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MOTIVATION I: MANIFOLD SEMI-SUPERVISED

LEARNING
I Most manifold learning algorithms start by constructing a

graph locally.
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I Most don’t update original topology to account for
long-range structure or label information.

I Often hard to recover from a bad connectivity graph.
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MOTIVATION II: INFINITE GAUSSIAN

MIXTURE MODEL

I Dirichelt Process prior on cluster weights.
I Recovers number of clusters automatically.
I Since each cluster must be Gaussian, number of clusters is

often innapropriate

How to create nonparametric cluster shapes?
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GAUSSIAN PROCESS LATENT VARIABLE

MODEL
Suppose observations Y = (y1, · · · , yN)

> where yn ∈ RD, latent
coordinates X = (x1, · · · , xN)

>, where xn ∈ RQ. y = f (x).
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GAUSSIAN PROCESS LATENT VARIABLE

MODEL

Suppose observations Y = (y1, · · · , yN)
> where yn ∈ RD,

have latent coordinates X = (x1, · · · , xN)
>, where xn ∈ RQ.

yd = fd(x), where each fd(x) ∼ GP(0,K).
Mapping marginal likelihood:

p(Y|X,θ) = (2π)−
DN
2 |K|−

D
2 exp

(
−1

2
tr(Y>K−1Y)

)
Prior on x, treated mainly as a regularizer:

p(x) = N (x|0, I)

Can be interpreted as a density model.

Can give warped densities; how to get clusters?
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WARPED MIXTURE MODEL

GPs→

Latent space Observed space

A sample from the iWMM prior:
I Sample a latent mixture of Gaussians.
I Warp the latent mixture to produce non-Gaussian

manifolds in observed space.
Some areas with almost no density; some edges and peaks.



WARPED MIXTURE MODEL

I An extension of GP-LVM, where p(x) is a mixture of
Gaussians.

I Or: An extension of iGMM, where mixture is warped.
I Given mixture assignments, likelihood has only two parts:

GP-LVM and GMM

p(Y|X,Z,θ) = (2π)−
DN
2 |K|−

D
2 exp

(
−1

2
tr(K−1YY>)

)
︸ ︷︷ ︸

GP-LVM Likelihood

×
∏

i

∞∑
c=1

λcN (xi|µc,R−1
c )I(xi ∈ Zc)︸ ︷︷ ︸

Mixture of Gaussians Likelihood



INFERENCE
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Find posterior over latent X’s.
Many ways to do inference; high dimension of latent space
means derivatives helpful.
Our scheme:

I Alternate:
1. Sampling latent cluster assignments
2. Updating latent positions and GP hypers with HMC

I No cross-validation, but HMC params annoying to set
I Show demo!



INFERENCE: MIXING

I Changing number of clusters helps mixing.



DENSITY RESULTS

I Automatically reduces latent dimension, separately
per-cluster!

I Wishart prior may be causing problems.



LATENT VISUALIZATION

I Hard to summarize posterior which is symmetric - average
for now.

I VB might address problem of summarizing posterior.



LATENT VISUALIZATION: UMIST FACES

DATASET

Captures number, dimension, relationship between manifolds.



THE WARPED DENSITY MODEL

I What if we take density model of GP-LVM seriously?
I Why not just warp one Gaussian?
I Even one latent Gaussian can be made fairly flexible.



THE WARPED DENSITY MODEL

Even one latent Gaussian can be made fairly flexible, but must
place some mass between clusters.

Also easier to interpret latent clusters.



RESULTS

Evaluated iWMM as a density model, as well as a clustering
model.



LIMITATIONS

I O(N3) runtime
I Stationary kernel means diffculty modeling clusters of

different sizes.



FUTURE WORK: VARIATIONAL INFERENCE

I Joint work with James Hensman.
I Optimization instead of integration.
I SVI could allow large datasets.
I Non-convex optimization is hard; harder than mixing?
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FUTURE WORK: SEMI-SUPERVISED LEARNING
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OTHER PRIORS ON LATENT DENSITIES

Density model is separate from warping model.

I Hierarchical clustering (bio applications)
I Deep Gaussian Processes



LIFE OF A BAYESIAN MODEL

I Write down generative model.
I Sample from it to see if it looks reasonable.
I Fiddle with sampler for a month.
I Maybe years later, a decent inference scheme comes out.
I Modeling decisions are in principle separate from

inference scheme
I Can verify approximate inference schemes on examples.
I Modeling sophistication is far ahead of inference

sophistication

Thanks!
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