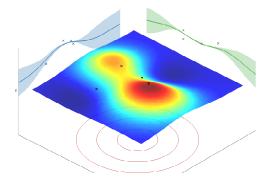
Bayesian Quadrature: Model-based Approximate Integration



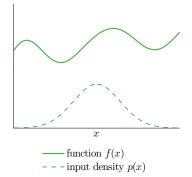
David Duvenaud University of Cambridge

The Quadrature Problem

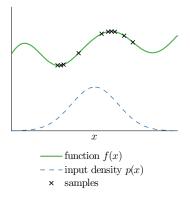
• We want to estimate an integral

$$Z = \int f(x)p(x)dx$$

- Most computational problems in inference correspond to integrals:
 - Expectations
 - Marginal distributions
 - Integrating out nuisance parameters
 - Normalization constants
 - Model comparison



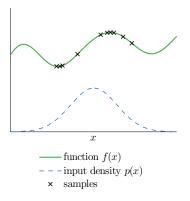
$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$



 Monte Carlo methods: Sample from p(x), take empirical mean:

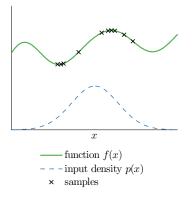
$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Possibly sub-optimal for two reasons:



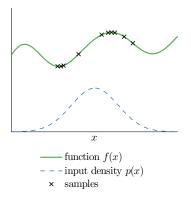
$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Possibly sub-optimal for two reasons:
 - Random bunching up



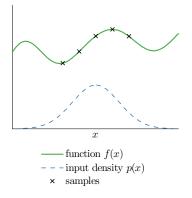
$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- Possibly sub-optimal for two reasons:
 - Random bunching up
 - Often, nearby function values will be similar

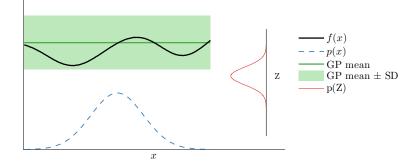


$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

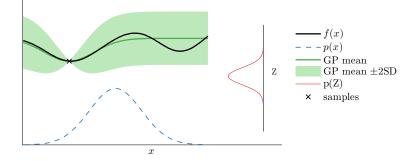
- Possibly sub-optimal for two reasons:
 - Random bunching up
 - Often, nearby function values will be similar
- Model-based and quasi-Monte Carlo methods spread out samples to achieve faster convergence.



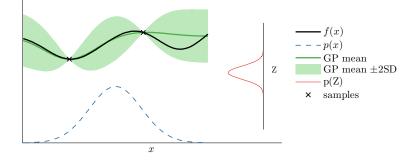
- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



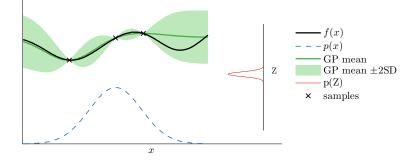
- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



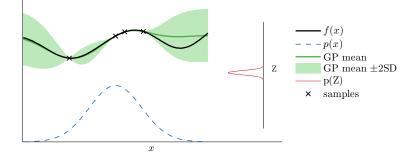
- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



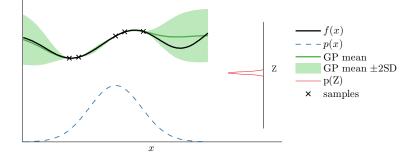
- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



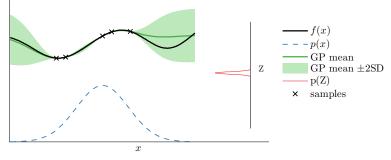
- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



- Place a prior on f, for example, a GP
- Posterior over *f* implies a posterior over *Z*.



