
Analyzing Priors on Deep Networks

David Duvenaud, Oren Rippel, Ryan Adams, Zoubin Ghahramani

Sheffield Workshop on Deep Probabilistic Models

October 2, 2014

Designing neural nets

I Neural nets require lots of design decisions whose
implications hard to understand.

I We want to understand them without reference to a specific
dataset, loss function, or training method.

I We can analyze different network architectures by looking
at nets whose parameters are drawn randomly.

Why look at priors if I’m going to learn
everything anyways?

I When using Bayesian neural nets:
I Can’t learn types of networks having vanishing probability

under the prior.
I Even when non-probabilistic:

I Good prior→ a good initialization strategy.
I Good prior→ a good regularization strategy.
I Good prior→ higher fraction of parameters specify

reasonable models→ easier optimization problem.

GPs as Neural Nets

x1

x2

x3

h1

h2

h∞

f (x)

Inputs
Hidden

...

Output

A weighted sum of features,

f(x) =
1

K

K∑
i=1

wihi(x)

with any weight distribution,

E [wi] = 0, V [wi] = σ2, i.i.d.

by CLT, gives a GP as K →∞

cov

[
f(x)
f(x′)

]
→ σ2

K

K∑
i=1

hi(x)hi(x
′)

Kernel learning as feature learning

I GPs have fixed features, integrate out feature weights.
I Mapping between kernels and features:

k(x, x′) = h(x)Th(x′).
I Any PSD kernel can be written as inner product of

features. (Mercer’s Theorem)
I Kernel learning = feature learning

I What if we make the GP nueral network deep?

Example deep kernel: Periodic

x
sin(x)

cos(x)

h(2)
1

h(2)
2

h(2)
∞

f (x)

Inputs
Hidden

Hidden

...

Output

Now our model is:

h1(x) = [sin(x), cos(x)]

we have “deep kernel”:

k2(x,x
′)

= exp(−1

2

(
h1(x))− h1(x′)

)

Deep nets, deep kernels

x1

x2

x3

h(1)
1

h(1)
2

h(1)
∞

h(2)
1

h(2)
2

h(2)
∞

f (x)

Inputs
Hidden

...

Hidden

...

Output

Now our model is:

f(x) =
1

K

K∑
i=1

wih
(2)
i

(
h(1)(x)

)
=wTh(2)

(
h(1)(x)

)
Instead of

k1(x,x
′) = h(1)(x)Th(1)(x′),

we have “deep kernel”:

k2(x,x
′)

=
[
h(2)
(
h(1)(x)

)]T
h(2)
(
h(1)(x′)

)

Deep Kernels

I (Cho, 2012) built kernels by composing feature mappings.
I Composing any kernel k1 with a squared-exp kernel (SE):

k2(x, x′) =

=
(
hSE (h1(x)

))T hSE (h1(x′)
)

= exp
(
−1

2
||h1(x)− h1(x′)||22

)
= exp

(
−1

2
[
h1(x)Th1(x)− 2h1(x)Th1(x′) + h1(x′)Th1(x′)

])
= exp

(
−1

2
[k1(x, x)− 2k1(x, x′) + k1(x′, x′)]

)
I A closed form. . . let’s do it again!

Repeated Fixed Feature Mappings

x1

x2

x3

h(1)
1

h(1)
2

h(1)
∞

h(2)
1

h(2)
2

h(2)
∞

h(3)
1

h(3)
2

h(3)
∞

h(4)
1

h(4)
2

h(4)
∞

f (x)
...

...
...

...

Infinitely Deep Kernels

I For SE kernel, kL+1(x, x′) = exp (kL(x, x′)− 1).
I What is the limit of composing SE features?

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x − x’

co
v(

 f(
x)

, f
(x

’)

Deep RBF Network Kernel Functions

1 layer

2 layers

3 layers

∞ layers

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Draws from a GP with Deep RBF Kernels

1 layer

2 layers

3 layers

∞ layers

Kernel Draws from GP prior

I k∞(x, x′) = 1 everywhere. /

A simple fix

I Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

Input-connected architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

A simple fix

kL+1(x, x′) =

= exp

(
−1

2

∣∣∣∣∣∣∣∣[hL(x)
x

]
−
[

hL(x′)
x′

]∣∣∣∣∣∣∣∣2
2

)

= exp
(
−1

2
[kL(x, x)− 2kL(x, x′) + kL(x′, x′)]−

1
2
||x− x′||22

)

Infinitely deep kernels, take two

I What is the limit of compositions of input-connected SE
features?

