
Additive Gaussian Processes

David Duvenaud, Hannes Nickisch, Carl Rasmussen

Cambridge University
Computational and Biological Learning Lab

January 13, 2012

Outline

Gaussian Process Regression
Definition
Properties

Additive Gaussian Processes
Central Modeling Assumption
Interpretability
Related Work
Results

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.

Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric

I Data-Efficient
I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient

I Tractable Joint Posterior

Regression Methods

Given X, y, predict some new function value y∗ at location x∗.
Many methods with nice properties.

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

I Non-parametric
I Data-Efficient
I Tractable Joint Posterior

Definition

Assume our data (X, y) is generated by y = f(x) + εσ
f is a latent function which we need to do inference about.

A GP prior distribution over f means that, for any finite set of
indices X,

p(fx|θ) = N (µθ(X),Kθ(X,X))

where
Kij = kθ(x, x′)

is the covariance function or kernel, which specifies the covariance
between two function values f (x1), f (x2) given their locations
x1, x2.
e.g.

kθ(x, x′) = exp(− 1

2θ
|x−x′|22)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Distance

C
ov

ar
ia

nc
e

x−x′

Definition

Assume our data (X, y) is generated by y = f(x) + εσ
f is a latent function which we need to do inference about.
A GP prior distribution over f means that, for any finite set of
indices X,

p(fx|θ) = N (µθ(X),Kθ(X,X))

where
Kij = kθ(x, x′)

is the covariance function or kernel, which specifies the covariance
between two function values f (x1), f (x2) given their locations
x1, x2.
e.g.

kθ(x, x′) = exp(− 1

2θ
|x−x′|22)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Distance

C
ov

ar
ia

nc
e

x−x′

Definition

Assume our data (X, y) is generated by y = f(x) + εσ
f is a latent function which we need to do inference about.
A GP prior distribution over f means that, for any finite set of
indices X,

p(fx|θ) = N (µθ(X),Kθ(X,X))

where
Kij = kθ(x, x′)

is the covariance function or kernel, which specifies the covariance
between two function values f (x1), f (x2) given their locations
x1, x2.

e.g.

kθ(x, x′) = exp(− 1

2θ
|x−x′|22)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Distance

C
ov

ar
ia

nc
e

x−x′

Definition

Assume our data (X, y) is generated by y = f(x) + εσ
f is a latent function which we need to do inference about.
A GP prior distribution over f means that, for any finite set of
indices X,

p(fx|θ) = N (µθ(X),Kθ(X,X))

where
Kij = kθ(x, x′)

is the covariance function or kernel, which specifies the covariance
between two function values f (x1), f (x2) given their locations
x1, x2.
e.g.

kθ(x, x′) = exp(− 1

2θ
|x−x′|22)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Distance

C
ov

ar
ia

nc
e

x−x′

Sampling from a GP

function simple_gp_sample

% Choose a set of x locations.
N = 100;

x = linspace(-2, 2, N);

% Specify the covariance between function
% values, depending on their location.
for j = 1:N

for k = 1:N

sigma(j,k) = covariance(x(j), x(k));

end
end

% Specify that the prior mean of f is zero.
mu = zeros(N, 1);

% Sample from a multivariate Gaussian.
f = mvnrnd(mu, sigma);

plot(x, f);

end

% Squared−exp covariance function.
function k = covariance(x, y)

k = exp(-0.5*(x - y)^2);

end

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sampling from a GP

function simple_gp_sample

% Choose a set of x locations.
N = 100;

x = linspace(-2, 2, N);

% Specify the covariance between function
% values, depending on their location.
for j = 1:N

for k = 1:N

sigma(j,k) = covariance(x(j), x(k));

end
end

% Specify that the prior mean of f is zero.
mu = zeros(N, 1);

% Sample from a multivariate Gaussian.
f = mvnrnd(mu, sigma);

plot(x, f);

end

% Squared−exp covariance function.
function k = covariance(x, y)

k = exp(-0.5*(x - y)^2);

end

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sampling from a GP

function simple_gp_sample

% Choose a set of x locations.
N = 100;

x = linspace(-2, 2, N);

