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Good ideas always have Bayesian
interpretations

Regularization = MAP inference
Limiting model capacity = Bayesian Occam’s razor

Cross-validation = Estimating marginal likelihood
Dropout = Integrating out spike-and-slab

Ensembling = Bayes model averaging?
Early stopping = ??
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Cross validation vs. marginal likelihood

• What if we could evaluate
marginal likelihood of
implicit distribution?

• Could choose all hypers to
maximize marginal
likelihood

• No need for
cross-validation?
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Variational Lower Bound

log p(x) ≥ −Eq(θ) [− log p(θ, x)]︸ ︷︷ ︸
Energy E [q]

−Eq(θ) [log q(θ)]︸ ︷︷ ︸
Entropy S[q]

Energy estimated from optimized objective function
(training loss is NLL):

Eq(θ) [− log p(θ, x)] ≈ − log p(θ̂T ,x)

Entropy estimated by tracking change at each iteration:

−Eq(θ) [log q(θ)] ≈ S[q0] +
T−1∑
t=0

log
∣∣∣J(θ̂t)

∣∣∣
Using a single sample!
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Estimating change in entropy
Volume change given by Jacobian of optimizer’s operator:

S[qt+1]− S[qt ] = Eqt (θt )

[
log
∣∣∣J(θt)

∣∣∣]
Gradient descent update rule:

θt+1 = θt − α∇L(θ),

Has Jacobian:

J(θt) = I − α∇∇L(θt)

Entropy change estimated at a single sample:

S[qt+1]− S[qt ] ≈ log |I − α∇∇L(θt)|



Final algorithm

Stochastic gradient descent
1: input: Weight init scale σ0, step size α,

negative log-likelihood L(θ, t)
2: initialize θ0 ∼ N (0, σ0ID)
3:
4: for t = 1 to T do
5:
6: θt = θt−1 − α∇L(θt , t)
7: output sample θT ,

SGD with entropy estimate

1: input: Weight init scale σ0, step size α,
negative log-likelihood L(θ, t)

2: initialize θ0 ∼ N (0, σ0ID)
3: initialize S0 = D

2 (1 + log 2π) + D logσ0

4: for t = 1 to T do
5: St = St−1 + log |I− α∇∇L(θt , t)|
6: θt = θt−1 − α∇L(θt , t)
7: output sample θT , entropy estimate ST

• Approximate bound: log p(x) & −L(θT ) + ST

• Determinant is O(D3)

• O(D) Taylor approximation using Hessian-vector
products

• Scales linearly in parameters and dataset size



Choosing when to stop

• Neural network on the
Boston housing dataset.

• SGD marginal likelihood
estimate gives stopping
criterion without a
validation set
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Choosing number of hidden units

• Neural net on 50000
MNIST examples

• Largest model has 2 million
parameters

• Gives reasonable
estimates, but
cross-validation still better
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Limitations

• SGD not even trying to
maximize lower bound –
good approximation is by
accident!

• Entropy term gets arbitrarily
bad due to concentration,
but true performance only
gets as bad as maximum
likelihood estimate



Entropy-friendly optimization

• Modified SGD to move
slower near convergence,
optimized new
hyperparameter

• Hurts performance, but
gives tighter bound

• ideally would match test
likelihood
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Limitations

• Irrelevant parameters can
cause low entropy estimate

• No momentum - would
need to estimate
distribution (see Kingma &
Welling, 2015)
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• Optimization with random restarts implies
nonparametric intermediate distributions

• Early stopping chooses among these distributions
• Ensembling samples from them
• Can scalably estimate variational lower bound on

model evidence during optimization
• Another connection between practice and theory

Thanks!
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