I kL+1(x, x′) = exp
(
kL(x, x′)− 1− 1

2 ||x− x′||22
)
.

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x − x’

co
v(

 f(
x)

, f
(x

’)

Deep RBF Network Kernel Functions

1 layer

2 layers

3 layers

∞ layers

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
Draws from a GP with Deep RBF Kernels

1 layer

2 layers

3 layers

∞ layers

Kernels Draws from GP priors

I Like an Ornstein-Uhlenbeck process with skinny tails
I Samples are non-differentiable (fractal).

Not very exciting...

I Fixed feature mapping, unlikely to be useful for anything
I Power of neural nets comes from learning a custom

representation.

Deep Gaussian Processes

I A prior over compositions of functions:

f(1:L)(x) = f(L)(f(L−1)(. . . f(2)(f(1)(x)) . . .)) (1)

with each f(`)d
ind∼ GP

(
0, k`d(x, x′)

)
.

I Can be seen as a “simpler” version of Bayesian neural nets
I Two equivalent architectures.

Deep GPs as nonparametric nets

x1

x2

x3

Inputs

x

Targets

t

I A neural net where each neuron’s activation function is
drawn from a Gaussian process prior.

I Avoids problem of unit saturation (with sigmoidal units).
I Each draw from neural net prior gives a function y = f(x).
I In this talk we only consider noiseless functions.

Deep GPs as infinitely wide parametric nets

x1

x2

x3

h(1)
1

h(1)
2

h(1)
∞

h(2)
1

h(2)
2

h(2)
∞

h(3)
1

h(3)
2

h(3)
∞

f (1)1

f (1)2

f (1)3

f (2)1

f (2)2

f (2)3

f (3)1

f (3)2

f (3)3

Inputs

x

Fixed

f(1)(x)

Random
Fixed

f(1:2)(x)

Random
Fixed

Random

y

...
...

...

I Infinitely-wide fixed feature maps alternating with finite
linear information bottlenecks:

h(`)(x) = σ
(
b(`) +

[
V(`)W(`−1)]h(`−1)(x)

)

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1
Layer 1 Compostion

x

1 Layer

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1.5

−1

−0.5

0
Layer 2 Compostion

x

2 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1

−0.5

0

0.5

1
Layer 3 Compostion

x

3 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2
Layer 4 Compostion

x

4 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1

−0.5

0

0.5

1

1.5

2
Layer 5 Compostion

x

5 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−0.8

−0.6

−0.4

−0.2

0
Layer 6 Compostion

x

6 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
0.2

0.4

0.6

0.8

1
Layer 7 Compostion

x

7 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
Layer 8 Compostion

x

8 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1
Layer 9 Compostion

x

9 Layers

Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)

−4 −2 0 2 4
0.88

0.89

0.9

0.91

0.92

0.93
Layer 10 Compostion

x

10 Layers

Size of derivative becomes log-normal distributed.

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

1 Layer

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

2 Layers

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

3 Layers

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

4 Layers

Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

5 Layers
Density concentrates along filaments.

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

No warping

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

1 Layer

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

2 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

3 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

4 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

5 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

10 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

20 Layers

Priors on deep networks
Color shows y that each x is mapped to (decision boundary)

40 Layers
Representation only changes in one direction locally.

What makes a good representation?

tangent

orthogonal

I Good representations of data manifolds don’t change in
directions orthogonal to the manifold. (Rifai et. al. 2011)

I Good representations also change in directions tangent to
the manifold, to preserve information.

I Representation of a D-dimensional manifold should
change in D orthogonal directions, locally.

I Our prior on functions might be too restrictive.

Analysis of Jacobian
2 Layers 6 Layers
N

or
m

al
iz

ed
si

ng
ul

ar
va

lu
e

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Singular value index Singular value index
The distribution of normalized singular values of the Jacobian

of functions drawn from a 5-dimensional deep GP prior.
I Lemma from paper: The Jacobian of a deep GP is a

product of i.i.d. random Gaussian matrices.
I Output only changes in w.r.t. one direction as net deepens.

