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The Quadrature Problem

� We want to estimate an
integral

Z =

∫
f (x)p(x)dx

� Most computational problems

in Bayesian inference

correspond to integrals:

� Expectations
� Marginal distributions
� Integrating out

nuisance parameters
� Normalization

constants
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Sampling Methods

� Monte Carlo methods:
Sample from p(x), take
empirical mean:

Ẑ =
1

N

N∑
i=1

f (xi )
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Sampling Methods

� Monte Carlo methods:
Sample from p(x), take
empirical mean:

Ẑ =
1

N

N∑
i=1

f (xi )

� Possibly sub-optimal for two

reasons:

� Random bunching up
� Often, nearby function

values will be similar

� Quasi-Monte Carlo methods
spread out samples to achieve
faster convergence.
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Kernel Herding [Welling et. al., 2009, Chen et. al., 2010]

� A sequential procedure for choosing sample locations,
depending on previous locations.

� Keeps estimate rule Ẑ = 1
N

∑N
i=1 f (xi )

� Almost O(1/N) convergence instead of O(1/
√
N) typical of

random sampling, by spreading out samples.

Samples from p(x)
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Kernel Herding Objective

KH was found to minimize Maximum Mean Discrepancy:

MMDH (p, q) = sup
f ∈H
‖f ‖H=1

∣∣∣∣∫ f (x)p(x)dx −
∫

f (x)q(x)dx

∣∣∣∣

In KH, p(x) is true distribution, and q(x) is a set of point masses
at sample locations {x1, . . . , xN}:

εKH ({x1, . . . , xN}) = MMDH

p,
1

N

N∑
n=1

δxn︸ ︷︷ ︸
q(x)


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Kernel Herding

� Assuming function is in a Reproducing Kernel Hilbert Space
defined by k(·, ·), MMD has closed form.

� When sequentially minimizing MMD, new point is added at:

xN+1 = argmax
x∈X

[
2

∫
k(x , x ′)p(x ′)dx ′ − 1

N + 1

N∑
m=1

k(x , xm)

]
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Kernel Herding Summary

� A sequential sampling method which minimizes a worst-case
divergence, given that f (x) belongs to a given RKHS.

� Like Monte Carlo, weights all samples f (xs) equally when
estimating Z :

Ẑ =
N∑
i=1

1

N
f (xi )

� What if we allowed different weights?

� [Bach et. al. 2012] looked at weighted herding strategies,
showed improvement in convergence rates.

Can we reason about the optimal weighting
strategy?
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Bayesian Quadrature (a.k.a. Bayesian Monte Carlo)

[O’Hagan 1987, Diaconis 1988, Rasmussen & Ghahramani 2003]

� Places a GP prior on f , defined by k(·, ·) and a mean function.

� Posterior over f implies posterior over Z .
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Bayesian Quadrature (a.k.a. Bayesian Monte Carlo)

[O’Hagan 1987, Diaconis 1988, Rasmussen & Ghahramani 2003]

� Places a GP prior on f , defined by k(·, ·) and a mean function.

� Posterior over f implies posterior over Z .

Z

x
 

 

f(x)

p(x)

GP mean
GP mean ± SD
p(Z)

samples

� Can choose samples however we want.



Bayesian Quadrature Estimator

Posterior over Z has mean linear in f (xs):

Egp [Z |f (xs)] =
N∑
i=1

w
(i)
BQ f (xi )

where

wBQ = zTK−1 and zn =

∫
k(x , xn)p(x)dx
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How to select samples?

� Natural to minimize the posterior variance of Z :

V [Z |f (xs)] =

∫ ∫
k(x , x ′)p(x)p(x ′)dxdx ′ − zTK−1z

where zn =

∫
k(x , xn)p(x)dx

� Favours samples in regions where p(x) is high, but where
covariance with other sample locations is low. Similar flavour
to herding objective.

� Does not depend on function values

� Can choose samples sequentially: Sequential Bayesian
Quadrature.
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Relating Objectives

KH and BQ have completely different motivations:

� KH minimizes a worst-case bound

� BQ minimizes a posterior variance

Is there any correspondence?

First Main Result

V [Z |f (xs)] = MMD2(p, qbq)

Where

qbq(x) =
N∑

n=1

w
(n)
bq δxn(x)

BQ is minimizing KH objective
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Performance

� KH and BQ are minimizing the same objective, but BQ has
freedom to choose weights.

� How does this affect performance?