% Specify the covariance between function
% values, depending on their location.
for j = 1:N

for k = 1:N

sigma(j,k) = covariance(x(j), x(k));

end
end

% Specify that the prior mean of f is zero.
mu = zeros(N, 1);

% Sample from a multivariate Gaussian.
f = mvnrnd(mu, sigma);

plot(x, f);

end

% Squared−exp covariance function.
function k = covariance(x, y)

k = exp(-0.5*(x - y)^2);

end

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Sampling from a GP

function simple_gp_sample

% Choose a set of x locations.
N = 100;

x = linspace(-2, 2, N);

% Specify the covariance between function
% values, depending on their location.
for j = 1:N

for k = 1:N

sigma(j,k) = covariance(x(j), x(k));

end
end

% Specify that the prior mean of f is zero.
mu = zeros(N, 1);

% Sample from a multivariate Gaussian.
f = mvnrnd(mu, sigma);

plot(x, f);

end

% Squared−exp covariance function.
function k = covariance(x, y)

k = exp(-0.5*(x - y)^2);

end

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Sampling from a GP

function simple_gp_sample

% Choose a set of x locations.
N = 100;

x = linspace(-2, 2, N);

% Specify the covariance between function
% values, depending on their location.
for j = 1:N

for k = 1:N

sigma(j,k) = covariance(x(j), x(k));

end
end

% Specify that the prior mean of f is zero.
mu = zeros(N, 1);

% Sample from a multivariate Gaussian.
f = mvnrnd(mu, sigma);

plot(x, f);

end

% Periodic covariance function.
function c = covariance(x, y)

c = exp(-0.5*(sin((x - y)*1.5).^2));

end

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Conditional Posterior

After conditioning on some data (X, y),

p(f(x∗)|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

= N (y|f,X, θ)N (f|µ,Kθ(X,X))

= N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

Conditional Posterior

After conditioning on some data (X, y),

p(f(x∗)|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

= N (y|f,X, θ)N (f|µ,Kθ(X,X))

= N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

Conditional Posterior

After conditioning on some data (X, y),

p(f(x∗)|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

= N (y|f,X, θ)N (f|µ,Kθ(X,X))

= N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

Conditional Posterior

p(f(x∗)|X, y, θ) = N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

x

f(x)

GP Posterior Mean
GP Posterior Uncertainty

Conditional Posterior

p(f(x∗)|X, y, θ) = N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

x

f(x)

GP Posterior Mean
GP Posterior Uncertainty
Data

Conditional Posterior

p(f(x∗)|X, y, θ) = N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

x

f(x)

GP Posterior Mean
GP Posterior Uncertainty
Data

Conditional Posterior

p(f(x∗)|X, y, θ) = N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

x

f(x)

GP Posterior Mean
GP Posterior Uncertainty
Data

Conditional Posterior

p(f(x∗)|X, y, θ) = N (f(x∗)|µ = k(x∗,X)K−1y,

Σ = k(x∗, x∗)− k(x∗,X)K−1k(X, x∗))

x

f(x)

GP Posterior Mean
GP Posterior Uncertainty
Data

Normalization Constant

Problem with Bayesian models:

p(f|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

=
p(y|f,X, θ)p(f|θ)∫
p(y|f,X, θ)p(f|θ)df

Can actually compute model evidence p(y|X, θ), aka Z:

log p(y|X, θ) = log

∫
p(y|f,X, θ)p(f|θ)df

= −1

2
yT (Kθ + σ2ε I)−1y︸ ︷︷ ︸

Data-fit

−1

2
log |Kθ + σ2ε I|︸ ︷︷ ︸

Bayesian Occam’s Razor

−N

2
log(2π)

Normalization Constant

Problem with Bayesian models:

p(f|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

=
p(y|f,X, θ)p(f|θ)∫
p(y|f,X, θ)p(f|θ)df

Can actually compute model evidence p(y|X, θ), aka Z:

log p(y|X, θ) = log

∫
p(y|f,X, θ)p(f|θ)df

= −1

2
yT (Kθ + σ2ε I)−1y︸ ︷︷ ︸

Data-fit

−1

2
log |Kθ + σ2ε I|︸ ︷︷ ︸

Bayesian Occam’s Razor

−N

2
log(2π)