A simple fix

I Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

Input-connected architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
Layer 1 Compostion

x

1 layer

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
Layer 2 Compostion

x

2 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Layer 3 Compostion

x

3 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−2

−1

0

1

2

3
Layer 4 Compostion

x

4 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−4

−2

0

2

4
Layer 5 Compostion

x

5 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1
Layer 6 Compostion

x

6 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Layer 7 Compostion

x

7 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−2

−1

0

1

2

3
Layer 8 Compostion

x

8 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3
Layer 9 Compostion

x

9 layers

A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

f (x)

−4 −2 0 2 4
−2

−1

0

1

2
Layer 10 Compostion

x

10 layers

Greater variety of derivatives.

A different architecture

I Input-connected 2D to 2D warpings of coloured points:

A different architecture

I Input-connected 2D to 2D warpings of coloured points:

1 Layer

A different architecture

I Input-connected 2D to 2D warpings of coloured points:

2 Layers

A different architecture

I Input-connected 2D to 2D warpings of coloured points:

3 Layers

A different architecture

I Input-connected 2D to 2D warpings of coloured points:

4 Layers

A different architecture
I Input-connected 2D to 2D warpings of coloured points:

5 Layers
Density becomes more complex but remains 2D.

A different architecture (show video)

I Color shows y that each x is mapped to

No warping

A different architecture (show video)

I Color shows y that each x is mapped to

2 Layers

A different architecture (show video)

I Color shows y that each x is mapped to

10 Layers

A different architecture (show video)

I Color shows y that each x is mapped to

20 Layers

A different architecture (show video)
I Color shows y that each x is mapped to

40 Layers
Representation sometimes depends on all directions.

Understanding dropout

I Dropout is a method for regularizing neural networks
(Hinton et al., 2012; Srivastava, 2013).

I Recipe:
1. Randomly set to zero (drop out) some neuron activations.
2. Average over all possible ways of doing this.

I Gives robustness since neurons can’t depend on each other.
I How does dropout affect priors on functions?
I Related work: (Baldi and Sadowski, 2013; Cho, 2013;

Wager, Wang and Liang, 2013)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Original formulation:

f (x) =
1
K

K∑
i=1

wihi(x)

with any weight distribution,

E [wi] = 0, V [wi] = σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Double output variance:

f (x) =
2
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E
[√

2riwi

]
= 0, V

[√
2riwi

]
=

2
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 2

2
σ2

K

K∑
i=1

hi(x)hi(x′)

Dropout on Feature Activations

I Dropout on feature activations gives same GP.
I Averaging the same model doesn’t do anything.

I GPs were doing dropout all along? ,
I GPs are strange because any one feature doesn’t matter.
I Is there a better way to drop out features that would lead to

robustness?

Dropout on GP inputs

x1

x2

Inputs

x

Output f(x)

y

I Each function only depends on some input dimensions.
I Given prior covariance cov [f (x), f (x′)] = k(x, x′), exact

dropout gives a mixture of GPs:

p
(
f (x)

)
=

1
2D

∑
r∈{0,1}D

GP
(
0, k(rTx, rTx′)

)
I Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

x1

x2

Inputs

x

Output f(x)

y

I Each function only depends on some input dimensions.
I Given prior covariance cov [f (x), f (x′)] = k(x, x′), exact

dropout gives a mixture of GPs:

p
(
f (x)

)
=

1
2D

∑
r∈{0,1}D

GP
(
0, k(rTx, rTx′)

)
I Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

x1

x2

Inputs

x

Output f(x)

y

I Each function only depends on some input dimensions.
I Given prior covariance cov [f (x), f (x′)] = k(x, x′), exact

dropout gives a mixture of GPs:

p
(
f (x)

)
=

1
2D

∑
r∈{0,1}D

GP
(
0, k(rTx, rTx′)

)
I Can be viewed as spike-and-slab ARD prior.

Covariance before and after dropout
Original squared-exp: After dropout:

cov [f (x), f (x′)] = k(x, x′) cov [f (x), f (x′)] =
∑

r∈{0,1}D

k(rTx, rTx′)

x− x′ x− x′

I Sum of many functions, each depends only on a subset of
inputs.

I Output similar even if some input dimensions change a lot.

Summary

I Priors on functions can shed light on design choices in a
data-independent way.

I Example 1: Increasing depth makes net outputs change in
fewer input directions.

I Example 2: Dropout makes output similar even if some
inputs change a lot.

I What sorts of structures do we want to be able to learn?

Thanks!

Summary

I Priors on functions can shed light on design choices in a
data-independent way.

I Example 1: Increasing depth makes net outputs change in
fewer input directions.

I Example 2: Dropout makes output similar even if some
inputs change a lot.

I What sorts of structures do we want to be able to learn?

Thanks!

