# Bayesian Interpretations of RKHS Embedding Methods



#### David Duvenaud

Cambridge University Computational and Biological Learning Lab

December 8, 2012

# Outline

- Optimally-weighted Herding is Bayesian Quadrature
  - Kernel Herding
  - Bayesian Quadrature
  - Unifying Results
  - Demos
- Frequentist Methods, Bayesian Takeaways
  - Kernel Herding
  - Mean Embeddings
  - Kernel Two-sample Test
  - Hilbert-Schmidt Independence Criterion
  - Determinantal Point Processes

#### The Quadrature Problem

• We want to estimate an integral

$$Z = \int f(x)p(x)dx$$

- Most computational problems in Bayesian inference correspond to integrals:
  - Expectations
  - Marginal distributions
  - Integrating out nuisance parameters
  - Normalization constants



$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$



 Monte Carlo methods: Sample from p(x), take empirical mean:

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Possibly sub-optimal for two reasons:



$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Possibly sub-optimal for two reasons:
  - Random bunching up



$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Possibly sub-optimal for two reasons:
  - Random bunching up
  - Often, nearby function values will be similar



$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Possibly sub-optimal for two reasons:
  - Random bunching up
  - Often, nearby function values will be similar
- Quasi-Monte Carlo methods spread out samples to achieve faster convergence.



# Kernel Herding [Welling et. al., 2009, Chen et. al., 2010]

• A sequential procedure for choosing sample locations, depending on previous locations.

Kernel Herding [Welling et. al., 2009, Chen et. al., 2010]

- A sequential procedure for choosing sample locations, depending on previous locations.
- Keeps estimate rule  $\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

# Kernel Herding [Welling et. al., 2009, Chen et. al., 2010]

- A sequential procedure for choosing sample locations, depending on previous locations.
- Keeps estimate rule  $\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$
- Almost  $\mathcal{O}(1/N)$  convergence instead of  $\mathcal{O}(1/\sqrt{N})$  typical of random sampling, by spreading out samples.



#### Kernel Herding Objective

KH was found to minimize Maximum Mean Discrepancy:

$$\mathrm{MMD}_{\mathcal{H}}(p,q) = \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} = 1}} \left| \int f(x)p(x)dx - \int f(x)q(x)dx \right|$$

#### Kernel Herding Objective

KH was found to minimize Maximum Mean Discrepancy:

$$\mathrm{MMD}_{\mathcal{H}}(p,q) = \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} = 1}} \left| \int f(x)p(x)dx - \int f(x)q(x)dx \right|$$

In KH, p(x) is true distribution, and q(x) is a set of point masses at sample locations  $\{x_1, \ldots, x_N\}$ :

$$\epsilon_{KH}(\{x_1,\ldots,x_N\}) = \text{MMD}_{\mathcal{H}}\left(p,\underbrace{\frac{1}{N}\sum_{n=1}^N \delta_{x_n}}_{q(x)}\right)$$

# Kernel Herding

 Assuming function is in a Reproducing Kernel Hilbert Space defined by k(·, ·), MMD has closed form.

# Kernel Herding

- Assuming function is in a Reproducing Kernel Hilbert Space defined by k(·, ·), MMD has closed form.
- When sequentially minimizing MMD, new point is added at:

$$x_{N+1} = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$

$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



$$x_{N+1} = \arg_{x \in \mathcal{X}} \left[ 2 \int k(x, x') p(x') dx' - \frac{1}{N+1} \sum_{m=1}^{N} k(x, x_m) \right]$$



# Kernel Herding Summary

- A sequential sampling method which minimizes a worst-case divergence, given that f(x) belongs to a given RKHS.
- Like Monte Carlo, weights all samples  $f(x_s)$  equally when estimating Z:

$$\hat{Z} = \sum_{i=1}^{N} \frac{1}{N} f(x_i)$$
## Kernel Herding Summary

- A sequential sampling method which minimizes a worst-case divergence, given that f(x) belongs to a given RKHS.
- Like Monte Carlo, weights all samples  $f(x_s)$  equally when estimating Z:

$$\hat{Z} = \sum_{i=1}^{N} \frac{1}{N} f(x_i)$$

• What if we allowed different weights?

## Kernel Herding Summary

- A sequential sampling method which minimizes a worst-case divergence, given that f(x) belongs to a given RKHS.
- Like Monte Carlo, weights all samples  $f(x_s)$  equally when estimating Z:

$$\hat{Z} = \sum_{i=1}^{N} \frac{1}{N} f(x_i)$$

- What if we allowed different weights?
- [Bach et. al. 2012] looked at weighted herding strategies, showed improvement in convergence rates.