• We'll call using a GP prior Bayesian Quadrature

• Posterior over Z has mean linear in $f(x_s)$:

$$\mathbb{E}_{\rm GP}\left[Z|f(x_s)\right] = \sum_{i=1}^N z^T \mathcal{K}^{-1}f(x_i)$$

where $z_n = \int k(x, x_n) p(x) dx$

• Posterior over Z has mean linear in $f(x_s)$:

$$\mathbb{E}_{\rm GP}\left[Z|f(x_s)\right] = \sum_{i=1}^N z^T \mathcal{K}^{-1}f(x_i)$$

where $z_n = \int k(x, x_n) p(x) dx$

• Natural to minimize posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^{\mathsf{T}}K^{-1}z$$

• Posterior over Z has mean linear in $f(x_s)$:

$$\mathbb{E}_{\text{GP}}\left[Z|f(x_s)\right] = \sum_{i=1}^{N} z^{T} \mathcal{K}^{-1} f(x_i)$$

where $z_n = \int k(x, x_n) p(x) dx$

• Natural to minimize posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x, x')p(x)p(x')dxdx' - z^{\mathsf{T}}K^{-1}z$$

• Doesn't depend on function values at all!

• Posterior over Z has mean linear in $f(x_s)$:

$$\mathbb{E}_{\rm GP}\left[Z|f(x_s)\right] = \sum_{i=1}^N z^T \mathcal{K}^{-1}f(x_i)$$

where $z_n = \int k(x, x_n) p(x) dx$

• Natural to minimize posterior variance of Z:

$$\mathbb{V}\left[Z|f(x_s)\right] = \iint k(x,x')p(x)p(x')dxdx' - z^{\mathsf{T}}K^{-1}z$$

- Doesn't depend on function values at all!
- Choosing samples sequentially to minimize variance: Sequential Bayesian Quadrature.

• Can incorporate knowledge of function (symmetries)

$$f(x,y) = f(y,x) \Leftrightarrow k_{\mathfrak{s}}(x,y,x',y') = k(x,y,x',y') + k(x,y',x',y') + k(x',y',x',y') + k(x',y',x,y') + k(x',y',x,y')$$

• Can incorporate knowledge of function (symmetries)

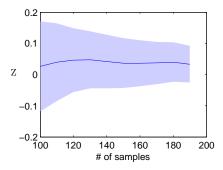
$$f(x,y) = f(y,x) \Leftrightarrow k_{\mathfrak{s}}(x,y,x',y') = k(x,y,x',y') + k(x,y',x',y') + k(x',y,x,y') + k(x',y',x,y)$$

• Can condition on gradients

• Can incorporate knowledge of function (symmetries)

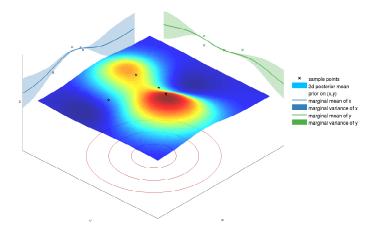
$$f(x,y) = f(y,x) \Leftrightarrow k_{\mathfrak{s}}(x,y,x',y') = k(x,y,x',y') + k(x,y',x',y) + k(x',y,x,y') + k(x',y',x,y)$$

- Can condition on gradients
- Posterior variance is a natural convergence diagnostic

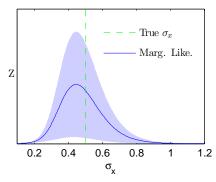


- Can compute likelihood of GP, learn kernel
- Can compute marginals with error bars, in two ways:

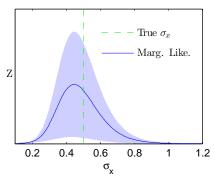
- Can compute likelihood of GP, learn kernel
- Can compute marginals with error bars, in two ways:
- Simply from the GP posterior:



- Can compute likelihood of GP, learn kernel
- Can compute marginals with error bars, in two ways:
- Or by recomputing $f_{\theta}(x)$ for different θ with same x



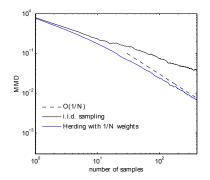
- Can compute likelihood of GP, learn kernel
- Can compute marginals with error bars, in two ways:
- Or by recomputing $f_{\theta}(x)$ for different θ with same x



Much nicer than histograms!