Second Main Result

BQ estimator is the optimal weighting strategy:

V [Z |f (xs)] = inf
w∈RN

sup
f ∈H

‖f ‖HH=1

∣∣∣∣∣
∫

f (x)p(x)dx −
N∑

n=1

wnf (xn)

∣∣∣∣∣
2

V [Z |f (xs)] has two interpretations:

� Bayesian: posterior variance of Z under a GP prior.

� Frequentist: tight bound on estimation error of Z.
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Rates of Convergence

What is rate of convergence of BQ?

Expected Variance / MMD Bound on Bayesian Error



Summary

� Posterior variance of Z under GP prior is equivalent to
Maximum Mean Discrepancy.

� RKHS assumption gives a tight, closed-form upper bound on
Bayesian error.

� BQ has very fast, but unknown convergence rate.

� The optimal weighted herding strategy is Bayesian quadrature.

� Joint work with Ferenc Huzsar
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GPs vs Log-GPs for Inference

Takeaway: Herding assumptions are innapropriate for inference
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Mean Embedding Interpretation

� [Muandet & Ghahramani, 2012] showed that if f ∼ gp,

µp(x) =

∫
φ(x)p(x)dx

=

∫
k(x , ·)p(x)dx

= Ef∼gp

[∫
f (x)f (·)p(x)dx

]
= Ef∼gp

[
f (·)

∫
f (x)p(x)dx

]
= covf∼gp (f (·),Zp)

� µp(x) is the covariance the function with its integral with
respect to p(x).
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Kernel two-sample test

� How to test whether two distributions p(x) and q(x) are the
same?

� New test statistic: MMD(p, q) [Gretton et. al, 2005]

� Equivalent Bayesian intepretation:

MMD2
k(p, q) = Vf∼gpk

[∫
f (x)p(x)dx −

∫
f (x)q(x)dx

]
p and q are similar if integrals of functions drawn from a GP
prior have similar integrals.

Possible takeaways: Decision-theoretic choice
of kernel, sampling-based methods for

computing MMD
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Hilbert-Schmidt Independence Criterion

� Given samples {X ,Y } ∼ p(x , y), how to test whether
p(x , y) = p(x)p(y)?

� New test statistic based on infinite-dimensional Frobenius
norm of cross-covariance matrix of features of x and y:
[Gretton et. al, 2005]

HSIC(p(x , y), kx , ky ) = ||Cxy ||2HS
= Ex ,x ′,y ,y ′

[
kx(x , x ′)ky (y , y)

]
+ Ex ,x ′

[
kx(x , x ′)

]
Ey ,y ′

[
ky (y , y ′)

]
− 2Ex ,y

[
Ex ′
[
kx(x , x ′)

]
Ey ′
[
ky (y , y ′)

]]
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Hilbert-Schmidt Independence Criterion

� Given samples {X ,Y } ∼ p(x , y), how to test whether
p(x , y) = p(x)p(y)?

� New result: Assuming k(x , y , x ′, y ′) = kx(x , x ′)ky (y , y ′)

HSIC(p(x , y), kx , ky ) =

= Vf∼gpk

[∫
f (x , y)p(x , y)dxdy −

∫
f (x , y)p(x)p(y)dxdy

]



Determinantal Point Processes

� Probability of a set P(X ) = |K (X ,X )|

� Greedy MAP maximizes P(X ∪ xi )

P(X ∪ xi )

= |K (X ∪ xi ,X ∪ xi |
= |K (X ,X )| [k(xi , xi )− k(xi ,X )K (X ,X )−1k(X , xi )]

∝ k(xi , xi )− k(xi ,X )K (X ,X )−1k(X , xi )
= Vf∼gpk [f (xi )|X ]

� New DPP Point added at location with highest marginal
variance in GP posterior, conditioned on the other points

� Related to sensor placement work by Andreas Krause

� Thanks to Le Song and Roman Garnett
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Summary of Connections

Frequentist Method Bayesian Method

Kernel herding Bayesian Quadrature
Mean Embedding Covariance with integral
Kernel Two-sample test Variance of difference of integrals
HSIC Variance of difference of integrals
DPP MAP Marginal uncertainty in GP posterior

Some possible extensions:

� Log-kernel herding for inference

� Interpretation of conditional mean embeddings

� Different low-rank approximations based on sparse GPs
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Frequentist Method Bayesian Method

Kernel Regression GP Regression

Functional ANOVA,

Hierchical Kernel Learning
Additive Gaussian Processes

Kernel Bayes’ Rule Bayesian Quadrature for Ratios

RKHS Embeddings of

Conditional Distributions
GP Dynamics Models

Kernel Message Passing ???

Thanks!
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