Analyzing Priors on Deep Networks

David Duvenaud, Oren Rippel, Ryan Adams, Zoubin Ghahramani

Sheffield Workshop on Deep Probabilistic Models

October 2, 2014

Designing neural nets

- Neural nets require lots of design decisions whose implications hard to understand.
- We want to understand them without reference to a specific dataset, loss function, or training method.
- We can analyze different network architectures by looking at nets whose parameters are drawn randomly.

Why look at priors if I'm going to learn everything anyways?

- When using Bayesian neural nets:
- Can't learn types of networks having vanishing probability under the prior.
- Even when non-probabilistic:
- Good prior \rightarrow a good initialization strategy.
- Good prior \rightarrow a good regularization strategy.
- Good prior \rightarrow higher fraction of parameters specify reasonable models \rightarrow easier optimization problem.

GPs as Neural Nets

A weighted sum of features,

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} w_{i} h_{i}(\mathbf{x})
$$

with any weight distribution,
$\mathbb{E}\left[w_{i}\right]=0, \quad \mathbb{V}\left[w_{i}\right]=\sigma^{2}, \quad$ i.i.d.
by CLT, gives a GP as $K \rightarrow \infty$
$\operatorname{cov}\left[\begin{array}{c}f(\mathbf{x}) \\ f\left(\mathbf{x}^{\prime}\right)\end{array}\right] \rightarrow \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)$

Kernel learning as feature learning

- GPs have fixed features, integrate out feature weights.
- Mapping between kernels and features: $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{h}(\mathbf{x})^{\top} \mathbf{h}\left(\mathbf{x}^{\prime}\right)$.
- Any PSD kernel can be written as inner product of features. (Mercer's Theorem)
- Kernel learning $=$ feature learning
- What if we make the GP nueral network deep?

Example deep kernel: Periodic

Now our model is:
$\mathbf{h}^{1}(x)=[\sin (x), \cos (x)]$
we have "deep kernel":
$k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
$=\exp \left(-\frac{1}{2}\left(\mathbf{h}^{1}(\mathbf{x})\right)-\mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)\right)$

Deep nets, deep kernels

Now our model is:

Hidden Hidden

$$
\begin{aligned}
f(\mathbf{x}) & =\frac{1}{K} \sum_{i=1}^{K} w_{i} h_{i}^{(2)}\left(\mathbf{h}^{(1)}(\mathbf{x})\right) \\
& =\boldsymbol{w}^{\top} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}(\mathbf{x})\right)
\end{aligned}
$$

Instead of
$k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{h}^{(1)}(\mathbf{x})^{\top} \mathbf{h}^{(1)}\left(\mathbf{x}^{\prime}\right)$,
we have "deep kernel":
$k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
$=\left[\mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}(\mathbf{x})\right)\right]^{\top} \mathbf{h}^{(2)}\left(\mathbf{h}^{(1)}\left(\mathbf{x}^{\prime}\right)\right)$

Deep Kernels

- (Cho, 2012) built kernels by composing feature mappings.
- Composing any kernel k_{1} with a squared-exp kernel (SE):

$$
\begin{aligned}
& k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)= \\
& =\left(\mathbf{h}^{S E}\left(\mathbf{h}^{1}(\mathbf{x})\right)\right)^{\top} \mathbf{h}^{S E}\left(\mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)\right) \\
& =\exp \left(-\frac{1}{2}\left\|\mathbf{h}^{1}(\mathbf{x})-\mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)\right\|_{2}^{2}\right) \\
& =\exp \left(-\frac{1}{2}\left[\mathbf{h}^{1}(\mathbf{x})^{\top} \mathbf{h}^{1}(\mathbf{x})-2 \mathbf{h}^{1}(\mathbf{x})^{\top} \mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)+\mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)^{\top} \mathbf{h}^{1}\left(\mathbf{x}^{\prime}\right)\right]\right) \\
& =\exp \left(-\frac{1}{2}\left[k_{1}(\mathbf{x}, \mathbf{x})-2 k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{1}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right)\right]\right)
\end{aligned}
$$

- A closed form. . . let's do it again!