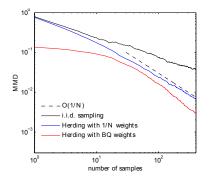
What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD



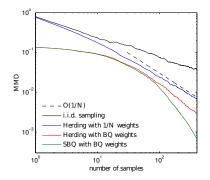
What is rate of convergence of SBQ when its assumptions are true?

Expected Variance / MMD



What is rate of convergence of SBQ when its assumptions are true?

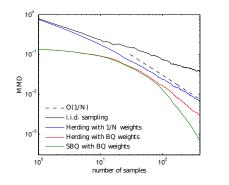
Expected Variance / MMD

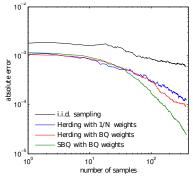


What is rate of convergence of SBQ when its assumptions are true?

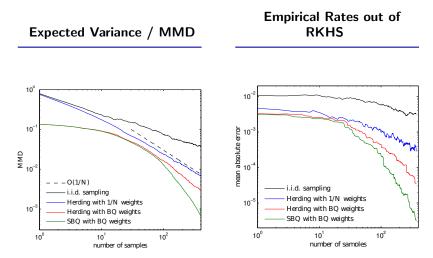
Expected Variance / MMD

Empirical Rates in RKHS





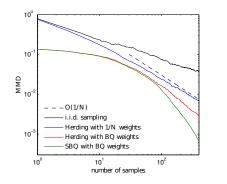
What is rate of convergence of SBQ when its assumptions are true?

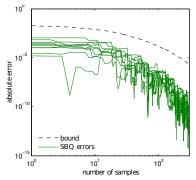


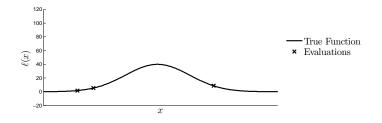
What is rate of convergence of SBQ when its assumptions are true?

