Additive Gaussian Processes

David Duvenaud, Hannes Nickisch, Carl Rasmussen

Cambridge University Computational and Biological Learning Lab

January 13, 2012

<ロト <四ト <注入 <注下 <注下 <

Gaussian Process Regression Definition Properties

Additive Gaussian Processes Central Modeling Assumption Interpretability Related Work Results

◆□> ◆舂> ◆注> ◆注> 注目

Given \mathbf{X}, \mathbf{y} , predict some new function value $\mathbf{y}*$ at location $\mathbf{x}*$.

Linear Regression - Fast

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Linear Regression - Fast Deep Belief Networks - Semi-supervised Spline Models - Nonparametric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear Regression - Fast Deep Belief Networks - Semi-supervised Spline Models - Nonparametric Gaussian Process Regression

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

Non-parametric

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

- Non-parametric
- Data-Efficient

Linear Regression - Fast

Deep Belief Networks - Semi-supervised

Spline Models - Nonparametric

Gaussian Process Regression

- Non-parametric
- Data-Efficient
- Tractable Joint Posterior

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \epsilon_{\sigma}$ **f** is a **latent function** which we need to do inference about.

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \epsilon_{\sigma}$ **f** is a **latent function** which we need to do inference about. A GP prior distribution over **f** means that, for any finite set of indices **X**,

$$p(\mathbf{f}_{\mathbf{x}}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X}))$$

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \epsilon_{\sigma}$ **f** is a **latent function** which we need to do inference about. A GP prior distribution over **f** means that, for any finite set of indices **X**,

$$p(\mathbf{f}_{\mathbf{x}}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X}))$$

where

$$K_{ij} = k_{ heta}(\mathbf{x}, \mathbf{x}')$$

is the *covariance function* or *kernel*, which specifies the covariance between two function values $f(\mathbf{x}_1), f(\mathbf{x}_2)$ given their locations $\mathbf{x}_1, \mathbf{x}_2$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \epsilon_{\sigma}$ **f** is a **latent function** which we need to do inference about. A GP prior distribution over **f** means that, for any finite set of indices **X**,

$$p(\mathbf{f}_{\mathbf{x}}|\theta) = \mathcal{N}(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X}))$$

where

e.g.

$$K_{ij} = k_{ heta}(\mathbf{x}, \mathbf{x}')$$

is the *covariance function* or *kernel*, which specifies the covariance between two function values $f(\mathbf{x}_1), f(\mathbf{x}_2)$ given their locations $\mathbf{x}_1, \mathbf{x}_2$.

 $k_{\theta}(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2\theta}|\mathbf{x} - \mathbf{x}'|_2^2) \xrightarrow{\mathbf{x} - \mathbf{x}'}_{\text{basis}}$

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100:
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
    for i = 1:N
        for k = 1:N
            sigma(j,k) = covariance(x(j), x(k));
        end
    end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1):
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
   k = \exp(-0.5*(x - y)^2):
end
```


<ロト (四) (三) (三) (三) (三)

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100:
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
    for i = 1:N
        for k = 1:N
            sigma(j,k) = covariance(x(j), x(k));
        end
    end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1):
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
   k = \exp(-0.5*(x - y)^2):
end
```


<ロト (四) (三) (三) (三) (三)

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100:
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
    for i = 1:N
        for k = 1:N
            sigma(j,k) = covariance(x(j), x(k));
        end
    end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1):
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
   k = \exp(-0.5*(x - y)^2):
end
```


<ロト (四) (三) (三) (三) (三)

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100:
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
    for i = 1:N
        for k = 1:N
            sigma(j,k) = covariance(x(j), x(k));
        end
    end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1):
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
   k = \exp(-0.5*(x - y)^2):
end
```