Repeated Fixed Feature Mappings

Infinitely Deep Kernels

- For SE kernel, $k_{L+1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(k_{L}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)-1\right)$.
- What is the limit of composing SE features?

Kernel

Draws from GP prior

- $k_{\infty}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1$ everywhere. $\cdot:$

A simple fix

- Following a suggestion from Neal (1995), we connect the inputs \mathbf{x} to each layer:

Input-connected architecture:

A simple fix

$$
\begin{aligned}
& k_{L+1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)= \\
& =\exp \left(-\frac{1}{2}\left\|\left[\begin{array}{c}
\mathbf{h}^{L}(\mathbf{x}) \\
\mathbf{x}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{h}^{L}\left(\mathbf{x}^{\prime}\right) \\
\mathbf{x}^{\prime}
\end{array}\right]\right\|_{2}^{2}\right) \\
& =\exp \left(-\frac{1}{2}\left[k_{L}(\mathbf{x}, \mathbf{x})-2 k_{L}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{L}\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right)\right]-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}\right)
\end{aligned}
$$

Infinitely deep kernels, take two

- What is the limit of compositions of input-connected SE features?
- $k_{L+1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(k_{L}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)-1-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}\right)$.

Kernels

Draws from GP priors

- Like an Ornstein-Uhlenbeck process with skinny tails
- Samples are non-differentiable (fractal).

Not very exciting...

- Fixed feature mapping, unlikely to be useful for anything
- Power of neural nets comes from learning a custom representation.

Deep Gaussian Processes

- A prior over compositions of functions:

$$
\begin{equation*}
\mathbf{f}^{(1: L)}(\mathbf{x})=\mathbf{f}^{(L)}\left(\mathbf{f}^{(L-1)}\left(\ldots \mathbf{f}^{(2)}\left(\mathbf{f}^{(1)}(\mathbf{x})\right) \ldots\right)\right) \tag{1}
\end{equation*}
$$

with each $\mathbf{f}_{d}^{(\ell)} \stackrel{\text { ind }}{\sim} \mathcal{G} \mathcal{P}\left(0, k_{d}^{\ell}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)$.

- Can be seen as a "simpler" version of Bayesian neural nets
- Two equivalent architectures.

Deep GPs as nonparametric nets

Inputs
Targets

- A neural net where each neuron's activation function is drawn from a Gaussian process prior.
- Avoids problem of unit saturation (with sigmoidal units).
- Each draw from neural net prior gives a function $\mathbf{y}=\mathbf{f}(\mathbf{x})$.
- In this talk we only consider noiseless functions.

Deep GPs as infinitely wide parametric nets

Fixed
Inputs

Fixed
Random

Random

Fixed
Random

- Infinitely-wide fixed feature maps alternating with finite linear information bottlenecks:

$$
\mathbf{h}^{(\ell)}(\mathbf{x})=\sigma\left(\mathbf{b}^{(\ell)}+\left[\mathbf{V}^{(\ell)} \mathbf{W}^{(\ell-1)}\right] \mathbf{h}^{(\ell-1)}(\mathbf{x})\right)
$$

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

1 Layer

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

2 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

5 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

6 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

7 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

8 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

9 Layers

Priors on deep networks

- A draw from a one-neuron-per-layer deep GP:

10 Layers

Size of derivative becomes log-normal distributed.

Priors on deep networks

- 2 D to 2 D warpings of a set of coloured points:

Priors on deep networks

- 2 D to 2 D warpings of a set of coloured points:

1 Layer

Priors on deep networks

- 2D to 2 D warpings of a set of coloured points:

2 Layers

Priors on deep networks

- 2 D to 2 D warpings of a set of coloured points:

3 Layers

Priors on deep networks

- 2D to 2D warpings of a set of coloured points:

Priors on deep networks

- 2 D to 2 D warpings of a set of coloured points:

Density concentrates along filaments.