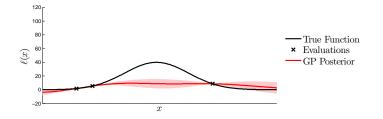
Expected Variance / MMD

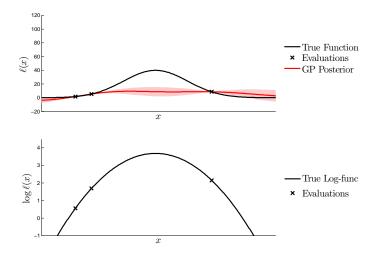
Bound on Bayesian Error

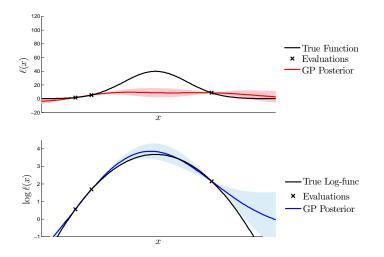




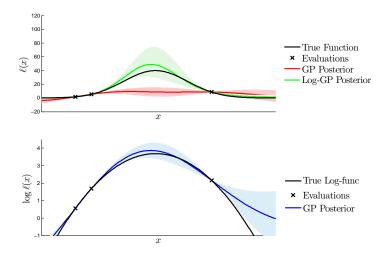


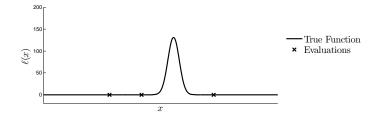


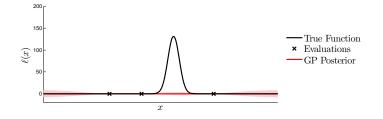


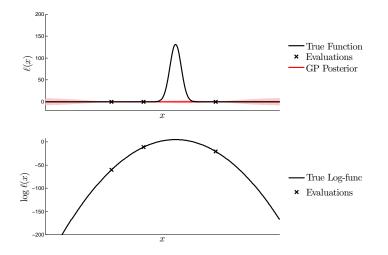


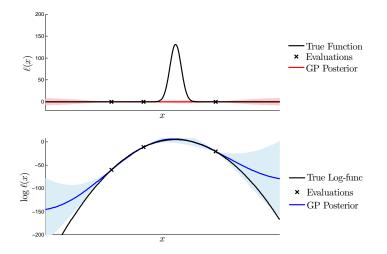
GPs vs Log-GPs for Inference

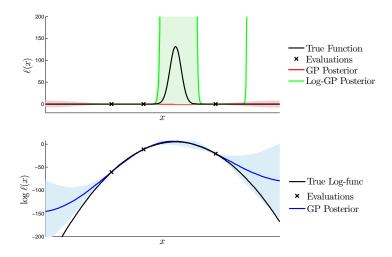




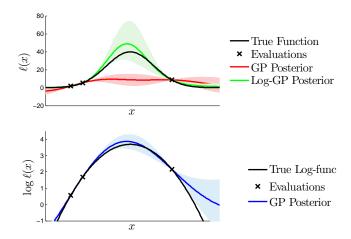




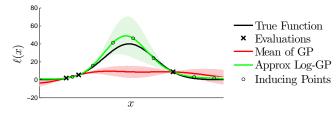


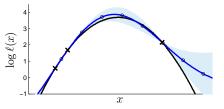


Integrating under Log-GPs



Integrating under Log-GPs





- True Log-func
- ★ Evaluations
- GP Posterior
- Inducing Points

Conclusions

• Model-based integration allows active learning about integrals, can require fewer samples than MCMC, and allows us to check our assumptions.

Conclusions

- Model-based integration allows active learning about integrals, can require fewer samples than MCMC, and allows us to check our assumptions.
- BQ has nice convergence properties if its assumptions are correct.

Conclusions

- Model-based integration allows active learning about integrals, can require fewer samples than MCMC, and allows us to check our assumptions.
- BQ has nice convergence properties if its assumptions are correct.
- For inference, GP is not especially appropriate, but other models are intractable.

• Right now, BQ really only works in low dimensions (< 10), when the function is fairly smooth, and is only worth using when computing f(x) is expensive.

- Right now, BQ really only works in low dimensions (< 10), when the function is fairly smooth, and is only worth using when computing f(x) is expensive.
- How to extend to high dimensions? Gradient observations are helpful, but a D-dimensional gradient is D separate observations.

- Right now, BQ really only works in low dimensions (< 10), when the function is fairly smooth, and is only worth using when computing f(x) is expensive.
- How to extend to high dimensions? Gradient observations are helpful, but a D-dimensional gradient is D separate observations.
- It seems unlikely that we'll find another tractable nonparametric distribution like GPs - should we accept that we'll need a second round of approximate integration on a surrogate model?

- Right now, BQ really only works in low dimensions (< 10), when the function is fairly smooth, and is only worth using when computing f(x) is expensive.
- How to extend to high dimensions? Gradient observations are helpful, but a D-dimensional gradient is D separate observations.
- It seems unlikely that we'll find another tractable nonparametric distribution like GPs - should we accept that we'll need a second round of approximate integration on a surrogate model?
- How much overhead is worthwhile? Bounded rationality work seems relevant.

- Right now, BQ really only works in low dimensions (< 10), when the function is fairly smooth, and is only worth using when computing f(x) is expensive.
- How to extend to high dimensions? Gradient observations are helpful, but a D-dimensional gradient is D separate observations.
- It seems unlikely that we'll find another tractable nonparametric distribution like GPs - should we accept that we'll need a second round of approximate integration on a surrogate model?
- How much overhead is worthwhile? Bounded rationality work seems relevant.

Thanks!