<ロト <四ト <注入 <注下 <注下 <

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100:
    x = linspace(-2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for i = 1:N
        for k = 1:N
            sigma(j,k) = covariance(x(j), x(k));
         end
    end
    % Specify that the prior mean of f is zero.
   mu = zeros(N, 1):
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Periodic covariance function.
function c = covariance(x, y)
   c = exp(-0.5*(sin((x - y)*1.5).^2));
end
```


<ロト <四ト <注入 <注下 <注下 <

After conditioning on some data (\mathbf{X}, \mathbf{y}) ,

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \frac{1}{Z}p(\mathbf{y}|\mathbf{f},\mathbf{X},\theta)p(\mathbf{f}|\theta)$$

After conditioning on some data (\mathbf{X}, \mathbf{y}) ,

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \frac{1}{Z}p(\mathbf{y}|\mathbf{f},\mathbf{X},\theta)p(\mathbf{f}|\theta)$$

= $\mathcal{N}(\mathbf{y}|\mathbf{f},\mathbf{X},\theta)\mathcal{N}(\mathbf{f}|\mu,\mathcal{K}_{\theta}(\mathbf{X},\mathbf{X}))$

After conditioning on some data (\mathbf{X}, \mathbf{y}) ,

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X}, \mathbf{y}, \theta) = \frac{1}{Z} p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)$$

= $\mathcal{N}(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) \mathcal{N}(\mathbf{f}|\mu, \mathcal{K}_{\theta}(\mathbf{X}, \mathbf{X}))$
= $\mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*, \mathbf{X})\mathcal{K}^{-1}\mathbf{y},$
 $\mathbf{\Sigma} = k(\mathbf{x}_*, \mathbf{x}_*) - k(\mathbf{x}_*, \mathbf{X})\mathcal{K}^{-1}k(\mathbf{X}, \mathbf{x}_*))$

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}\mathbf{y},$$
$$\mathbf{\Sigma} = k(\mathbf{x}_*,\mathbf{x}_*) - k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}k(\mathbf{X},\mathbf{x}_*))$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}\mathbf{y},$$
$$\mathbf{\Sigma} = k(\mathbf{x}_*,\mathbf{x}_*) - k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}k(\mathbf{X},\mathbf{x}_*))$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}\mathbf{y},$$
$$\mathbf{\Sigma} = k(\mathbf{x}_*,\mathbf{x}_*) - k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}k(\mathbf{X},\mathbf{x}_*))$$

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}\mathbf{y},$$
$$\mathbf{\Sigma} = k(\mathbf{x}_*,\mathbf{x}_*) - k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}k(\mathbf{X},\mathbf{x}_*))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

$$p(\mathbf{f}(\mathbf{x}_*)|\mathbf{X},\mathbf{y},\theta) = \mathcal{N}(\mathbf{f}(\mathbf{x}_*)|\mu = k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}\mathbf{y},$$
$$\mathbf{\Sigma} = k(\mathbf{x}_*,\mathbf{x}_*) - k(\mathbf{x}_*,\mathbf{X})\mathcal{K}^{-1}k(\mathbf{X},\mathbf{x}_*))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

$$p(\mathbf{f}|\mathbf{X},\mathbf{y},\theta) = \frac{1}{Z}p(\mathbf{y}|\mathbf{f},\mathbf{X},\theta)p(\mathbf{f}|\theta)$$

$$p(\mathbf{f}|\mathbf{X}, \mathbf{y}, \theta) = \frac{1}{Z} p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)$$
$$= \frac{p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)}{\int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}}$$

$$p(\mathbf{f}|\mathbf{X}, \mathbf{y}, \theta) = \frac{1}{Z} p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)$$