## Kernel Herding Summary

- A sequential sampling method which minimizes a worst-case divergence, given that f(x) belongs to a given RKHS.
- Like Monte Carlo, weights all samples  $f(x_s)$  equally when estimating Z:

$$\hat{Z} = \sum_{i=1}^{N} \frac{1}{N} f(x_i)$$

- What if we allowed different weights?
- [Bach et. al. 2012] looked at weighted herding strategies, showed improvement in convergence rates.

# Can we reason about the optimal weighting strategy?

- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



[O'Hagan 1987, Diaconis 1988, Rasmussen & Ghahramani 2003]

- Places a GP prior on f, defined by  $k(\cdot, \cdot)$  and a mean function.
- Posterior over *f* implies posterior over *Z*.



• Can choose samples however we want.

## Bayesian Quadrature Estimator

Posterior over Z has mean linear in  $f(x_s)$ :

$$\mathbb{E}_{\rm GP}\left[Z|f(x_s)\right] = \sum_{i=1}^N w_{BQ}^{(i)}f(x_i)$$

where

$$w_{BQ} = z^T K^{-1}$$
 and  $z_n = \int k(x, x_n) p(x) dx$ 

#### Bayesian Quadrature Estimator

Posterior over Z has mean linear in  $f(x_s)$ :

$$\mathbb{E}_{\rm GP}\left[Z|f(x_s)\right] = \sum_{i=1}^N w_{BQ}^{(i)}f(x_i)$$

where



• Natural to minimize the posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^T K^{-1}z$$
  
where  $z_n = \int k(x, x_n)p(x)dx$ 

• Natural to minimize the posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^T K^{-1}z$$
  
where  $z_n = \int k(x, x_n)p(x)dx$ 

• Favours samples in regions where p(x) is high, but where covariance with other sample locations is low. Similar flavour to herding objective.

• Natural to minimize the posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^T K^{-1}z$$
  
where  $z_n = \int k(x, x_n)p(x)dx$ 

- Favours samples in regions where p(x) is high, but where covariance with other sample locations is low. Similar flavour to herding objective.
- Does not depend on function values

• Natural to minimize the posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^T K^{-1}z$$
  
where  $z_n = \int k(x, x_n)p(x)dx$ 

- Favours samples in regions where p(x) is high, but where covariance with other sample locations is low. Similar flavour to herding objective.
- Does not depend on function values
- Can choose samples sequentially: Sequential Bayesian Quadrature.

## **Relating Objectives**

KH and BQ have completely different motivations:

- KH minimizes a worst-case bound
- BQ minimizes a posterior variance

Is there any correspondence?

## **Relating Objectives**

KH and BQ have completely different motivations:

- KH minimizes a worst-case bound
- BQ minimizes a posterior variance

Is there any correspondence?

#### First Main Result

$$\mathbb{V}\left[Z|f(x_s)\right] = \mathrm{MMD}^2(p, q_{\mathrm{BQ}})$$

Where

$$q_{\rm BQ}(x) = \sum_{n=1}^{N} w_{\rm BQ}^{(n)} \delta_{x_n}(x)$$

## **Relating Objectives**

KH and BQ have completely different motivations:

- KH minimizes a worst-case bound
- BQ minimizes a posterior variance

Is there any correspondence?

#### First Main Result

$$\mathbb{V}\left[Z|f(x_s)\right] = \mathrm{MMD}^2(p, q_{\mathrm{BQ}})$$

Where

$$q_{\rm BQ}(x) = \sum_{n=1}^{N} w_{\rm BQ}^{(n)} \delta_{x_n}(x)$$

#### BQ is minimizing KH objective

• KH and BQ are minimizing the same objective, but BQ has freedom to choose weights.

- KH and BQ are minimizing the same objective, but BQ has freedom to choose weights.
- How does this affect performance?

- KH and BQ are minimizing the same objective, but BQ has freedom to choose weights.
- How does this affect performance?

#### Second Main Result

BQ estimator is the optimal weighting strategy:

$$\mathbb{V}\left[Z|f(x_s)\right] = \inf_{w \in \mathbb{R}^N} \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} \mathcal{H} = 1}} \left| \int f(x)p(x)dx - \sum_{n=1}^N w_n f(x_n) \right|^2$$

- KH and BQ are minimizing the same objective, but BQ has freedom to choose weights.
- How does this affect performance?