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

No warping

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

1 Layer

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

2 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

3 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

4 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

5 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

10 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

20 Layers

Priors on deep networks

Color shows \mathbf{y} that each \mathbf{x} is mapped to (decision boundary)

$$
40 \text { Layers }
$$

Representation only changes in one direction locally.

What makes a good representation?

- Good representations of data manifolds don't change in directions orthogonal to the manifold. (Rifai et. al. 2011)
- Good representations also change in directions tangent to the manifold, to preserve information.
- Representation of a D-dimensional manifold should change in D orthogonal directions, locally.
- Our prior on functions might be too restrictive.

Analysis of Jacobian

2 Layers

Singular value index

6 Layers

The distribution of normalized singular values of the Jacobian of functions drawn from a 5 -dimensional deep GP prior.

- Lemma from paper: The Jacobian of a deep GP is a product of i.i.d. random Gaussian matrices.
- Output only changes in w.r.t. one direction as net deepens.

A simple fix

- Following a suggestion from Neal (1995), we connect the inputs \mathbf{x} to each layer:

Input-connected architecture:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

1 layer

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

2 layers

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

6 layers

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

A different architecture

- A draw from a one-neuron-per-layer deep GP, with the input also connected to each layer:

10 layers

Greater variety of derivatives.

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

2 Layers

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

3 Layers

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

4 Layers

A different architecture

- Input-connected 2D to 2D warpings of coloured points:

A different architecture (show video)

- Color shows \mathbf{y} that each \mathbf{x} is mapped to

No warping

A different architecture (show video)

- Color shows \mathbf{y} that each \mathbf{x} is mapped to

A different architecture (show video)

- Color shows \mathbf{y} that each \mathbf{x} is mapped to

10 Layers

A different architecture (show video)

- Color shows \mathbf{y} that each \mathbf{x} is mapped to

20 Layers

A different architecture (show video)

- Color shows \mathbf{y} that each \mathbf{x} is mapped to

40 Layers
Representation sometimes depends on all directions.

Understanding dropout

- Dropout is a method for regularizing neural networks (Hinton et al., 2012; Srivastava, 2013).
- Recipe:

1. Randomly set to zero (drop out) some neuron activations.
2. Average over all possible ways of doing this.

- Gives robustness since neurons can't depend on each other.
- How does dropout affect priors on functions?
- Related work: (Baldi and Sadowski, 2013; Cho, 2013; Wager, Wang and Liang, 2013)

Dropout on Feature Activations

Original formulation:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} w_{i} h_{i}(\mathbf{x})
$$

with any weight distribution,

$$
\mathbb{E}\left[w_{i}\right]=0, \quad \mathbb{V}\left[w_{i}\right]=\sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{l}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$
$\operatorname{cov}\left[\begin{array}{c}f(\mathbf{x}) \\ f\left(\mathbf{x}^{\prime}\right)\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{l}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {idd }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{c}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$
$\operatorname{cov}\left[\begin{array}{l}f(\mathbf{x}) \\ f\left(\mathbf{x}^{\prime}\right)\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {idd }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{l}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{c}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$
$\operatorname{cov}\left[\begin{array}{c}f(\mathbf{x}) \\ f\left(\mathbf{x}^{\prime}\right)\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {id }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$
$\operatorname{cov}\left[\begin{array}{l}f(\mathbf{x}) \\ f\left(\mathbf{x}^{\prime}\right)\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)$

Dropout on Feature Activations

Remove units with probability $\frac{1}{2}$:

$$
f(\mathbf{x})=\frac{1}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\text {idd }} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[r_{i} w_{i}\right]=\frac{1}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{l}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{1}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

