Replacing Neural Networks
with Black-Box ODE Solvers

University of Toronto, Vector Institute

7 VECTOR
INSTITUTE

Resnets are tuler integrators

Middle layers look like: hiyr = hy t

A A
A, A3 A,
A; —
Ap
>
-
dz(t)

From Resnets to ODEnets

h. L 2(T)

\ A |
\

[¢

Why not an ODE solver?

e Parameterize

dz(t)
dt

= f(=(t),0(t))

* Define z(T) to be top layer of residual network, or recurrent
neural network, or normalizing tlow...

RNNs: No need to discretize time

Fewer parameters: Neighboring layers automatically similar
Density models: Efficiently invertible. Math is nicer.

O(1) memory cost, due to reversibility

Adaptive, explicit tradeoff between speed and accuracy.
No wasted layers”

Backprop through an ODE
solver Is wasteful

* Ultimately want to optimize some |oss
3]
Law) = L ([f(att),1,0a)
to
= L (ODESOIVG(Z(to), f, t(), tl, 9))

 How to compute gradients of ODESolve?

* Backprop through operations of solver is slow, has
bad numerical properties, and high memory cost

Reverse-time autodift

« Define adjoint: a(t) = —9L/oa(t)

» Which has dynamics: da(t) _ ()T 0f(z(t),1,0)
* Startadjoint with 8L /g4 (1)

e And solve a combined ODE backwards in time;:
to
dL _/ a(t)Taf(Z(t)atag) dt
L1

do o0

[Scalable Inference of Ordinary Ditterential Equation Models of Biochemical
Processes”, Froehlich, Loos, Hasenauer, 2017]

Reverse-time autodift

* In english: Solve the original ODE and the
accumulated gradients backwards through time.

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time ¢, stop time ¢;, final state z(%;), loss gradient 9L/az(t,)

g—fl’ = az?tLN)T f(z(t) t1,0) > Compute gradient w.r.t.
s = (z(ty), azaé’l), 6t1 , 0] > Define initial augmented state
def Dynamics(|z(t),a(t), —, —], t, 6): > Define dynamics on augmented state

return [f(z(t),t,0), —a” (t) 2L, —aT (t) 2L, —a™ (t) %] > Concatenate time-derivatives
z(to), 3 fé’o), oL g{(’) | = ODESolve(s, Dynamics, t, to, §) > Solve reverse-time ODE

OL OL OL OL .
z(to)’ 96 dto’ Ot > Return all gradients

return 3

Can ask for multiple measurement times

Reverse pass breaks solution into N-1 chunks

def grad_odeint(ytl func, y@, t, func_args **kwargs):r

Mnrda] ¢
odeLs

rr ’ / 18202
/ 4 w O AL LA X v/

T, D = np.shape(yt)
flat_args, unflatten = flatten(func_args)

def flat_func(y, t, flat_args):
return func(y, t, =unflatten(flat_args))

def unpack(x):
return x(0:0], x[D:2 % D], x[2 % D), x[2 % D + 1:]
def augmented_dynamics(augmented_state, t, flat_args):
. VIBy, _ _ = unpack(augnented state)
vip_all, dy_dt = make_vip(flat_func, argnum=(@, 1, 2))(y, t, flat_args)

vip_y, vip_t, vip_args = vip_all(-vip_y)
return np.hstack((dy_dt, vip_y, vip_t, vip_args))

def vip_all(g):

vip_y = gl-1, :]

vip_t0 = @

time_vjp_list = []

vip_args = np.zeros(np.size(flat_args))

for i in range(T - 1, @, -1):

vjb;cur;{ - nb;dof(fuﬁc(yt[ii ;]‘7tiii ‘*fdnc_args), gli, :1)
time_vjp_list.append(vip_cur_t)
vip_to = vip_t0 - vip_cur_t

aug_y® = np.hstack((yt[i, :], vip_y, vip_t@, vip_args))
aug_ans = odeint(augmented_dynamics, aug_y®,

