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Pathways to Designing a Normalizing Flow
1.  Require an invertible architecture.

- Coupling layers, autoregressive, etc.

2.  Require efficient computation of a change of variables equation.

(or a continuous version)

<Model distribution> <Base distribution>
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4. Unbiased 
Estimation
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Unbiased Estimation → Flow-based Model
Benefits of Flow-based Generative Models:

- Trainable with either the reverse- or forward-KL (a.k.a. maximum likelihood).
- Generally possible to sample from the model.

Maximum Likelihood Training:

Stochastic 
Gradients

Log-
Likelihood



Invertible Residual Networks (i-ResNet)
It can be shown that residual blocks

(Behrmann et al. 2019)

can be inverted by fixed-point iteration

and has a unique inverse (ie. invertible) 
if



Satisfying Lipschitz Condition on g(x)
Parametering g(x) as a deep neural network with pre-activation:

The Lipschitz constant of g(x) can be expressed as:

1. Choose Lipschitz-constrained activation functions              .
2. Bound the spectral norm of weight matrices.
(Behrmann et al. 2019)
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(Behrmann et al. 2019)

Then 



Applying Change of Variables to i-ResNets 

(Behrmann et al. 2019)

Skilling-Hutchinson 
trace estimator:
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Decoupling Training Objective and Bias
The i-ResNet used a biased estimator of the log-likelihood.

This bias is large when:
- Scaling to higher dimensional data.
- The Lipschitz constant of network is large.

Thus, requires carefully trading off between bias and expressiveness.



Decoupling Training Objective and Bias
Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

(Require                                   )



Decoupling Training Objective and Bias
Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

Flip a coin b with probability q.

(Require                                   )



Decoupling Training Objective and Bias
Enter the “Russian roulette” estimator (Kahn, 1955). Suppose we want to estimate

Flip a coin b with probability q.

Has probability q of being 
evaluated in finite time.

(Require                                   )
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Decoupling Training Objective and Bias
If we repeatedly apply the same procedure infinitely many times, we obtain an 
unbiased estimator of the infinite series. 

Directly sample the first 
successful coin toss.

k-th term is weighted by 
prob. of seeing >= k tosses.

Residual Flow:

Computed in 
finite time 
with prob. 1!!
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Decoupling Training Objective and Bias

Unbiased but...
variable compute 
and memory!
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Dealing with Variable Memory Usage

Naive gradient computation:

Alternative (Neumann series) gradient formulation:

1. Estimate  
2. Differentiate

Don’t need to store random number of terms in memory!!

1. Analytically 
Differentiate  
2. Estimate



Dealing with Variable Memory Usage

Architecture used by i-ResNet
More expressive architectures



Gradient Saturation of Lipschitz Act Fns
Log-likelihood depends on first-order derivatives.

→ Lipschitz activation functions have bounded derivative. 

Gradient depends on second-order derivatives.
→ Lipschitz activation fns can lead to “gradient saturation”.
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Gradient Saturation of Lipschitz Act Fns
Log-likelihood depends on first-order derivatives.

→ Lipschitz activation functions have bounded derivative. 

Gradient depends on second-order derivatives.
→ Lipschitz activation fns can lead to “gradient saturation”.

(Ramachandran et al., 2017) LipSwish
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Generalizing i-ResNet and Spectral Normalization
Learn the norm orders p’s and q’s!

Power iteration for mixed norms:
(Johnston, “QETLAB.” 2016)
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Qualitative Samples
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Data Residual Flow



Joint Generative and Discriminative Representations
Coupling blocks have difficulty learning both a generative model and a 
discriminative classifier.

Following Nalisnick et al. (2019), we train using weighted maximum likelihood.



Joint Generative and Discriminative Representations

Hybrid models using weighted maximum likelihood:



Summary of Residual Flows
An approach to flow-based modeling requiring only Lipschitz constraints.

- Unbiased estimate of log-likelihood.
- Memory-efficient training.
- LipSwish for 1-Lipschitz activation function.
- Generalized spectral normalization.

Det Identities Coupling Autoregressive Free form
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