Normalization Constant

Problem with Bayesian models:

p(f|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

=
p(y|f,X, θ)p(f|θ)∫
p(y|f,X, θ)p(f|θ)df

Can actually compute model evidence p(y|X, θ), aka Z:

log p(y|X, θ) = log

∫
p(y|f,X, θ)p(f|θ)df

= −1

2
yT (Kθ + σ2ε I)−1y︸ ︷︷ ︸

Data-fit

−1

2
log |Kθ + σ2ε I|︸ ︷︷ ︸

Bayesian Occam’s Razor

−N

2
log(2π)

Normalization Constant

Problem with Bayesian models:

p(f|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

=
p(y|f,X, θ)p(f|θ)∫
p(y|f,X, θ)p(f|θ)df

Can actually compute model evidence p(y|X, θ), aka Z:

log p(y|X, θ) = log

∫
p(y|f,X, θ)p(f|θ)df

= −1

2
yT (Kθ + σ2ε I)−1y︸ ︷︷ ︸

Data-fit

−1

2
log |Kθ + σ2ε I|︸ ︷︷ ︸

Bayesian Occam’s Razor

−N

2
log(2π)

Normalization Constant

Problem with Bayesian models:

p(f|X, y, θ) =
1

Z
p(y|f,X, θ)p(f|θ)

=
p(y|f,X, θ)p(f|θ)∫
p(y|f,X, θ)p(f|θ)df

Can actually compute model evidence p(y|X, θ), aka Z:

log p(y|X, θ) = log

∫
p(y|f,X, θ)p(f|θ)df

= −1

2
yT (Kθ + σ2ε I)−1y︸ ︷︷ ︸

Data-fit

−1

2
log |Kθ + σ2ε I|︸ ︷︷ ︸

Bayesian Occam’s Razor

−N

2
log(2π)

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

I Linear Regression

I Polynomial Regression

I Splines

I Kalman Filters

I Generalized Additive Models

Can use gradients of model evidence to learn which model best
explains the data; no need for cross-validation.

Not just for 1-D continuous functions

I D-dimensional input −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

I Functions over discrete domains

I Functions over strings, trees, trajectories

I Classification

Not just for 1-D continuous functions

I D-dimensional input −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

I Functions over discrete domains

I Functions over strings, trees, trajectories

I Classification

Not just for 1-D continuous functions

I D-dimensional input −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

I Functions over discrete domains

I Functions over strings, trees, trajectories

I Classification

Not just for 1-D continuous functions

I D-dimensional input −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

I Functions over discrete domains

I Functions over strings, trees, trajectories

I Classification

Performance

[Blei et. al, 2011]

Limitations

I Slow: O(N3) means that N < 3000.

I Recently some good O(NM2) approximations (FITC).

I Most commonly used kernels have fairly limited generalization
abilities.

I Non-Gaussian noise requires approximate inference.

Best choice if:

I Data is small / expensive to gather.

I You want to do anything besides point prediction.

Limitations

I Slow: O(N3) means that N < 3000.
I Recently some good O(NM2) approximations (FITC).

I Most commonly used kernels have fairly limited generalization
abilities.

I Non-Gaussian noise requires approximate inference.

Best choice if:

I Data is small / expensive to gather.

I You want to do anything besides point prediction.

Limitations

I Slow: O(N3) means that N < 3000.
I Recently some good O(NM2) approximations (FITC).

I Most commonly used kernels have fairly limited generalization
abilities.

I Non-Gaussian noise requires approximate inference.

Best choice if:

I Data is small / expensive to gather.

I You want to do anything besides point prediction.

Limitations

I Slow: O(N3) means that N < 3000.
I Recently some good O(NM2) approximations (FITC).

I Most commonly used kernels have fairly limited generalization
abilities.

I Non-Gaussian noise requires approximate inference.

Best choice if:

I Data is small / expensive to gather.

I You want to do anything besides point prediction.

Limitations

I Slow: O(N3) means that N < 3000.
I Recently some good O(NM2) approximations (FITC).

I Most commonly used kernels have fairly limited generalization
abilities.

I Non-Gaussian noise requires approximate inference.