$$= \frac{p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)}{\int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Can actually compute model evidence $p(\mathbf{y}|\mathbf{X}, \theta)$, aka Z:

$$p(\mathbf{f}|\mathbf{X}, \mathbf{y}, \theta) = \frac{1}{Z} p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)$$
$$= \frac{p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)}{\int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Can actually compute model evidence $p(\mathbf{y}|\mathbf{X}, \theta)$, aka Z:

$$\log p(\mathbf{y}|\mathbf{X}, \theta) = \log \int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}$$

$$p(\mathbf{f}|\mathbf{X}, \mathbf{y}, \theta) = \frac{1}{Z} p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)$$
$$= \frac{p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta)}{\int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}}$$

Can actually compute model evidence $p(\mathbf{y}|\mathbf{X}, \theta)$, aka Z:

$$\log p(\mathbf{y}|\mathbf{X}, \theta) = \log \int p(\mathbf{y}|\mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f}|\theta) d\mathbf{f}$$

=
$$\underbrace{-\frac{1}{2} \mathbf{y}^{\mathsf{T}} (\mathbf{K}_{\theta} + \sigma_{\epsilon}^{2} \mathbb{I})^{-1} \mathbf{y}}_{\text{Data-fit}} \underbrace{-\frac{1}{2} \log |\mathbf{K}_{\theta} + \sigma_{\epsilon}^{2} \mathbb{I}|}_{\text{Bayesian Occam's Razor}} - \frac{N}{2} \log(2\pi)$$

Depending on kernel function, GP Regression is equivalent to:

Depending on kernel function, GP Regression is equivalent to:

Linear Regression

Depending on kernel function, GP Regression is equivalent to:

- Linear Regression
- Polynomial Regression
- Linear Regression
- Polynomial Regression
- Splines

- Linear Regression
- Polynomial Regression
- Splines
- Kalman Filters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Linear Regression
- Polynomial Regression
- Splines
- Kalman Filters
- Generalized Additive Models

- Linear Regression
- Polynomial Regression
- Splines
- Kalman Filters
- Generalized Additive Models

Can use gradients of model evidence to learn which model best explains the data; no need for cross-validation.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(中) (문) (문) (문) (문)

D-dimensional input

(中) (문) (문) (문) (문)

- D-dimensional input
- Functions over discrete domains

<ロト <四ト <注入 <注下 <注下 <

- D-dimensional input
- Functions over discrete domains
- Functions over strings, trees, trajectories

<ロト <四ト <注入 <注下 <注下 <

- D-dimensional input
- Functions over discrete domains
- Functions over strings, trees, trajectories
- Classification

[Blei et. al, 2011]

• Slow: $O(N^3)$ means that N < 3000.

• Slow: $O(N^3)$ means that N < 3000.

• Recently some good $O(NM^2)$ approximations (FITC).

- Slow: $O(N^3)$ means that N < 3000.
 - Recently some good $O(NM^2)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.

- Slow: $O(N^3)$ means that N < 3000.
 - Recently some good $O(NM^2)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Non-Gaussian noise requires approximate inference.

- Slow: $O(N^3)$ means that N < 3000.
 - Recently some good $O(NM^2)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

► Non-Gaussian noise requires approximate inference.

Best choice if:

- Data is small / expensive to gather.
- You want to do anything besides point prediction.

Gaussian Process Regression Definition Properties

