Stochastic Hyperparameter
Optimization through
Hyperﬂ eTWO r|(S Cross-validation Hyper-training

JONATHAN LORRAINE
& DAVID DUVENAUD

UNIVERSITY OF TORONTO

Cross-validation as Nested Optimization

Cross-validation nests optimization of network weights inside of arpmin £ (argmm ro(w. /\))
optimization of hyperparameters. A Valid.\ w Train

Bi-level optimization is a game with a leading player and a following
player. Each has their own objective.

The followers best-responding strategy depends on the leaders strate¢ w*(A\) = argmin £ (w, A)

W Train

Maclaurin et. Al. (2015) backprop through a training procedure to get
gradients, but requires training from scratch each time.

Learning the best-response function

Algorithm 1 Standard cross-validation Algorithm 2 Optimization of hyper-

> Letslearn the best-response with stochastic optimization network, then hyperparameters
function and amortize fori=1,...,Touter do
C . iitialize w initialize ¢
opfimization! A = hyperopt(A, Lyaia. (wt?)) initialize h\
w*(A) = argmin £ (w,) loop loop .
w Train x ~ Training data x ~ Training data, A ~ p ()
W —= aVy LTrain(W, A, X) O —=aVy, ETrain(Wo(/\)e A, X)
ANowh =\ w
. loop
> New gradient ferms: i = argmin Lyain (W@, \®, x) x ~ Validation data
i A —= BV Lvalid.(Ws(A), x)

0 [:'I’rain(“"o) a“"o 0 E\"alid. (“"O()‘)) 8\\’(:,()\) . .
dwg 36 © w4 (V)) Return A% w(®) Return A\, w ()

< X_ Cross-validation
— Optimized hypernetwork
Optimal hyperparameter A *

Validation Loss Ly ,iq.

Hyperparameter A

Figure 2: The validation loss of a neural net, estimated
by cross-validation (crosses) or by a hypernetwork (line),
which outputs 7, 850-dimensional network weights. Cross-
validation requires optimizing from scratch each time. The
hypernetwork can be used to evaluate the validation loss

cheaply.

Local Optimization

» Limited capacity hypernetwork in practice.

Algorithm 2 Optimization of hyper-
network, then hyperparameters

Algorithm 3 Joint optimization of hy- Algorithm 4 Simplified joint optimization of hypernet-
pernetwork and hyperparameters work and hyperparameters

initialize ¢
initialize A
loop
x ~ Training data, A ~ p ()
O —= aVy Lrrain(We(A), A, X)

loop

x ~ Validation data A

A —= ._)’VAj\ Lvalid. (Wg(A), x)
Return A\, w, ()

initialize ¢, A

initialize ¢ loop) o
initialize \ X ~ Training data, x" ~ Validation data
lOOp CP === avg‘) ETrain(‘Vc‘)(/\A)s A, X)

. WINT: A —= BV Lvalid.(Wg(A), X')

x ~ Training data, A ~ p(A|\ Return A, wy ())

)
Cb — = av@ £Train(‘vc'>(/\)e /\t X)

X~ Validation data A
A —= BV Lvalid. (Wg(A), %)
Return A\, wy ()

» Learn the best-response in some small neighborhood about our current hyperparameter.

Global:

< X_ Cross-validation
— Optimized hypernetwork
---- Optimal hyperparameter *

Validation Loss Ly

Hyperparameter A

Figure 2: The validation loss of a neural net, estimated
by cross-validation (crosses) or by a hypernetwork (line),
which outputs 7, 850-dimensional network weights. Cross-
validation requires optimizing from scratch each time. The
hypernetwork can be used to evaluate the validation loss

cheaply.

< < Train loss of optimized weights
—— Train loss of hypernetwork weights
Local: < < Valid. loss of optimized weights
—— Valid. loss of hypernetwork weights
Optimal hyperparameter A

— p(AN)

Loss L

K
X X | |
X Ji\

Hyperparameter A

Figure 4: Training and validation losses of a neural net-
work, estimated by cross-validation (crosses) or a linear
hypernetwork (lines). The hypernetwork’s limited capacity
makes it only accurate where the hyperparameter distribu-
tion puts mass.

Visualization

Training loss surface

(w, A)

Loss ‘C'I‘min

Validation loss surface

....... *

* wi(AY)
_______ Ao

* WO‘()‘O)

Figure 3: A visualization of exact (blue) and approximate (red) optimal weights as a function of hyperparameters. The
approximately optimal weights w - are output by a linear model fit at A\. The true optimal hyperparameter is A*, while the

hyperparameter estimated using approximately optimal weights is nearby at A-.

Stochastic evaluation of validation loss

ldea: Hyper-training is effective because it partially
optimizes across many hyperparameters.

GP mean Hyper-training fixed Hyper-training

=)

Inferred loss
o o
o0 O

e
=

0.7 0809 1.0 0.7 0.8 09 1.0 0.7 0.8 09 1.0

True loss

Frequency

—020.0 02 04 06 0200 02 04 06 0200 02 04 06
Inferred - true loss

Limitations

» No inner optimization parameters can be tuned (they don’t existl).

» Hard to tune discrete hyperparameters with gradients (working on it).

» No uncertainty based exploration.

» Hard to choose the distribution of hyperparameters to train against.

» Future work: use implicit function theorem instead?

Takeaway and Future Directions

» Currently using a linear hypernet - consider a net with 10,000,000 weights and 10
hyperparameters.

» Try optimizing other hyperparameters: e.g. training data

“7*()\) = Ell'gl'llill Z ﬁl) (y“‘ (),-) 4 L* (y“.’)

» Main point: Learning the best-response function lets you collapse a nested optimization
problem into a joint optimization problem. Can be applied to GANs, and possibly to
funding Nash equilibria more generally.

< < Train loss of optimized weights
—— Train loss of hypernetwork weights
< Valid. loss of optimized weights
— Valid. loss of hypernetwork weights

— p(A]N)

Optimizing weight dropout on
MNIST.

Loss L

Hyperparameter A

Related Work

» Brock, Andrew, Lim, Theodore, Ritchie, JM, and Weston, Nick. SMASH: One-
shot model architecture search through hypernetworks. arXiv:1708.05344,

2017.
> MAML

Efficient Neural Architecture search

