FFJORD:
reversible generative models

with unrestricted architectures
Will Grathwonhl

4 _“ ’,.
. . { ik
P2 g TR . 3 54N ' g
,4"'1 i A J\) ;') '.,tN Ny : |7
:/‘. = : ‘:\"—- . “’ ')
. '~ * > - -]
B L "".'i':.‘.:‘ an@qh i

rever3|ble generatlve models

with unrestricted architectures
Will Grathwonhl

Joint work with:
Tian Qi Chen (equal contribution)
Jesse Bettencourt
llya Sutskever
David Duvenaud

‘7‘ VECTOR

INSTITUTE

generative modeling with the change of variables formula

sample

we can define a simple generative model as

z ~ p(z)
r = fo(2)

If fis invertible...

log p(z) = log p(f ™" (x)) — log|0f /0|

challenges

care must be taken to design J6 which is
invertible and where log|of/0x| can be
efficiently computed

we cannot easily compute or estimate the
determinant of arbitrary functions

typically, we use restricted network
architectures to deliver these properties

examples include nice (Dinh et al. 2014),
real-nvp (Dinh et al. 2016), Glow (Kingma
& Dhariwal 2018)

real-nvp

forward

T = [x4;Tp)
fg(aj) = [Ta;Tp - Sg(aja) + tg(xa)]
fo(x) :feTO”'Ofg(x)

inverse

2 = |2q; 2p]

(f1)g " (2) = [za3 (2 — t(2a)) /55 ()]

log-determinant

T D
log|0f/0x| = Zzlog sg(2t)i

t=1 =1

CEHER

since each layer consists of a fairly simple transformation of
the data, many must be composed

the published Glow model trained on cifar-10 has ~400
layers and over 100M parameters

despite these drawbacks considerable progress has been
made in recent years

NICE (2014) real-nvp (2016) Glow (2018)

o
a—— 1 1 a =
i Lk | 1] A
-11, E ¥ ' j

what If...

we could use more expressive functions while
still obeying the main constraints of flows?

iIf we look at the problem in a different way,
something interesting happens...

an alternate view

most reversible generative models compose many small
building blocks

fo(z) = fg o0 f3(z)

this can be thought of as a discrete-time dynamics process

L — 20
2t = fg(zt—l)
fo(x) = 21 =5 5

Input/Hidden/Output

take a few limits...

If we replace these discrete-time dynamics with a continuous-time
process something interesting happens

LI — 20
0
o = Jolzat)
1
fo(x) =20 = 20 + fo(ze, t)dt
0

most interestingly...

-5 0 5
Input/Hidden/Output

1
log p(z) = log p(zr) + /O Vf(z,t)dt

known as the continuous change of variables (Chen et al. 2018)

what this means

log-probability of the data under the discrete model

T
log p(x) = logp(zr) + Y log|0f*/0z
t=0

log-probability of the data under the continuous model

1
log p(x) = log p(27) + /O V f(2,t)dt

we replace the sum of jacobian log-determinants with the integral of
a divergence

log-dets vs divergence

for a general function f:RY — RN Jf/0x can be computed (in?)
time using automatic differentiation

given 9f/0x computindlog |0f/0x| requires®)
computation and there is no known efficient unbiased estimator

given 9 /dx WV f(z,t) can be computediny) thus we are
constrained by the O(N?) cost of computing the jacobian

but, using two tricks we can produce an unbiased estimator for this
guantity with O(N) computation

stochastic divergence estimation

0f/0r require®(N?) to compute using automatic differentiation
but e’ (0f/8x) can be computed in for any e i ()

for any matrix A, we have

Tr(A) = Eye)le’ Ae] (Hutchinson’s estimator)

It Ele] =0,Cov(e) =1

given that Vf(Z) _ Tr(c?f/(?z) we have

Vf(z) =Eyele’ (0f]02)e]
which can be estimated in O(N)

3-line tf implementation

dfdz = f(z, 1)
e = tf.random_normal(tf.shape(z))
div = tf.reduce_sum(
tf.gradients(dfdz, z, grad_ys=e) * e

)

unbiased log-likelihood estimation

stochastic divergence estimates can be incorporated into the

continuous change of variables with

log p(x) = log p(zr) + /O Vf(z)dt

1
R
0

— lng(ZT) -+ ﬂp(e)

p(e)

€

I of -
el = edt
/O 82115 |

r9f

dt
aZt

(swap order of integration)

we can sample a single e and integrate the divergence estimates to
obtain an unbiased estimate of log p(x) for unrestricted f

that’s all fine and dandy but...

our model is defined by f which represents the gradients of a
continuous-time dynamics process

computing 27 consists of solving an ordinary differential
equation (ODE) initial value problem (IVP)

iIf f is a neural network we must compute the gradient of a
solution to an IVP wrt to the parameters of the function that
governs its dynamics

neural ODEs

recent work from Chen et al. (2018) provides a solution

given an objective

L(z(ty)) = L (et 9)dt>

to
— L(ODESOlVG(Z’(to), f, t(), tl, (9))