Best choice if:

I Data is small / expensive to gather.

I You want to do anything besides point prediction.

Outline

Gaussian Process Regression
Definition
Properties

Additive Gaussian Processes
Central Modeling Assumption
Interpretability
Related Work
Results

Central Dogma

Central modeling assumption:

−4
−2

0
2

4

−4

−2

0

2

4
−1

0

1

2

3

4

= −4
−2

0
2

4

−4

−2

0

2

4
−1.5

−1

−0.5

0

0.5

1

1.5

+ −4
−2

0
2

4

−4

−2

0

2

4
0

0.5

1

1.5

2

f1(x1) + f2(x2) f1(x1) f2(x2)

We hope our high-dimensional function can be written as a sum of
orthogonal low-dimensional functions.

it’s far easier to learn ten 1-dimensional functions than one
10-dimensional function!

Central Dogma

Central modeling assumption:

−4
−2

0
2

4

−4

−2

0

2

4
−1

0

1

2

3

4

= −4
−2

0
2

4

−4

−2

0

2

4
−1.5

−1

−0.5

0

0.5

1

1.5

+ −4
−2

0
2

4

−4

−2

0

2

4
0

0.5

1

1.5

2

f1(x1) + f2(x2) f1(x1) f2(x2)

We hope our high-dimensional function can be written as a sum of
orthogonal low-dimensional functions.

it’s far easier to learn ten 1-dimensional functions than one
10-dimensional function!

Central Dogma

Central modeling assumption:

−4
−2

0
2

4

−4

−2

0

2

4
−1

0

1

2

3

4

= −4
−2

0
2

4

−4

−2

0

2

4
−1.5

−1

−0.5

0

0.5

1

1.5

+ −4
−2

0
2

4

−4

−2

0

2

4
0

0.5

1

1.5

2

f1(x1) + f2(x2) f1(x1) f2(x2)

We hope our high-dimensional function can be written as a sum of
orthogonal low-dimensional functions.

it’s far easier to learn ten 1-dimensional functions than one
10-dimensional function!

Additivity in GPs

Easy to express additive property in a GP:

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

+ −4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

= −4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

k1(x1, x
′
2) k2(x2, x

′
2) k1(x1, x

′
1) + k2(x2, x

′
2)

1D kernel 1D kernel
↓

−4
−2

0
2

4

−4

−2

0

2

4
−1

0

1

2

3

4

f1(x1) + f2(x2)
draw from

1st order GP

Additivity in GPs

Easy to express additive property in a GP:

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

+ −4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

= −4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

k1(x1, x
′
2) k2(x2, x

′
2) k1(x1, x

′
1) + k2(x2, x

′
2)

1D kernel 1D kernel
↓

−4
−2

0
2

4

−4

−2

0

2

4
−1

0

1

2

3

4

f1(x1) + f2(x2)
draw from

1st order GP

We can extend our prior to include more interaction terms:

f (x1, x2, x3, x4) =

f1(x1) + f2(x2) + f3(x3) + f4(x4)

+ f12(x1, x2) + f13(x1, x3) + f14(x1, x4) + f23(x2, x3) + f24(x2, x4) + f34(x3, x4)

+ f123(x1, x2, x3) + f124(x1, x2, x4) + f134(x1, x3, x4) + f234(x2, x3, x4)

+ f1234(x1, x2, x3, x4)

Corresponding GP model: assign each dimension i ∈ {1 . . .D} a
one-dimensional base kernel ki (xi , x

′
i) Let zi = ki (xi , x

′
i)

kadd1(x, x′) = z1 + z2 + z3 + z4

kadd2(x, x′) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4

kadd3(x, x′) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4

kadd4(x, x′) = z1z2z3z4

We can extend our prior to include more interaction terms:

f (x1, x2, x3, x4) =

f1(x1) + f2(x2) + f3(x3) + f4(x4)

+ f12(x1, x2) + f13(x1, x3) + f14(x1, x4) + f23(x2, x3) + f24(x2, x4) + f34(x3, x4)

+ f123(x1, x2, x3) + f124(x1, x2, x4) + f134(x1, x3, x4) + f234(x2, x3, x4)