Double output variance:

$$
f(\mathbf{x})=\frac{2}{K} \sum_{i=1}^{K} r_{i} w_{i} h_{i}(\mathbf{x}) \quad r_{i} \sim_{\mathrm{idd}} \operatorname{Ber}\left(\frac{1}{2}\right)
$$

with any weight distribution,

$$
\mathbb{E}\left[\sqrt{2} r_{i} w_{i}\right]=0, \quad \mathbb{V}\left[\sqrt{2} r_{i} w_{i}\right]=\frac{2}{2} \sigma^{2}
$$

by CLT, gives a GP as $K \rightarrow \infty$

$$
\operatorname{cov}\left[\begin{array}{c}
f(\mathbf{x}) \\
f\left(\mathbf{x}^{\prime}\right)
\end{array}\right] \rightarrow \frac{2}{2} \frac{\sigma^{2}}{K} \sum_{i=1}^{K} h_{i}(\mathbf{x}) h_{i}\left(\mathbf{x}^{\prime}\right)
$$

Dropout on Feature Activations

- Dropout on feature activations gives same GP.
- Averaging the same model doesn't do anything.
- GPs were doing dropout all along? ©
- GPs are strange because any one feature doesn't matter.
- Is there a better way to drop out features that would lead to robustness?

Dropout on GP inputs

Inputs Output $\mathrm{f}(\mathbf{x})$

- Each function only depends on some input dimensions.
- Given prior covariance $\operatorname{cov}\left[f(\mathbf{x}), f\left(\mathbf{x}^{\prime}\right)\right]=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, exact dropout gives a mixture of GPs:

$$
p(f(\mathbf{x}))=\frac{1}{2^{D}} \sum_{\mathbf{r} \in\{0,1\}^{D}} \operatorname{GP}\left(0, k\left(\mathbf{r}^{\top} \mathbf{x}, \mathbf{r}^{\top} \mathbf{x}^{\prime}\right)\right)
$$

- Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

Inputs Output $\mathrm{f}(\mathbf{x})$

- Each function only depends on some input dimensions.
- Given prior covariance $\operatorname{cov}\left[f(\mathbf{x}), f\left(\mathbf{x}^{\prime}\right)\right]=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, exact dropout gives a mixture of GPs:

$$
p(f(\mathbf{x}))=\frac{1}{2^{D}} \sum_{\mathbf{r} \in\{0,1\}^{D}} \operatorname{GP}\left(0, k\left(\mathbf{r}^{\top} \mathbf{x}, \mathbf{r}^{\top} \mathbf{x}^{\prime}\right)\right)
$$

- Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

Inputs Output $\mathrm{f}(\mathbf{x})$

- Each function only depends on some input dimensions.
- Given prior covariance $\operatorname{cov}\left[f(\mathbf{x}), f\left(\mathbf{x}^{\prime}\right)\right]=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, exact dropout gives a mixture of GPs:

$$
p(f(\mathbf{x}))=\frac{1}{2^{D}} \sum_{\mathbf{r} \in\{0,1\}^{D}} \operatorname{GP}\left(0, k\left(\mathbf{r}^{\top} \mathbf{x}, \mathbf{r}^{\top} \mathbf{x}^{\prime}\right)\right)
$$

- Can be viewed as spike-and-slab ARD prior.

Covariance before and after dropout

Original squared-exp:

$$
\operatorname{cov}\left[f(\mathbf{x}), f\left(\mathbf{x}^{\prime}\right)\right]=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

After dropout:

$$
\operatorname{cov}\left[f(\mathbf{x}), f\left(\mathbf{x}^{\prime}\right)\right]=\sum_{\mathbf{r} \in\{0,1\}^{D}} k\left(\mathbf{r}^{\top} \mathbf{x}, \mathbf{r}^{\top} \mathbf{x}^{\prime}\right)
$$

- Sum of many functions, each depends only on a subset of inputs.
- Output similar even if some input dimensions change a lot.

Summary

- Priors on functions can shed light on design choices in a data-independent way.
- Example 1: Increasing depth makes net outputs change in fewer input directions.
- Example 2: Dropout makes output similar even if some inputs change a lot.
- What sorts of structures do we want to be able to learn?

Summary

- Priors on functions can shed light on design choices in a data-independent way.
- Example 1: Increasing depth makes net outputs change in fewer input directions.
- Example 2: Dropout makes output similar even if some inputs change a lot.
- What sorts of structures do we want to be able to learn?

Thanks!