Additive Gaussian Processes Central Modeling Assumption Interpretability Related Work Results

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

Central modeling assumption:

Central modeling assumption:

We hope our high-dimensional function can be written as a sum of orthogonal low-dimensional functions.

<ロト <四ト <注入 <注下 <注下 <

Central modeling assumption:

We hope our high-dimensional function can be written as a sum of orthogonal low-dimensional functions.

it's far easier to learn ten 1-dimensional functions than one 10-dimensional function!

Additivity in GPs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Additivity in GPs

 $f_1(x_1) + f_2(x_2)$ draw from 1st order GP We can extend our prior to include more interaction terms:

We can extend our prior to include more interaction terms:

$$f(x_1, x_2, x_3, x_4) =$$

$$f_1(x_1) + f_2(x_2) + f_3(x_3) + f_4(x_4)$$

$$f_{12}(x_1, x_2) + f_{13}(x_1, x_3) + f_{14}(x_1, x_4) + f_{23}(x_2, x_3) + f_{24}(x_2, x_4) + f_{34}(x_4)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- + $f_{123}(x_1, x_2, x_3) + f_{124}(x_1, x_2, x_4) + f_{134}(x_1, x_3, x_4) + f_{234}(x_2, x_3, x_4)$
- + $f_{1234}(x_1, x_2, x_3, x_4)$

+

We can extend our prior to include more interaction terms:

$$\begin{aligned} f(x_1, x_2, x_3, x_4) &= \\ f_1(x_1) + f_2(x_2) + f_3(x_3) + f_4(x_4) \\ f_{12}(x_1, x_2) + f_{13}(x_1, x_3) + f_{14}(x_1, x_4) + f_{23}(x_2, x_3) + f_{24}(x_2, x_4) + f_{34}(x_4) \\ f_{123}(x_1, x_2, x_3) + f_{124}(x_1, x_2, x_4) + f_{134}(x_1, x_3, x_4) + f_{234}(x_2, x_3, x_4) \\ f_{1234}(x_1, x_2, x_3, x_4) \end{aligned}$$

Corresponding GP model: assign each dimension $i \in \{1 \dots D\}$ a one-dimensional base kernel $k_i(x_i, x'_i)$ Let $z_i = k_i(x_i, x'_i)$

$$k_{add_1}(\mathbf{x}, \mathbf{x}') = z_1 + z_2 + z_3 + z_4$$

$$k_{add_2}(\mathbf{x}, \mathbf{x}') = z_1 z_2 + z_1 z_3 + z_1 z_4 + z_2 z_3 + z_2 z_4 + z_3 z_4$$

$$k_{add_3}(\mathbf{x}, \mathbf{x}') = z_1 z_2 z_3 + z_1 z_2 z_4 + z_1 z_3 z_4 + z_2 z_3 z_4$$

$$k_{add_4}(\mathbf{x}, \mathbf{x}') = z_1 z_2 z_3 z_4$$

In D dimensions:

$$k_{add_1}(\mathbf{x}, \mathbf{x}') = \sigma_1^2 \sum_{i=1}^D k_i(x_i, x_i')$$

$$k_{add_1}(\mathbf{x}, \mathbf{x}') = \sigma_1^2 \sum_{i=1}^{D} k_i(x_i, x_i')$$

$$k_{add_2}(\mathbf{x}, \mathbf{x}') = \sigma_2^2 \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_i(x_i, x_i') k_j(x_j, x_j')$$

$$k_{add_{1}}(\mathbf{x}, \mathbf{x}') = \sigma_{1}^{2} \sum_{i=1}^{D} k_{i}(x_{i}, x_{i}')$$

$$k_{add_{2}}(\mathbf{x}, \mathbf{x}') = \sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}(x_{i}, x_{i}')k_{j}(x_{j}, x_{j}')$$

$$k_{add_{3}}(\mathbf{x}, \mathbf{x}') = \sigma_{3}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_{i}(x_{i}, x_{i}')k_{j}(x_{j}, x_{j}')k_{k}(x_{k}, x_{k}')$$

$$\begin{aligned} k_{add_1}(\mathbf{x}, \mathbf{x}') &= \sigma_1^2 \sum_{i=1}^{D} k_i(x_i, x_i') \\ k_{add_2}(\mathbf{x}, \mathbf{x}') &= \sigma_2^2 \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_i(x_i, x_i') k_j(x_j, x_j') \\ k_{add_3}(\mathbf{x}, \mathbf{x}') &= \sigma_3^2 \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_i(x_i, x_i') k_j(x_j, x_j') k_k(x_k, x_k') \\ k_{add_n}(\mathbf{x}, \mathbf{x}') &= \sigma_n^2 \sum_{1 \le i_1 < i_2 < \dots < i_n \le D} \prod_{d=1}^{N} k_{i_d}(x_{i_d}, x_{i_d}') \end{aligned}$$