+ f1234(x1, x2, x3, x4)

Corresponding GP model: assign each dimension i ∈ {1 . . .D} a
one-dimensional base kernel ki (xi , x

′
i) Let zi = ki (xi , x

′
i)

kadd1(x, x′) = z1 + z2 + z3 + z4

kadd2(x, x′) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4

kadd3(x, x′) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4

kadd4(x, x′) = z1z2z3z4

We can extend our prior to include more interaction terms:

f (x1, x2, x3, x4) =

f1(x1) + f2(x2) + f3(x3) + f4(x4)

+ f12(x1, x2) + f13(x1, x3) + f14(x1, x4) + f23(x2, x3) + f24(x2, x4) + f34(x3, x4)

+ f123(x1, x2, x3) + f124(x1, x2, x4) + f134(x1, x3, x4) + f234(x2, x3, x4)

+ f1234(x1, x2, x3, x4)

Corresponding GP model: assign each dimension i ∈ {1 . . .D} a
one-dimensional base kernel ki (xi , x

′
i) Let zi = ki (xi , x

′
i)

kadd1(x, x′) = z1 + z2 + z3 + z4

kadd2(x, x′) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4

kadd3(x, x′) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4

kadd4(x, x′) = z1z2z3z4

In D dimensions:

kadd1(x, x′) = σ21

D∑
i=1

ki (xi , x
′
i)

kadd2(x, x′) = σ22

D∑
i=1

D∑
j=i+1

ki (xi , x
′
i)kj(xj , x

′
j)

kadd3(x, x′) = σ23

D∑
i=1

D∑
j=i+1

D∑
k=j+1

ki (xi , x
′
i)kj(xj , x

′
j)kk(xk , x

′
k)

kaddn(x, x′) = σ2n
∑

1≤i1<i2<...<in≤D

N∏
d=1

kid (xid , x
′
id

)

kaddD (x, x′) = σ2D

D∏
d=1

kd(xd , x
′
d)

Full additive kernel is a sum of the additive kernels of all orders,
weighted by the order variances σ1 . . . σD

In D dimensions:

kadd1(x, x′) = σ21

D∑
i=1

ki (xi , x
′
i)

kadd2(x, x′) = σ22

D∑
i=1

D∑
j=i+1

ki (xi , x
′
i)kj(xj , x

′
j)

kadd3(x, x′) = σ23

D∑
i=1

D∑
j=i+1

D∑
k=j+1

ki (xi , x
′
i)kj(xj , x

′
j)kk(xk , x

′
k)

kaddn(x, x′) = σ2n
∑

1≤i1<i2<...<in≤D

N∏
d=1

kid (xid , x
′
id

)

kaddD (x, x′) = σ2D

D∏
d=1

kd(xd , x
′
d)

Full additive kernel is a sum of the additive kernels of all orders,
weighted by the order variances σ1 . . . σD

In D dimensions:

kadd1(x, x′) = σ21

D∑
i=1

ki (xi , x
′
i)

kadd2(x, x′) = σ22

D∑
i=1

D∑
j=i+1

ki (xi , x
′
i)kj(xj , x

′
j)

kadd3(x, x′) = σ23

D∑
i=1

D∑
j=i+1

D∑
k=j+1

ki (xi , x
′
i)kj(xj , x

′
j)kk(xk , x

′
k)

kaddn(x, x′) = σ2n
∑

1≤i1<i2<...<in≤D

N∏
d=1

kid (xid , x
′
id

)

kaddD (x, x′) = σ2D

D∏
d=1

kd(xd , x
′
d)

Full additive kernel is a sum of the additive kernels of all orders,
weighted by the order variances σ1 . . . σD

In D dimensions:

kadd1(x, x′) = σ21

D∑
i=1

ki (xi , x
′
i)

kadd2(x, x′) = σ22

D∑
i=1

D∑
j=i+1

ki (xi , x
′
i)kj(xj , x

′
j)

kadd3(x, x′) = σ23

D∑
i=1

D∑
j=i+1

D∑
k=j+1

ki (xi , x
′
i)kj(xj , x

′
j)kk(xk , x

′
k)

kaddn(x, x′) = σ2n
∑

1≤i1<i2<...<in≤D

N∏
d=1

kid (xid , x
′
id

)

kaddD (x, x′) = σ2D

D∏
d=1

kd(xd , x
′
d)

