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Cross-validation as Nested Optimization

Cross-validation nests optimization of network weights inside of arpmin £ (argmm ro(w. /\))
optimization of hyperparameters. A Valid.\ w  Train

Bi-level optimization is a game with a leading player and a following
player. Each has their own objective.

The followers best-responding strategy depends on the leaders strate¢ w*(A\) = argmin £ (w, A)

W Train

Maclaurin et. Al. (2015) backprop through a training procedure to get
gradients, but requires training from scratch each time.




Learning the best-response function

Algorithm 1 Standard cross-validation Algorithm 2 Optimization of hyper-
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Figure 2: The validation loss of a neural net, estimated
by cross-validation (crosses) or by a hypernetwork (line),
which outputs 7, 850-dimensional network weights. Cross-
validation requires optimizing from scratch each time. The
hypernetwork can be used to evaluate the validation loss

cheaply.



Local Optimization

» Limited capacity hypernetwork in practice.

Algorithm 2 Optimization of hyper-
network, then hyperparameters

Algorithm 3 Joint optimization of hy- Algorithm 4 Simplified joint optimization of hypernet-
pernetwork and hyperparameters work and hyperparameters

initialize ¢
initialize A
loop
x ~ Training data, A ~ p ()
O —= aVy Lrrain(We(A), A, X)

loop
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» Learn the best-response in some small neighborhood about our current hyperparameter.




Global:
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Figure 2: The validation loss of a neural net, estimated
by cross-validation (crosses) or by a hypernetwork (line),
which outputs 7, 850-dimensional network weights. Cross-
validation requires optimizing from scratch each time. The
hypernetwork can be used to evaluate the validation loss

cheaply.
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Figure 4: Training and validation losses of a neural net-
work, estimated by cross-validation (crosses) or a linear
hypernetwork (lines). The hypernetwork’s limited capacity
makes it only accurate where the hyperparameter distribu-
tion puts mass.



Visualization
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Figure 3: A visualization of exact (blue) and approximate (red) optimal weights as a function of hyperparameters. The
approximately optimal weights w - are output by a linear model fit at A\. The true optimal hyperparameter is A*, while the

hyperparameter estimated using approximately optimal weights is nearby at A-.




Stochastic evaluation of validation loss

ldea: Hyper-training is effective because it partially
optimizes across many hyperparameters.
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Limitations

» No inner optimization parameters can be tuned (they don’t existl).

» Hard to tune discrete hyperparameters with gradients (working on it).

» No uncertainty based exploration.

» Hard to choose the distribution of hyperparameters to train against.

» Future work: use implicit function theorem instead?



Takeaway and Future Directions

» Currently using a linear hypernet - consider a net with 10,000,000 weights and 10
hyperparameters.

» Try optimizing other hyperparameters: e.g. training data

“7*()\) = Ell'gl'llill Z ﬁl) (y“‘ ( ),- ) 4 L* (y“.’ )

» Main point: Learning the best-response function lets you collapse a nested optimization
problem into a joint optimization problem. Can be applied to GANs, and possibly to
funding Nash equilibria more generally.
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Optimizing weight dropout on
MNIST.
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