$$\begin{aligned} k_{add_{1}}(\mathbf{x}, \mathbf{x}') &= \sigma_{1}^{2} \sum_{i=1}^{D} k_{i}(x_{i}, x_{i}') \\ k_{add_{2}}(\mathbf{x}, \mathbf{x}') &= \sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}(x_{i}, x_{i}')k_{j}(x_{j}, x_{j}') \\ k_{add_{3}}(\mathbf{x}, \mathbf{x}') &= \sigma_{3}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_{i}(x_{i}, x_{i}')k_{j}(x_{j}, x_{j}')k_{k}(x_{k}, x_{k}') \\ k_{add_{n}}(\mathbf{x}, \mathbf{x}') &= \sigma_{n}^{2} \sum_{1 \le i_{1} < i_{2} < \dots < i_{n} \le D} \prod_{d=1}^{N} k_{i_{d}}(x_{i_{d}}, x_{i_{d}}') \\ k_{add_{D}}(\mathbf{x}, \mathbf{x}') &= \sigma_{D}^{2} \prod_{d=1}^{D} k_{d}(x_{d}, x_{d}') \end{aligned}$$

Full additive kernel is a sum of the additive kernels of all orders, weighted by the order variances $\sigma_1 \dots \sigma_D$

The *n*th order additive kernel corresponds to the *n*th *elementary symmetric polynomial*

$$e_1(z_1, z_2, z_3, z_4) = z_1 + z_2 + z_3 + z_4$$

$$e_2(z_1, z_2, z_3, z_4) = z_1 z_2 + z_1 z_3 + z_1 z_4 + z_2 z_3 + z_2 z_4 + z_3 z_4$$

$$e_3(z_1, z_2, z_3, z_4) = z_1 z_2 z_3 + z_1 z_2 z_4 + z_1 z_3 z_4 + z_2 z_3 z_4$$

$$e_4(z_1, z_2, z_3, z_4) = z_1 z_2 z_3 z_4$$

The *n*th order additive kernel corresponds to the *n*th *elementary symmetric polynomial*

$$e_1(z_1, z_2, z_3, z_4) = z_1 + z_2 + z_3 + z_4$$

$$e_2(z_1, z_2, z_3, z_4) = z_1 z_2 + z_1 z_3 + z_1 z_4 + z_2 z_3 + z_2 z_4 + z_3 z_4$$

$$e_3(z_1, z_2, z_3, z_4) = z_1 z_2 z_3 + z_1 z_2 z_4 + z_1 z_3 z_4 + z_2 z_3 z_4$$

$$e_4(z_1, z_2, z_3, z_4) = z_1 z_2 z_3 z_4$$

Newton-Girard formulae give efficient recursive form:

$$e_n(z_1,\ldots,z_D) = \frac{1}{n} \sum_{k=1}^n (-1)^{(k-1)} e_{n-k}(z_1,\ldots,z_D) \sum_{i=1}^D z_i^k \quad (2.1)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Interpretability

Interpretability

(1234)	1234	(1234)			
123 (124) (134) (234)	(123) (124) (134) (234)	123 124 134 234			
12 13 23 14 24 34	12 13 23 14 24 34	12 13 23 14 24 34			
1 2 3 4					
\bigcirc	\odot	٢			
GP-GAM kernel	Squared-exp GP	Additive GP kernel			
	kernel				

Order	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
pima	0.1	0.1	0.1	0.3	1.5	96 .4	1.4	0.0		
liver	0.0	0.2	99 .7	0.1	0.0	0.0				
heart	77.6	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	22.0
concrete	70.6	13.3	13.8	2.3	0.0	0.0	0.0	0.0		
pumadyn	0.0	0.1	0.1	0.1	0.1	0.1	0.1	99 .5		
servo	58 .7	27.4	0.0	13.9						
housing	0.1	0.6	80.6	1.4	1.8	0.8	0.7	0,8	0.6	12,7

Figure: Green points indicate the original data, blue points are data after the mean contribution from the other first-order terms has been subtracted. The black line is the posterior mean of a GP with only one term in its kernel.

<ロ> (四) (四) (三) (三) (三)

- Vapnik [1998] introduces additive kernel, calling it support vector ANOVA decomposition. Recommend choosing only one order, since must choose hypers by cross-validation.
- Plate [1999] constructs additive GP using only first-order and Dth order terms. Trades off interpretability with goodness of fit.
- Wahba [1990] introduces smoothing-splines ANOVA, a weighted sum of low-D splines, each with an individual weight. In practice, only 1-D and 2-D splines are used.

Additive GPs use all orders of interaction, learn base kernels, are probabilistic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hierarchical Kernel Learning (Bach [2009])

- HKL can selects a hull of interaction terms.