Full additive kernel is a sum of the additive kernels of all orders,
weighted by the order variances σ1 . . . σD

In D dimensions:

kadd1(x, x′) = σ21

D∑
i=1

ki (xi , x
′
i)

kadd2(x, x′) = σ22

D∑
i=1

D∑
j=i+1

ki (xi , x
′
i)kj(xj , x

′
j)

kadd3(x, x′) = σ23

D∑
i=1

D∑
j=i+1

D∑
k=j+1

ki (xi , x
′
i)kj(xj , x

′
j)kk(xk , x

′
k)

kaddn(x, x′) = σ2n
∑

1≤i1<i2<...<in≤D

N∏
d=1

kid (xid , x
′
id

)

kaddD (x, x′) = σ2D

D∏
d=1

kd(xd , x
′
d)

Full additive kernel is a sum of the additive kernels of all orders,
weighted by the order variances σ1 . . . σD

Efficient Evaluation

The nth order additive kernel corresponds to the nth elementary
symmetric polynomial

e1(z1, z2, z3, z4) = z1 + z2 + z3 + z4

e2(z1, z2, z3, z4) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4

e3(z1, z2, z3, z4) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4

e4(z1, z2, z3, z4) = z1z2z3z4

Newton-Girard formulae give efficient recursive form:

en(z1, . . . , zD) =
1

n

n∑
k=1

(−1)(k−1)en−k(z1, . . . , zD)
D∑
i=1

zki (2.1)

Efficient Evaluation

The nth order additive kernel corresponds to the nth elementary
symmetric polynomial

e1(z1, z2, z3, z4) = z1 + z2 + z3 + z4

e2(z1, z2, z3, z4) = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4

e3(z1, z2, z3, z4) = z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4

e4(z1, z2, z3, z4) = z1z2z3z4

Newton-Girard formulae give efficient recursive form:

en(z1, . . . , zD) =
1

n

n∑
k=1

(−1)(k−1)en−k(z1, . . . , zD)
D∑
i=1

zki (2.1)

Interpretability

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

GP-GAM kernel Squared-exp GP Additive GP kernel
kernel

Order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

pima 0.1 0.1 0.1 0.3 1.5 96.4 1.4 0.0
liver 0.0 0.2 99.7 0.1 0.0 0.0

heart 77.6 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 22.0
concrete 70.6 13.3 13.8 2.3 0.0 0.0 0.0 0.0

pumadyn 0.0 0.1 0.1 0.1 0.1 0.1 0.1 99.5
servo 58.7 27.4 0.0 13.9

housing 0.1 0.6 80.6 1.4 1.8 0.8 0.7 0.8 0.6 12.7

Interpretability

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

GP-GAM kernel Squared-exp GP Additive GP kernel
kernel

Order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

pima 0.1 0.1 0.1 0.3 1.5 96.4 1.4 0.0
liver 0.0 0.2 99.7 0.1 0.0 0.0

heart 77.6 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 22.0
concrete 70.6 13.3 13.8 2.3 0.0 0.0 0.0 0.0

pumadyn 0.0 0.1 0.1 0.1 0.1 0.1 0.1 99.5
servo 58.7 27.4 0.0 13.9

housing 0.1 0.6 80.6 1.4 1.8 0.8 0.7 0.8 0.6 12.7

Interpretability

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Water

S
tr

en
gt

h

−1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Age

S
tr

en
gt

h
0

2

4

6 −2
−1

0
1

2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Age
Water

S
tr

en
gt

h

Figure: Green points indicate the original data, blue points are data after
the mean contribution from the other first-order terms has been
subtracted. The black line is the posterior mean of a GP with only one
term in its kernel.

Related Work

I Vapnik [1998] introduces additive kernel, calling it support
vector ANOVA decomposition. Recommend choosing only one
order, since must choose hypers by cross-validation.

I Plate [1999] constructs additive GP using only first-order and
Dth order terms. Trades off interpretability with goodness of
fit.