#### Second Main Result

BQ estimator is the optimal weighting strategy:

$$\mathbb{V}\left[Z|f(x_{s})\right] = \inf_{w \in \mathbb{R}^{N}} \sup_{\substack{f \in \mathcal{H} \\ \|f\|_{\mathcal{H}} \mathcal{H} = 1}} \left| \int f(x)p(x)dx - \sum_{n=1}^{N} w_{n}f(x_{n}) \right|^{2}$$

 $\mathbb{V}[Z|f(x_s)]$  has two interpretations:

- Bayesian: posterior variance of Z under a GP prior.
- Frequentist: tight bound on estimation error of Z.

What is rate of convergence of BQ?

Expected Variance / MMD



What is rate of convergence of BQ?

Expected Variance / MMD



What is rate of convergence of BQ?

Expected Variance / MMD



What is rate of convergence of BQ?

Expected Variance / MMD

**Empirical Rates in RKHS** 





What is rate of convergence of BQ?

Expected Variance / MMD

## Empirical Rates out of RKHS



What is rate of convergence of BQ?

Expected Variance / MMD

Bound on Bayesian Error





• Posterior variance of Z under GP prior is equivalent to Maximum Mean Discrepancy.

- Posterior variance of Z under GP prior is equivalent to Maximum Mean Discrepancy.
- RKHS assumption gives a tight, closed-form upper bound on Bayesian error.

- Posterior variance of Z under GP prior is equivalent to Maximum Mean Discrepancy.
- RKHS assumption gives a tight, closed-form upper bound on Bayesian error.
- BQ has very fast, but unknown convergence rate.

- Posterior variance of Z under GP prior is equivalent to Maximum Mean Discrepancy.
- RKHS assumption gives a tight, closed-form upper bound on Bayesian error.
- BQ has very fast, but unknown convergence rate.
- The optimal weighted herding strategy is Bayesian quadrature.

- Posterior variance of Z under GP prior is equivalent to Maximum Mean Discrepancy.
- RKHS assumption gives a tight, closed-form upper bound on Bayesian error.
- BQ has very fast, but unknown convergence rate.
- The optimal weighted herding strategy is Bayesian quadrature.
- Joint work with Ferenc Huzsar
# Outline

- Optimally-weighted Herding is Bayesian Quadrature
  - Kernel Herding
  - Bayesian Quadrature
  - Unifying Results
  - Demos
- Frequentist Methods, Bayesian Takeaways
  - Kernel Herding
  - Mean Embeddings
  - Kernel Two-sample Test
  - Hilbert-Schmidt Independence Criterion
  - Determinantal Point Processes











Takeaway: Herding assumptions are innapropriate for inference



Mean Embedding Interpretation

• [Muandet & Ghahramani, 2012] showed that if  $f \sim {
m GP}$ ,

## Mean Embedding Interpretation

• [Muandet & Ghahramani, 2012] showed that if  $f \sim {
m GP}$ ,

$$\mu_{p(x)} = \int \phi(x)p(x)dx$$
  
=  $\int k(x, \cdot)p(x)dx$   
=  $\mathbb{E}_{f\sim GP} \left[ \int f(x)f(\cdot)p(x)dx \right]$   
=  $\mathbb{E}_{f\sim GP} \left[ f(\cdot) \int f(x)p(x)dx \right]$   
=  $\operatorname{cov}_{f\sim GP} (f(\cdot), Z_p)$ 

#### Mean Embedding Interpretation

• [Muandet & Ghahramani, 2012] showed that if  $f \sim {
m GP}$ ,

$$\mu_{p(x)} = \int \phi(x)p(x)dx$$
  
=  $\int k(x, \cdot)p(x)dx$   
=  $\mathbb{E}_{f\sim GP} \left[ \int f(x)f(\cdot)p(x)dx \right]$   
=  $\mathbb{E}_{f\sim GP} \left[ f(\cdot) \int f(x)p(x)dx \right]$   
=  $\operatorname{cov}_{f\sim GP} (f(\cdot), Z_p)$ 

 μ<sub>p(x)</sub> is the covariance the function with its integral with respect to p(x).

• How to test whether two distributions p(x) and q(x) are the same?

- How to test whether two distributions p(x) and q(x) are the same?
- New test statistic: MMD(p, q) [Gretton et. al, 2005]

- How to test whether two distributions p(x) and q(x) are the same?
- New test statistic: MMD(p, q) [Gretton et. al, 2005]
- Equivalent Bayesian intepretation:

$$\mathrm{MMD}_{k}^{2}(p,q) = \mathbb{V}_{f \sim \mathrm{GP}_{k}}\left[\int f(x)p(x)dx - \int f(x)q(x)dx\right]$$

p and q are similar if integrals of functions drawn from a GP prior have similar integrals.

