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Good ideas always have Bayesian
interpretations

Regularization

Limiting model capacity
Cross-validation
Dropout

Ensembling

Early stopping

MAP inference

Bayesian Occam’s razor
Estimating marginal likelihood
Integrating out spike-and-slab

Bayes model averaging?
?7?



Gradient descent as a sampler

e Optimization paths start
from random init, and move
towards modes...
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Implicit Distributions

What about the implicit

distribution of parameters
after optimizing for t steps?

Starts as a bad
approximation (prior dist)

Ends as a bad
approximation (point mass)

Ensembling = taking
multiple samples from dist

Early stopping = choosing

best intermediate dist
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Cross validation vs. marginal likelihood

e What if we could evaluate

10 : ‘ ‘ ; Train error 1
marginal likelihood of 2 g& — Test error |
. . s . . . " - ]
implicit distribution? of ,

» Could choose all hypers to § —276 2000 o0
L . = -27.8) —— Marginal likelihood |
maximize marginal £ 280
likelihood g Dodl
e No need for = 7285 100 200 300 400 500

Training iteration

cross-validation?



Variational Lower Bound

log p(x) = — Eqe9) [~ log p(6,X)]  —Eq) [log q(0)]
Energy E|[q] Entropy S|[q]

Energy estimated from optimized objective function
(training loss is NLL):

Eq(s) [~ log p(6, X)] ~ —log p(f7, X)
Entropy estimated by tracking change at each iteration:

T-1

~Eqo) log q(0)] ~ Slae] + Y log |J(0)

t=0

Using a single sample!



Estimating change in entropy

e Inuitively: High curvature
makes entropy decrease
quickly

e Can measure local
curvature with Hessian

e Approximation good for
small step-sizes
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Estimating change in entropy
Volume change given by Jacobian of optimizer’s operator:
Sla+1] = Slail = Eqquy [log |J(61)

Gradient descent update rule:
01 = 0; — aVL(H),
Has Jacobian:
J(0;) =1 —aVVL(6)
Entropy change estimated at a single sample:

S[@r+1] — S[qi] = log |l — aVVL(0y)|



Final algorithm

Stochastic gradient descent

SGD with entropy estimate

1:

Nogakwh

input: Weight init scale o, step size a, {
negative log-likelihood L(6, t)

initialize 6y ~ N0, oolp)

for

output sample 67,

t=1to T do

0t =01 — aVL(0 1)

NogRw@n

. input: Weight init scale oy, step size «,

negative log-likelihood L(6, t)
initialize 6y ~ N (0, oolp)
initialize Sy = 2(1 + log27) + Dlog oo
fort =1to T do
St =S5t 1+log|l — aVVL(6;, 1)
0t = 01 — aVL(0, 1)
output sample 0, entropy estimate Sy

Approximate bound: log p(x) = —L(07) + St

Determinant is O(D®)

O(D) Taylor approximation using Hessian-vector

products

Scales linearly in parameters and dataset size



Choosing when to stop

10 : ‘ ‘ ‘— Train error
9P ! — est error
¢ Neural network on the g 3& Test
Boston housing dataset. o

. . . —27.60 1(:)0 2(:)0 3(:)0 490 500
° SGD marglnal llkeIIhOOd —-27.8 —— Marginal likelihood
estimate gives stopping -28.0

criterion without a
validation set

|
N}
©
'S

Marginal likelihood

0 1 60 2 60 300 400 500
Training iteration



Choosing number of hidden units

§ —0.05 T T T T
 Neural net on 50000 £ 0100 ,
MNIST examples /—’—E
- g —— Test likelihood )
e Largest model has 2 million £ 22— om0

parameters

e Gives reasonable
estimates, but ‘ ‘ ‘ ‘
cross-validation still better 0 mben ot hidaen w0

—— Marginal likelihood

Marginal likelihood
&




Limitations

e SGD not even trying to
maximize lower bound —
good approximation is by
accident!

e Entropy term gets arbitrarily
bad due to concentration,
but true performance only
gets as bad as maximum
likelihood estimate




Entropy-friendly optimization

e Modified SGD to move
slower near convergence,
optimized new

— True posterior
I O iterations

B 150 iterations
hyperparameter mE 300 iterations
e Hurts performance, but Zo3
. . -0.4
gives tighter bound ~osf .
—0.6} — Training likelihood
e ideally would match test 07 T Tostlkelihood .
|ike|ihood 6;0 1 3 10 30 100 300 1000
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Entropy-friendly optimization

¢ Modified SGD to move
slower near convergence,

True posterior

optimized new s
hyperparameter B 300 iterations
e Hurts performance, but Zo3
. . -0.4
gives tighter bound ~osf .
—0.6} — Training likelihood
e ideally would match test 07 T Tostlkelihood .
likelihood —oAé;O 1 3 10 30 100 300 1000

Marginal likelihood Test Likelihood

—0.65
—0.70+
—0.75}
—0.80 —— Marginal likelihood
-0.85 ‘ ‘ ‘ ‘ ‘ ‘
0 1 3 10 30 100 300 1000

Gradient threshold



Limitations

e Irrelevant parameters can
cause low entropy estimate

e No momentum - would
need to estimate
distribution (see Kingma &
Welling, 2015)




Main Takeaways

Optimization with random restarts implies
nonparametric intermediate distributions

Early stopping chooses among these distributions
Ensembling samples from them

Can scalably estimate variational lower bound on
model evidence during optimization

Another connection between practice and theory



Main Takeaways

Optimization with random restarts implies
nonparametric intermediate distributions

Early stopping chooses among these distributions
Ensembling samples from them

Can scalably estimate variational lower bound on
model evidence during optimization

Another connection between practice and theory
Thanks!



