Explaining Image Classifiers by Counterfactual Generation

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, David Duvenaud
What is an explanation?

- Something that, if it had been different, would have changed the answer.
- “Why”: the cause, reason, or purpose for which
- “Why was X true?” -> “What, if it had been different, would have made X not true?”
- Example: This part of the image makes me think it’s cancer. If it had been the usual color, I wouldn’t have a reason to worry.
What is an explanation?

- “Why was X true?” -> “What, if it had been different, would have made X not true?”
- Many possible answers, would like to prioritize plausible alternatives.
How to automate explanation?

• Need:

 1. Automatic answer-giver (i.e. image classifier) $p(y|x)$

 2. Automatic source of plausible counterfactuals $p(x)$

• Can ask: “What about this image, had it been different, would have changed the classification”
Previous work

• Original “saliency maps” simply plot gradient:
 \[
 \frac{\partial}{\partial x} p(c \mid x)
 \]

• Answers question: Which direction of change in pixels would most change the label?

• A sort of instantaneous counterfactual.

Simonyan et al., 2014
Saliency maps ask wrong question

- Fong & Vedaldi, 2017
Related work

• Gradient maps have weird artefacts, related to adversarial examples.

• Fong & Vedaldi, 2017 ask which parts must be blurred
Our approach

• Existing method’s counterfactuals are based on implausible alternatives.

• We ask: “What region of this image, had it not been seen, would most have changed the classification”

• Fill in with consistent, plausible alternative image patches

\[p_M(c|\mathbf{x}_r) = \mathbb{E}_{\mathbf{x}_r \sim p(\mathbf{x}_r | \mathbf{x}_r)} [p_M(c|\mathbf{x}_r, \mathbf{x}_r)] \]
Conditional Counterfactual Generation

- For image classifiers, need to generate plausible alternative in-fills of images.
- Can use variational autoencoders, or GANs.
- Sum over all possible in-fills: \(p_M(c | x_\setminus r) = \mathbb{E}_{x_r \sim p(x_r | x_\setminus r)} \left[p_M(c | x_\setminus r, x_r) \right] \)
The converse question

- Can also ask: “Which part of the image, if the rest were obscured, would keep the class the same?”

- I.e. what are non-essential parts of the image. Aka Smallest Deleted Region (Dabkowski and Gal, 2017)

- Our method (FIDO): Optimize to mask out as much of image as possible while keeping counterfactual answer same.
Details of approach

- Optimize soft mask
- Integrate over possible infills in inner loop with Monte Carlo
- Require sparsity penalty

\[L_{SDR}(\theta) = \mathbb{E}_{q_\theta(z)} [s_M(c|\phi(x, z)) + \lambda \|z\|_1] \]

\[s_M(c|x) = \log p_M(c|x) - \log(1 - p_M(c|x)) \]

\[q_\theta(z) = \prod_{u=1}^U q_{\theta_u}(z_u) = \prod_{u=1}^U \text{Bern}(z_u|\theta_u). \]
Qualitative Results
Figure 7: BBMP vs FIDO saliency map by increasing the sparsity penalty λ value from left to right.
Figure 4: Comparison of saliency map under different infilling methods by SSR using ResNet.
Number of salient pixels required to change normalized classification score.
Technical Limitations

- Quality of conditional generative models. GANs are good at generation, still hard to condition on part of the image.

- Speed of approximate inference (necessary for fast infilling)

- Optimization over shape of masked region. Would prefer hard mask edges.
Progress in Generative Models Needed
Conceptual Limitations

• Parts of images are a blunt tool for explanation. Better answers in terms of higher-level latent variables?

• Should probably offer multiple explanations

• Should probably relate explanations to actions that can be taken by the user.
Higher-level Counterfactuals

- ablate person units
- ablate curtain units
- ablate window units
- ablate table units

Bau et al 2019
Takeaways

• Conditional generative models let us automatically reason about counterfactuals

• Figuring out what question to ask is the hard part!

Thanks!