- How to test whether two distributions p(x) and q(x) are the same?
- New test statistic: MMD(p, q) [Gretton et. al, 2005]
- Equivalent Bayesian intepretation:

$$\mathrm{MMD}_{k}^{2}(p,q) = \mathbb{V}_{f \sim \mathrm{GP}_{k}}\left[\int f(x)p(x)dx - \int f(x)q(x)dx\right]$$

p and q are similar if integrals of functions drawn from a GP prior have similar integrals.

Possible takeaways: Decision-theoretic choice of kernel, sampling-based methods for computing MMD

• Given samples  $\{X, Y\} \sim p(x, y)$ , how to test whether p(x, y) = p(x)p(y)?

- Given samples  $\{X, Y\} \sim p(x, y)$ , how to test whether p(x, y) = p(x)p(y)?
- New test statistic based on infinite-dimensional Frobenius norm of cross-covariance matrix of features of x and y: [Gretton et. al, 2005]

- Given samples  $\{X, Y\} \sim p(x, y)$ , how to test whether p(x, y) = p(x)p(y)?
- New test statistic based on infinite-dimensional Frobenius norm of cross-covariance matrix of features of x and y: [Gretton et. al, 2005]

$$\begin{aligned} &\text{HSIC}(p(x, y), k_x, k_y) = ||C_{xy}||_{HS}^2 \\ &= \mathbb{E}_{x, x', y, y'} \left[ k_x(x, x') k_y(y, y) \right] + \mathbb{E}_{x, x'} \left[ k_x(x, x') \right] \mathbb{E}_{y, y'} \left[ k_y(y, y') \right] \\ &- 2 \mathbb{E}_{x, y} \left[ \mathbb{E}_{x'} \left[ k_x(x, x') \right] \mathbb{E}_{y'} \left[ k_y(y, y') \right] \right] \end{aligned}$$

- Given samples  $\{X, Y\} \sim p(x, y)$ , how to test whether p(x, y) = p(x)p(y)?
- New result: Assuming  $k(x, y, x', y') = k_x(x, x')k_y(y, y')$

$$HSIC(p(x, y), k_x, k_y) =$$
  
=  $\mathbb{V}_{f \sim GP_k} \left[ \int f(x, y) p(x, y) dx dy - \int f(x, y) p(x) p(y) dx dy \right]$ 

• Probability of a set  $P(\mathcal{X}) = |K(\mathcal{X}, \mathcal{X})|$ 

- Probability of a set  $P(\mathcal{X}) = |\mathcal{K}(\mathcal{X}, \mathcal{X})|$
- Greedy MAP maximizes  $P(\mathcal{X} \cup x_i)$

- Probability of a set  $P(\mathcal{X}) = |\mathcal{K}(\mathcal{X}, \mathcal{X})|$
- Greedy MAP maximizes  $P(\mathcal{X} \cup x_i)$

$$P(\mathcal{X} \cup x_i)$$

$$= |K(\mathcal{X} \cup x_i, \mathcal{X} \cup x_i|)$$

$$= |K(\mathcal{X}, \mathcal{X})| [k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)]$$

$$\propto k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)$$

$$= \mathbb{V}_{f \sim GP_k} [f(x_i)|\mathcal{X}]$$

- Probability of a set  $P(\mathcal{X}) = |K(\mathcal{X}, \mathcal{X})|$
- Greedy MAP maximizes  $P(\mathcal{X} \cup x_i)$

$$P(\mathcal{X} \cup x_i)$$

$$= |K(\mathcal{X} \cup x_i, \mathcal{X} \cup x_i|)$$

$$= |K(\mathcal{X}, \mathcal{X})| [k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)]$$

$$\propto k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)$$

$$= \mathbb{V}_{f \sim GP_k} [f(x_i)|\mathcal{X}]$$

 New DPP Point added at location with highest marginal variance in GP posterior, conditioned on the other points