- Must use a pre-determined weighting over orders.
- Uses cross-validation to fit all hypers.

Neither class of kernels contains the other.

A GP prior with squared-exp or Matérn kernels say that either the function doesn't change much at all, or that distant points can't tell you much about your current position.

- Nice for consistency
- bad for generalization.

Non-Local Kernels

True Function & data locations

Squared-exp GP posterior mean

Additive GP posterior mean

Additive GP 1st-order functions

1st order interactions $k_1 + k_2 + k_3$

2nd order interactions $k_1k_2 + k_2k_3 + k_1k_3$

3rd order interactions $k_1k_2k_3$ (Squared-exp kernel)

All interactions $k_1 + k_2 + \dots + k_1 k_2 k_3$ (Additive kernel)

크

Table: Regression Mean Squared Error

Method	bach	concrete	pumadyn	servo	housing
Linear	1.031	0.404	0.641	0.523	0.289
GP GAM	1.259	0.149	0.598	0.281	0.161
HKL	0.199	0.147	0.346	0.199	0.151
GP sq-exp	0.045	0.157	0.317	0.126	0.092
GP Additive	0.045	0.089	0.316	0.110	0.102

Table: Regression Negative Log Likelihood

Method	bach	concrete	pumadyn	servo	housing
Linear	2.430	1.403	1.881	1.678	1.052
GP GAM	1.708	0.467	1.195	0.800	0.457
GP sq-exp	-0.131	0.398	0.843	0.429	0.207
GP Additive	-0.131	0.114	0.841	0.309 =)	0.194

► Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and *R* extra hyperparameters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and R extra hyperparameters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

► Add a lot of tractable, intepretable structure to your model.

 Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and R extra hyperparameters.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Add a lot of tractable, intepretable structure to your model.
- Allows better generalization if the data supports it.

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

 \rightarrow

2D Sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

(日) (四) (王) (王) (王)

æ

Draw train and test points from a Gaussian centered at 0

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

(日) (四) (王) (王) (王)

æ

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

《曰》 《聞》 《臣》 《臣》

æ

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points
- How many training points needed to learn?

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points
- How many training points needed to learn?

Learning a high-dimensional function from this model class requires exponentially many training points.

An experiment Carl did:

 Draw an 8-dimensional function from a GP with a sq-exp kernel

Draw from a GP with a 2D Sq-exp kernel

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points
- How many training points needed to learn?

Learning a high-dimensional function from this model class requires exponentially many training points.

How is it that sq-exp GP regression actually works on high-dimensional functions?

The end!

The end! Ideas and criticism welcome.

- T.A. Plate. Accuracy versus interpretability in flexible modeling: Implementing a tradeoff using Gaussian process models. *Behaviormetrika*, 26:29–50, 1999. ISSN 0385-7417.
- V.N. Vapnik. *Statistical learning theory*, volume 2. Wiley New York, 1998.
- G. Wahba. *Spline models for observational data*. Society for Industrial Mathematics, 1990. ISBN 0898712440.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで