{b=1}\right]$$
$$= \Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right](1-q)$$
$$= \sum_{k=1}^{\infty}\Delta_{k}$$

Enter the "Russian roulette" estimator (Kahn, 1955). Suppose we want to estimate

$$\sum_{k=1}^{\infty} \Delta_k \qquad (\text{Require } \sum_{k=1}^{\infty} |\Delta_k| < \infty)$$

Flip a coin b with probability q.

$$\mathbb{E}\left[\Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right]\mathbb{1}_{b=0} + [0]\mathbb{1}_{b=1}\right]$$

$$= \Delta_{1} + \left[\frac{1}{1-q}\sum_{k=2}^{\infty}\Delta_{k}\right](1-q)$$

$$= \sum_{k=1}^{\infty}\Delta_{k}$$
Has probability q of being evaluated in finite time.

If we repeatedly apply the same procedure *infinitely many times*, we obtain an unbiased estimator of the infinite series.

$$\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \left[\sum_{k=1}^{n} \frac{\Delta_k}{\mathbb{P}(N \ge k)} \right]$$
Computed in finite time with prob. 1!!

If we repeatedly apply the same procedure *infinitely many times*, we obtain an unbiased estimator of the infinite series.

$$\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \left[\sum_{k=1}^{n} \frac{\Delta_k}{\mathbb{P}(N \ge k)} \right]$$
Computed in finite time with prob. 1!! Directly sample the first successful coin toss

If we repeatedly apply the same procedure *infinitely many times*, we obtain an unbiased estimator of the infinite series.

$$\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \left[\sum_{k=1}^{n} \frac{\Delta_k}{\mathbb{P}(N \ge k)} \right]$$

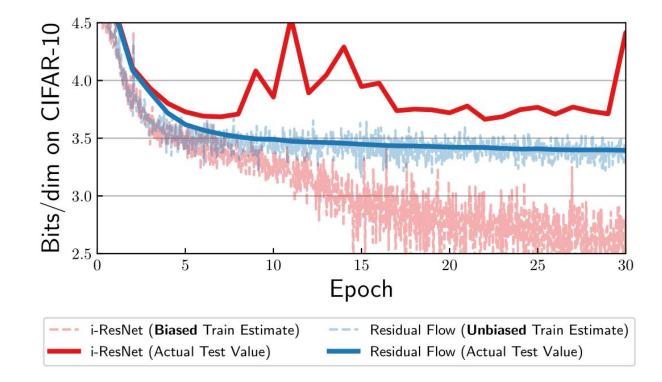
Computed in finite time with prob. 1!!
Directly sample the first successful coin toss.

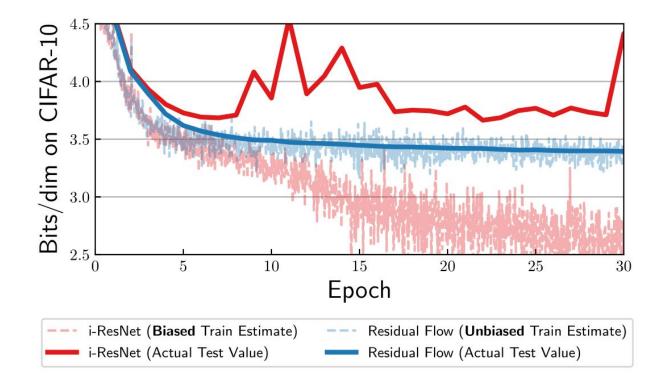
If we repeatedly apply the same procedure *infinitely many times*, we obtain an unbiased estimator of the infinite series.

$$\sum_{k=1}^{\infty} \Delta_k = \mathbb{E}_{n \sim p(N)} \begin{bmatrix} \sum_{k=1}^n \frac{\Delta_k}{\mathbb{P}(N \ge k)} \end{bmatrix}$$
Computed in finite time with prob. 1!!
Directly sample the first successful coin toss.

Residual Flow:

$$\log p(x) = \log p(f(x)) + \mathbb{E}_{n,v} \left[\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \frac{v^T [J_g(x)]^k v}{\mathbb{P}(N \ge k)} \right]$$





Unbiased but... variable compute and memory!

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k v\right] \qquad \alpha_k = \frac{(-1)^{k+1}}{k} \frac{1}{\mathbb{P}(N \ge k)}$$

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k v\right] \qquad \alpha_k = \frac{(-1)^{k+1}}{k} \frac{1}{\mathbb{P}(N \ge k)}$$

Naive gradient computation:

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k \frac{\partial v^T [J_g(x)]^k v}{\partial \theta}\right]$$

Estimate
 Differentiate

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k v\right] \qquad \alpha_k = \frac{(-1)^{k+1}}{k} \frac{1}{\mathbb{P}(N \ge k)}$$

Naive gradient computation:

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k \frac{\partial v^T [J_g(x)]^k v}{\partial \theta}\right]$$

Alternative (Neumann series) gradient formulation:

$$\mathbb{E}_{n,v}\left[\left(\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k\right) \frac{\partial J_g(x)v}{\partial \theta}\right]$$

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k v\right] \qquad \alpha_k = \frac{(-1)^{k+1}}{k} \frac{1}{\mathbb{P}(N \ge k)}$$

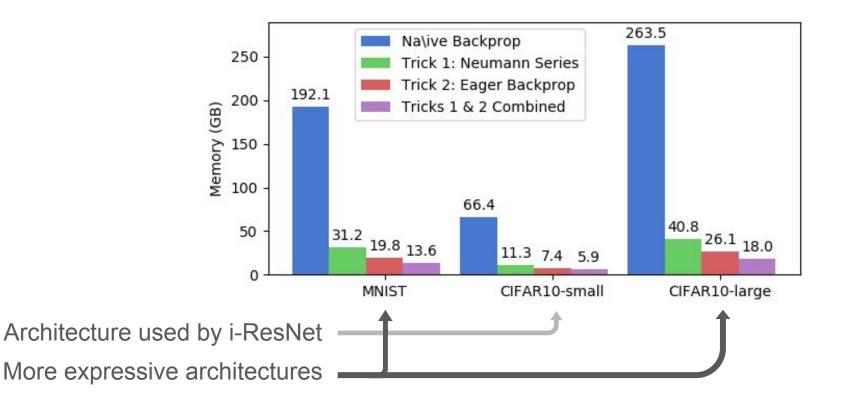
Naive gradient computation:

$$\mathbb{E}_{n,v}\left[\sum_{k=1}^{n} \alpha_k \frac{\partial v^T [J_g(x)]^k v}{\partial \theta}\right]$$

Alternative (Neumann series) gradient formulation:

$$\mathbb{E}_{n,v}\left[\left(\sum_{k=1}^{n} \alpha_k v^T [J_g(x)]^k\right) \frac{\partial J_g(x)v}{\partial \theta}\right]$$

Don't need to store random number of terms in memory!!



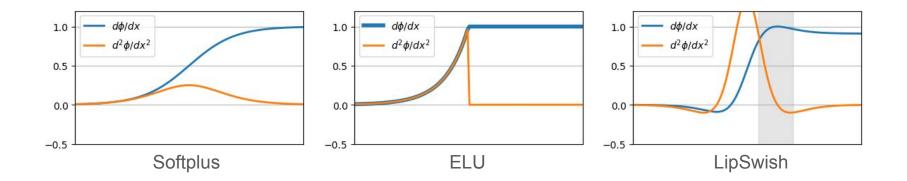
Gradient Saturation of Lipschitz Act Fns

Log-likelihood depends on first-order derivatives.

 \rightarrow Lipschitz activation functions have bounded derivative.

Gradient depends on second-order derivatives.

 \rightarrow Lipschitz activation fns can lead to "gradient saturation".



Gradient Saturation of Lipschitz Act Fns

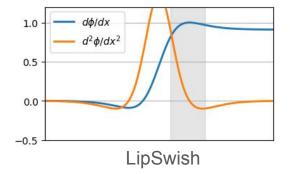
Log-likelihood depends on first-order derivatives.

 \rightarrow Lipschitz activation functions have bounded derivative.

Gradient depends on second-order derivatives.

 \rightarrow Lipschitz activation fns can lead to "gradient saturation".

(because
$$\frac{d}{dx}$$
Swish $(x) \leq 1.1$)
LipSwish $(x) =$ Swish $(x)/1.1 = \sigma(\beta x)x$



(Ramachandran et al., 2017)

Recall

$$||J_g(x)||_2 = ||W_L \dots W_2 \phi'(z_1) W_1 \phi'(z_2)||_2$$

$$\leq ||W_L||_2 \dots ||W_2||_2 ||\phi'(z_1)||_2 ||W_1||_2 ||\phi'(z_2)||_2$$

Recall

$$||J_{g}(x)||_{p} = ||W_{L} \dots W_{2}\phi'(z_{1})W_{1}\phi'(z_{2})||_{p}$$
$$\leq ||W_{L}||_{p} \dots ||W_{2}||_{p} ||\phi'(z_{1})||_{p} ||W_{1}||_{p} ||\phi'(z_{2})||_{p}$$
$$||A||_{p} = \sup_{x \neq 0} \frac{||Ax||_{p}}{||x||_{p}}$$

Recall

$$||J_{g}(x)||_{p} = ||W_{L} \dots W_{2}\phi'(z_{1})W_{1}\phi'(z_{2})||_{p}$$
$$\leq ||W_{L}||_{p} \dots ||W_{2}||_{p} ||\phi'(z_{1})||_{p} ||W_{1}||_{p} ||\phi'(z_{2})||_{p}$$
$$||A||_{p \to q} = \sup_{x \neq 0} \frac{||Ax||_{q}}{||x||_{p}}$$

Recall

$$||J_{g}(x)||_{p} = ||W_{L} \dots W_{2}\phi'(z_{1})W_{1}\phi'(z_{2})||_{p}$$

$$\leq ||W_{1}||_{p \to p_{1}} ||W_{2}||_{p_{1} \to p_{2}} \dots ||W_{L}||_{p_{L-1} \to p}$$

$$||A||_{p \to q} = \sup_{x \neq 0} \frac{||Ax||_{q}}{||x||_{p}}$$

Power iteration for mixed norms: (Johnston, "QETLAB." 2016)

Learn the norm orders p's and q's!

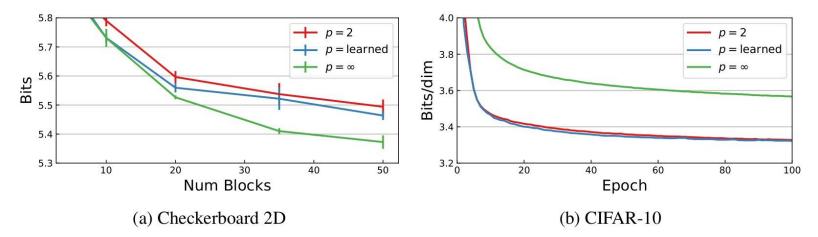


Figure 2: Lipschitz constraints with different induced matrix norms.

Power iteration for mixed norms: (Johnston, "QETLAB." 2016)

Density Estimation Experiments

Contribution Summary:

- [Residual Flow] Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function.

Table 2: Results [bits/dim] on standard benchmark datasets for density estimation. In brackets are models that used "variational dequantization" (Ho et al., 2019), which we don't compare against.

Model	MNIST	CIFAR-10	ImageNet 32×32	ImageNet 64×64	
Real NVP (Dinh et al., 2017)	1.06	3.49	4.28	3.98	
Glow (Kingma and Dhariwal, 2018)	1.05	3.35	4.09	3.81	
FFJORD (Grathwohl et al., 2019)	0.99	3.40		—	
Flow++ (Ho et al., 2019)	_	3.29 (3.09)	— (3.86)	— (3.69)	
i-ResNet (Behrmann et al., 2019)	1.05	3.45		_	
Residual Flow (Ours)	0.97	3.29	4.02	3.78	

Density Estimation Experiments

Contribution Summary:

- [Residual Flow] Unbiased estimator of log-likelihood.
- Memory-efficient computation of log-likelihood.
- LipSwish activation function.

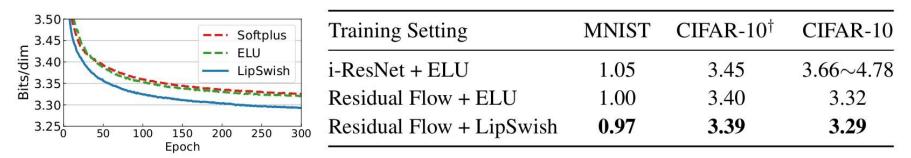


Figure 5: Effect of activation func- Table 3: Ablation results. tions on CIFAR-10.

Qualitative Samples

CelebA:

Residual Flow

CIFAR10:

Joint Generative and Discriminative Representations

Coupling blocks have difficulty learning both a generative model and a discriminative classifier.

Following Nalisnick et al. (2019), we train using weighted maximum likelihood.

$$\mathbb{E}_{(x,y)\sim p_{\text{data}}}\left[\lambda \log p_{\theta}(x) + \log p_{\theta}(y|x)\right]$$

Joint Generative and Discriminative Representations

Hybrid models using weighted maximum likelihood:

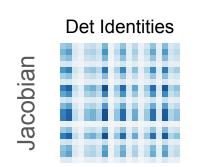
$$\mathbb{E}_{(x,y)\sim p_{\text{data}}}\left[\lambda \log p_{\theta}(x) + \log p_{\theta}(y|x)\right]$$

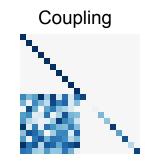
Table 4: C	Table 4: Comparison of residual vs. coupling blocks for the hybrid modeling task.MNISTSVHN														
	$\lambda = 0$	$\lambda = 1/D$		= 1	$\lambda = 0$	$\lambda =$	$\frac{5 \text{ V HN}}{1/D}$	λ =	= 1	results on C			n CIFA	CIFAR-10.	
Block Type	Acc↑	BPD↓ Acc↑	BPD↓	Acc↑	Acc↑	BPD↓	. Acc↑	BPD↓	Acc↑	$\lambda = 0$	$\lambda = 1/D$		$\lambda = 1$		
Nalisnick et al. (2019)	99.33%	1.26 97.789	% —	-	95.74%	2.40	94.77%	-	_	Acc↑	BPD↓	Acc↑	BPD↓	Acc↑	
Coupling	99.50%	1.18 98.459	6 1.04	95.42%	96.27%	2.73	95.15%	2.21	46.22%	89.77%	4.30	87.58%	3.54	67.62%	
+ 1×1 Conv	99.56%	1.15 98.939	6 1.03	94.22%	96.72%	2.61	95.49%	2.17	46.58%	90.82%	4.09	87.96%	3.47	67.38%	
Residual	99.53%	1.01 99.469	6 0.99	98.69%	96.72%	2.29	95.79%	2.06	58.52%	91.78%	3.62	90.47%	3.39	70.32%	

Summary of Residual Flows

An approach to flow-based modeling requiring only Lipschitz constraints.

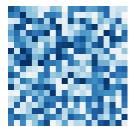
- Unbiased estimate of log-likelihood.
- Memory-efficient training.
- LipSwish for 1-Lipschitz activation function.
- Generalized spectral normalization.





Autoregressive

Free form



Thanks for Listening!

Co-Authors:

Jens Behrmann

David Duvenaud

Jörn-Henrik Jacobsen