np.array([t[i), t[i - 1]]), tuple((flat_args,)), *xkwargs)
. vip_y, vip_t@, vip_args = unpack(aug_ans([1])

vip_y = vip_y + gli - 1, :]

time_vjip_list.append(vip_t0)
vip_times = np.hstack(time_vjp_list)[::-1]

return None, vip_y, vip_times, unflatten(vjp_args)
return vip_all

First implementation of
reverse-mode autodift

through black-box ODE
solvers

Solves a system of size
2D + K + 1

Stan has forward-mode
implementation, which

solves a system of size
DA2 + KD

Tensorflow has Runge-
Kutta 4,5 implemented,
but naive autodift

Julia has limited support

We have Pylorch impl

O(1) Memory Cost

 Don’'t need to store layer activations for reverse
pass - just follow dynamics in reverse!

Table 1: Performance on MNIST. "From [23].

Test Error #Params Memory Time

l-Layer MLPT 1.60% 0.24 M

ResNet 0.41% 0.60 M o) 0O(L)
RK-Net 047% 022M O(L) O(L)
ODE-Net 0.42% 022M O(1) O(L)

 Reversible resnets [Gomez, Ren, Urtasun,Grosse, 2018]
also have this property, but require partitioning dimensions

Explicit Error Control

. 10! le-0
: |
o [T le-1
| | w
* More fine-grained — 10 le-2
© =
control than low- O
precision floats = ' le-3
U 107
« Cost scales with - re-4
instance difficulty J [T T T T
Z s
10 le-5

0 50 100 150

(a) NFE Forward

Speed-Accuracy Tradeoff

1.0 ' le-0
* Time costis g o ' - le-1
dominated by ':
evaluation of le-2
dynamics g 0.5
',,: le-3
* Roughly linear with O
number of forward Q le-4
evaluations ad . I
004 50 100 150 ~©°

(b) NFE Forward

Reverse vs Forward Cost

* Empirically, reverse 150 -1 m 1e-0
pass roughly halfas O s !
expensive as © le-1
forward pass < 100

ﬁ le-2

* Again, adapts to ©
instance difficulty o0 50 le-3

* Num evaluations L le-4
comparable to <

le-5

number of layers in 0~
modern nets

50 100 150

0
(c) NFE Forward

How complex are the

dynamics?

O 15.0
(O

* Dynamics become E 12.5
more demanding to uCz

compute during L 10.0
training LL
=

7.5

0 25 50 75 100

(d) Training Epoch

Continuous-time BNNSs

« \We often want:
e arbitrary measurement times
e t0 decouple dynamics and inference

e consistently defined state at all times

Zt, ~ P(Zt,)
Zit1s8toy ey dify = ODESOIVC(ZtO, f, Hf,t(), .o s ,tN)

each x;, ~ p(x|z¢,,0x)

Continuous-time RNNs

« Can do VAE-style inference with an RNN encoder

* Actually, more like a Deep Kalman Filter

RNN encoder q(zt,| Tty Wi) T p T T

<t <t |
hto ht1 htN 14 Zto i 1 ZtN N+l ZtM |
G0~ —~0—— -0 O
o2 O ! | | |
f 0 Latent space | N Fo———- A-————- 1——/’
: : Dataspace oo : o
: ! /,@' Q W
Time x(t ol T z(t)
@ @ @ —@ 00— @ @ @ @ *—0—
t() tl t]\/' tN—|—1 tM t() tl tN tN—I—l tM
- > e - > - >
Observed Unobserved Prediction Extrapolation

« TODO: move to stochastic differential equations

RNNs vs Latent ODE

* ODE VAE combines all noisy = Ground Truth
observations to reason about ¢ Observation
underlying trajectory (smoothing) === Prediction