- Probability of a set  $P(\mathcal{X}) = |K(\mathcal{X}, \mathcal{X})|$
- Greedy MAP maximizes  $P(\mathcal{X} \cup x_i)$

$$P(\mathcal{X} \cup x_i)$$

$$= |K(\mathcal{X} \cup x_i, \mathcal{X} \cup x_i|)$$

$$= |K(\mathcal{X}, \mathcal{X})| [k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)]$$

$$\propto k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)$$

$$= \mathbb{V}_{f \sim GP_k} [f(x_i)|\mathcal{X}]$$

- New DPP Point added at location with highest marginal variance in GP posterior, conditioned on the other points
- Related to sensor placement work by Andreas Krause

- Probability of a set  $P(\mathcal{X}) = |K(\mathcal{X}, \mathcal{X})|$
- Greedy MAP maximizes  $P(\mathcal{X} \cup x_i)$

$$P(\mathcal{X} \cup x_i)$$

$$= |K(\mathcal{X} \cup x_i, \mathcal{X} \cup x_i|)$$

$$= |K(\mathcal{X}, \mathcal{X})| [k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)]$$

$$\propto k(x_i, x_i) - k(x_i, \mathcal{X})K(\mathcal{X}, \mathcal{X})^{-1}k(\mathcal{X}, x_i)$$

$$= \mathbb{V}_{f \sim GP_k} [f(x_i)|\mathcal{X}]$$

- New DPP Point added at location with highest marginal variance in GP posterior, conditioned on the other points
- Related to sensor placement work by Andreas Krause
- Thanks to Le Song and Roman Garnett

\_

| Frequentist Method     | Bayesian Method                      |
|------------------------|--------------------------------------|
|                        |                                      |
| Kernel herding         | Bayesian Quadrature                  |
| Mean Embedding         | Covariance with integral             |
| Kernel Two-sample test | Variance of difference of integrals  |
| HSIC                   | Variance of difference of integrals  |
| DPP MAP                | Marginal uncertainty in GP posterior |
|                        |                                      |

| Frequentist Method     | Bayesian Method                      |
|------------------------|--------------------------------------|
|                        |                                      |
| Kernel herding         | Bayesian Quadrature                  |
| Mean Embedding         | Covariance with integral             |
| Kernel Two-sample test | Variance of difference of integrals  |
| HSIC                   | Variance of difference of integrals  |
| DPP MAP                | Marginal uncertainty in GP posterior |
|                        |                                      |

Some possible extensions:

| Frequentist Method     | Bayesian Method                      |
|------------------------|--------------------------------------|
|                        |                                      |
| Kernel herding         | Bayesian Quadrature                  |
| Mean Embedding         | Covariance with integral             |
| Kernel Two-sample test | Variance of difference of integrals  |
| HSIC                   | Variance of difference of integrals  |
| DPP MAP                | Marginal uncertainty in GP posterior |
|                        |                                      |

Some possible extensions:

• Log-kernel herding for inference

| Frequentist Method     | Bayesian Method                      |
|------------------------|--------------------------------------|
|                        |                                      |
| Kernel herding         | Bayesian Quadrature                  |
| Mean Embedding         | Covariance with integral             |
| Kernel Two-sample test | Variance of difference of integrals  |
| HSIC                   | Variance of difference of integrals  |
| DPP MAP                | Marginal uncertainty in GP posterior |

#### Some possible extensions:

- Log-kernel herding for inference
- Interpretation of conditional mean embeddings

| Bayesian Method                      |
|--------------------------------------|
|                                      |
| Bayesian Quadrature                  |
| Covariance with integral             |
| Variance of difference of integrals  |
| Variance of difference of integrals  |
| Marginal uncertainty in GP posterior |
|                                      |

Some possible extensions:

- Log-kernel herding for inference
- Interpretation of conditional mean embeddings
- Different low-rank approximations based on sparse GPs

| Frequentist Method         | Bayesian Method                |
|----------------------------|--------------------------------|
| Kernel Regression          | GP Regression                  |
| Functional ANOVA,          | Additive Gaussian Processes    |
| Hierchical Kernel Learning |                                |
| Kernel Bayes' Rule         | Bayesian Quadrature for Ratios |
| RKHS Embeddings of         | GP Dynamics Models             |
| Conditional Distributions  |                                |
| Kernel Message Passing     | ???                            |

| Frequentist Method         | Bayesian Method                |
|----------------------------|--------------------------------|
| Kernel Regression          | GP Regression                  |
| Functional ANOVA,          | Additive Gaussian Processes    |
| Hierchical Kernel Learning |                                |
| Kernel Bayes' Rule         | Bayesian Quadrature for Ratios |
| RKHS Embeddings of         | GP Dynamics Models             |
| Conditional Distributions  |                                |
| Kernel Message Passing     | ???                            |



Thanks!