0L OL OL 9L
Chen et al. (2018) demonstrates that 5:(z,)’ 96’ 6t,” 61, can all

be found by solving a different IVP backwards in time

adjoint backpropagation (in theory)

| | N L
def tity, the adjoint: =

efine new quantity, the adjoint: a(2) 92()
. . Oa(t) B r0f(2(t),t,06)
it is governed by dynamics: 5 = —alt) =5 (1)

derivatives of original system are solutions |VPs based on
these dynamics

OL o 0 1,0
%:/tl a(t)T f(zggt) gt

|Scalable Inference of Ordinary Ditterential Equation Models of Biochemical
Processes”, Froehlich, Loos, Hasenauer, 2017]

adjoint backpropagation (in practice)

Solve original IVP using a numerical solver

compute its gradients with a second call to a numerical solver

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters 6, start time ¢, stop time ¢, final state z(¢), loss gradient 9L/z(t,)

oL _ azész)T f(=z(t) t1,0) > Compute gradient w.r.t. ¢,

s = |z(ty), 65&1)’ E)tl , 0] > Define initial augmented state
def Dynamics(|z(t), a(t), —, —|, t, 0): > Define dynamics on augmented state

return [f(z(t),t,0), —a’ (t) %f, —al () %5, —a’l (t) %JE] > Concatenate time-derivatives

z(tg), %, g—g, g—{; = ODESolve(s, Dynamics, t1, tg, 0) > Solve reverse-time ODE

L 8L 8L 8L :
5z (to)’ 90 dto’ Ot > Return all gradients

from Chen et al. (2018)

putting It all together

In this work we define a generative model for data

2o ~ p(20)
0z(t)
S CORY)

where 0 is trained using adjoint backpropagation to maximize
stochastic estimates of

1 af
logp(x) =logp(zy) + E, (0 / el edt
gp(x) = logp(20) + Ep(e) NN

giving us the first invertible generative model which allows unrestricted
architectures to specify the dynamics

hence the name Free-Form Jacobian of Reversible Dynamics (FFJORD)

FFJORD in action

FFJORD in action

Target

Samples Vector Field Samples Vector Field
b

Densit Target Densit

Samples Vector Field Samples Vector Field

comparison to prior work
Data Glow Planar CNF FFJORD

summary of quantitative experiments

we evaluate FFJORD on density estimation for tabular and image data

as a normalizing flow for improved posterior estimation in variational
autoencoders

compare to state of the art generative models, normalizing flows, and
autoregressive density estimation models

tabular density estimation

FFJORD flows defined by unrestricted neural networks

outperforms other models with efficient sampling by a wide
margin

outperforms some autoregressive models without efficient
sampling

|POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP -0.17 -8.33 18.71 13.55 -153.28
Glow -0.17 -8.15 18.92 11.35 -155.07
FFJORD -046 -8.59 14.92 10.43 -157.40

MADE 3.08 -3.56 2098 15.59 -148.85
cannot be J¥INg 024 -10.08 17.70 11.75 -155.69
sampled from EyNN 048 -11.19 15.12 11.01 -157.03
LU UL\ AF DDSFE | 062 -11.96 15.09 8.86 -157.73

Image density estimation

FFJORD outperforms both real-nvp and Glow on MNIST and
can match their performance using a single flow step

performs comparably to Glow on CIFAR10 while using 2% as
many parameters

MNIST CIFARIO

Real NVP 1.06* 3.49%*
Glow 1.05%* 3.35%
FFJORD 0.99* (1.057) 3.40%

MADE 2.04 5.67
MAF 1.89 4.31
TAN

MAF-DDSF

Image samples

g

b IEIRA
A

QENQI&MF
LA

L RPN
uauaan&r

"
S
L
i
m

EWHME%EI&

W

;hﬁﬁl

Vo BdNo~®DD o
Qoo png
OMXANresnNng M w
~ Q™ TN —-V
M v o J N0 P oo
SCIRE S A B RGO I, T S
~NnNtFTLHTIALrPQOn
Qe dvmedn=L
SPOWNM NS NN §
“QYrHoTFI~O

sojdureg

> e
2)
B N b

O
B

J

A%E?!EH\
P
o

e ¥ 7 L ¢
El

R 2T 4
zaa«aysg .
TFE B e NI

NS N X D) os
NEEQ = ONMWNn I~
e3P L D = s
NQOV~N—0OJdr~a
NIDOCTT PP~V NN
o3 rhoYom
PN BHLAITON—N
g3 —on J@R Ll
A =IOy~~~ mas
NNXAV NN =

FFJORD for variational autoencoders

layer(h; x, W,b) = o

MNIST

No Flow | 86.55 + .06
Planar 86.06 £ .31
IAF 84.20 £+ .17
Sylvester | 83.32 £ .06
FFJORD | 82.82 + .01

Omniglot

104.28 £+ .39
102.65 + .42
102.41 £ .04
99.00 £ .04
98.33 = .09

Frey Faces

4.53 £+ .02
4.40 = .06
4.47 £+ .05
4.45 + .04
4.39 + .01

Caltech Silhouettes

110.80 = .46
109.66 + .42
111.58 + .38
104.62 + .29
104.03 + .43