Extrapolation

~_ ‘/

Recurrent Neural Net Latent ODE

RNNs vs Latent ODE

Table 2: Mean predictive log-likelihood on test set. = Ground Truth

observations 30/100 50/100 100/100 ® Observation
RNN -165.26 -97.51 -153.49 == Prediction
RNN with At -133.78 -98.88 -145.15

Extrapolation

L-ODE -5.39 -5.21 -4.78

Recurrent Neural Net Latent ODE

|ON

| atent space explorat

Each 3D latent point corresponds to a trajectory

...‘

P0oISsSon Process Likelihoods

« Can condition on 0g P(t1; - - N [Fstarts Eena)
opservation times

= 3" log A(a(t:)) - /t " \az(t)dt

start

 Define rate function
as a function of
latent state

* Poisson likelihood is
just another integral,
can be solved along

with latent state

Normalizing Flows

—1

det ﬁ

z1 = f(z0) = p(z1) = p(z0) e

 Determinant of Jacobian has cost O(DA3).
* Matrix determinant lemma gives O(DHA3) cost.

* Normalizing flows use 1 hidden unit. Deep & skinny

z(t+1) = 2(t) + uh(w' z(t) + b)

logp(z(t + 1)) = logp(x(t)) — log |1 + UTZ_Z

Continuous Normalizing Flows

e \What if we move to continuous transformations?

Ologp(a(t) _ (df())

ot dx
* [Time-derivative only depends on trace of Jacobian

az _ uh(w!'z + b), 9log p(2) = —ul 7 Oh

ot ox

e Jrace of sum is sum of traces - O(HD) cost!

i =L 2=y ()

n

Continuous Normalizing Flows

Target Densit Samples

\/\ ~

All videos at https://goo.gl/cgHBzF

https://goo.gl/cqHBzF

Trading Depth for Width

K=2 K=8 K=32 M= M=32
m !.m . mn 1o ‘

!
-~ CNF
W~ NF

N |
10 '_20 7)'
3 \ '\:—:\\ -
10 20 30

(a) Target (b) NF (c) CNF (d) Loss vs. K/M

Figure 5: Comparison of NF and CNFs on learning generative models (noise — data) trained to
minimize the reverse KL.

Training directly from data

o Standard NF is one-to-one but expensive to invert.
* Continuous NF is about as easy inverted as forward

e SO can train directly from data, like Real NVP

Target Densit Samples

Training directly from data

o Best of all worlds:
 Wide layers
 No need to partition dimensions

« Can evaluate density tractably

Target Densit Samples Vector Field

4
- v =« =% - ¢
“® » » » v o 4 4

AN s el Rl
[V.p»...’

~ W vy vyvy

AALS

What about numerical error”

* Are we really inverting exactly?

e Can ask for desired error level.

p(z) Density Samples

Absolute and relative tolerance: 0.0

What about numerical error”

* Are we really inverting exactly?

e Can ask for desired error level.

p(z) Density Samples

Absolute and relative tolerance: 0.00001

Continuous everything

* Next steps:
o Pytorch & Tensorflow versions of ODE backprop
e Scale up continuous normalizing flows
» Extend time-series model to SDEs

« Other directions:

Continuous-time HMC?

Backprop through physical simulations?

Better neural physics models?

More efficient neural architectures??

Thanks!

7 VECTOR
INSTITUTE

Extra Slides

Instantaneous Change of Variables

Theorem 1 (Instantaneous Change of Variables). Let x(t) be a finite continuous random variable

with probability p(z(t)) dependent on time. Let ‘fi—‘f = f(x(t),t) be a differential equation describing
a continuous-time transformation of x(t). Assuming that f is uniformly Lipschitz continuous in x
and continuous in t, then the change in log probability also follows a differential equation,

Ologp(z(t)) _ (df (t))

ot dz

(8)

A L R S I B B e R

IU‘_L L1110

Target Densit Samples Vector Fleld
.:: i
AALS
Target Densit Samples Vector Fleld
Wy
ZTT;
sy \
A

/7/'//'//