I Wahba [1990] introduces smoothing-splines ANOVA, a
weighted sum of low-D splines, each with an individual
weight. In practice, only 1-D and 2-D splines are used.

Additive GPs use all orders of interaction, learn base kernels, are
probabilistic.

Hierarchical Kernel Learning (Bach [2009])

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

Additive GP kernel HKL kernel

I HKL can selects a hull of interaction terms.

I Must use a pre-determined weighting over orders.

I Uses cross-validation to fit all hypers.

Neither class of kernels contains the other.

Local Kernels

A GP prior with squared-exp or Matérn kernels say that either the
function doesn’t change much at all, or that distant points can’t
tell you much about your current position.

I Nice for consistency

I bad for generalization.

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

Squared-Exp kernel Additive kernel

Non-Local Kernels

True Function Squared-exp GP
& data locations posterior mean

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

x1

f1(x1)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

x2

f2(x2)

Additive GP Additive GP
posterior mean 1st-order functions

1st order interactions 2nd order interactions
k1 + k2 + k3 k1k2 + k2k3 + k1k3

3rd order interactions All interactions
k1k2k3 k1 + k2 + · · ·+ k1k2k3

(Squared-exp kernel) (Additive kernel)

Results

Table: Regression Mean Squared Error

Method bach concrete pumadyn servo housing

Linear 1.031 0.404 0.641 0.523 0.289
GP GAM 1.259 0.149 0.598 0.281 0.161
HKL 0.199 0.147 0.346 0.199 0.151
GP sq-exp 0.045 0.157 0.317 0.126 0.092
GP Additive 0.045 0.089 0.316 0.110 0.102

Table: Regression Negative Log Likelihood

Method bach concrete pumadyn servo housing

Linear 2.430 1.403 1.881 1.678 1.052
GP GAM 1.708 0.467 1.195 0.800 0.457
GP sq-exp −0.131 0.398 0.843 0.429 0.207
GP Additive −0.131 0.114 0.841 0.309 0.194

Summary

I Additive GPs generalize commonly used GPs and GAMs. Only
penalty is time and R extra hyperparameters.

I Add a lot of tractable, intepretable structure to your model.

I Allows better generalization if the data supports it.

Summary

I Additive GPs generalize commonly used GPs and GAMs. Only
penalty is time and R extra hyperparameters.

I Add a lot of tractable, intepretable structure to your model.

I Allows better generalization if the data supports it.

Summary

I Additive GPs generalize commonly used GPs and GAMs. Only
penalty is time and R extra hyperparameters.

I Add a lot of tractable, intepretable structure to your model.

I Allows better generalization if the data supports it.

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.
How is it that sq-exp GP regression actually works on
high-dimensional functions?

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.
How is it that sq-exp GP regression actually works on
high-dimensional functions?

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.
How is it that sq-exp GP regression actually works on
high-dimensional functions?

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.
How is it that sq-exp GP regression actually works on
high-dimensional functions?

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.

How is it that sq-exp GP regression actually works on
high-dimensional functions?

A puzzle

An experiment Carl did:

I Draw an 8-dimensional function from a GP with a sq-exp
kernel

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

→ −4
−2

0
2

4

−4

−2

0

2

4
−3

−2

−1

0

1

2

2D Sq-exp kernel Draw from a GP with
a 2D Sq-exp kernel

I Draw train and test points from a Gaussian centered at 0

I Predict test points from training points

I How many training points needed to learn?

Learning a high-dimensional function from this model class requires
exponentially many training points.
How is it that sq-exp GP regression actually works on
high-dimensional functions?

The end!

The end!
Ideas and criticism welcome.

T.A. Plate. Accuracy versus interpretability in flexible modeling:
Implementing a tradeoff using Gaussian process models.
Behaviormetrika, 26:29–50, 1999. ISSN 0385-7417.

V.N. Vapnik. Statistical learning theory, volume 2. Wiley New
York, 1998.

G. Wahba. Spline models for observational data. Society for
Industrial Mathematics, 1990. ISBN 0898712440.

	Gaussian Process Regression
	Definition
	Properties

	Additive Gaussian Processes
	Central Modeling Assumption
	Interpretability
	Related Work
	Results

