Additive Gaussian Processes

David Duvenaud, Hannes Nickisch, Carl Rasmussen

Cambridge University
Computational and Biological Learning Lab

January 13, 2012

Outline

Gaussian Process Regression
 Definition
 Properties

Additive Gaussian Processes
Central Modeling Assumption Interpretability
Related Work
Results

Regression Methods

Given \mathbf{X}, \mathbf{y}, predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$.

Regression Methods

Given \mathbf{X}, \mathbf{y} ，predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$ ． Many methods with nice properties．

Regression Methods

Given \mathbf{X}, \mathbf{y}, predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$. Many methods with nice properties.

Linear Regression - Fast

Regression Methods

Given \mathbf{X}, \mathbf{y}, predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$. Many methods with nice properties.

Linear Regression - Fast
Deep Belief Networks - Semi-supervised

Regression Methods

Given \mathbf{X}, \mathbf{y} ，predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$ ． Many methods with nice properties．

Linear Regression－Fast
Deep Belief Networks－Semi－supervised
Spline Models－Nonparametric

Regression Methods

Given \mathbf{X}, \mathbf{y}, predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$. Many methods with nice properties.

Linear Regression - Fast
Deep Belief Networks - Semi-supervised
Spline Models - Nonparametric
Gaussian Process Regression

Regression Methods

Given \mathbf{X}, \mathbf{y}, predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$. Many methods with nice properties.

Linear Regression - Fast
Deep Belief Networks - Semi-supervised
Spline Models - Nonparametric
Gaussian Process Regression

- Non-parametric

Regression Methods

Given \mathbf{X}, \mathbf{y} ，predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$ ． Many methods with nice properties．

Linear Regression－Fast
Deep Belief Networks－Semi－supervised
Spline Models－Nonparametric
Gaussian Process Regression
－Non－parametric
－Data－Efficient

Regression Methods

Given \mathbf{X}, \mathbf{y} ，predict some new function value $\mathbf{y} *$ at location $\mathbf{x} *$ ． Many methods with nice properties．

Linear Regression－Fast
Deep Belief Networks－Semi－supervised
Spline Models－Nonparametric
Gaussian Process Regression
－Non－parametric
－Data－Efficient
－Tractable Joint Posterior

Definition

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y}=\mathbf{f}(\mathbf{x})+\epsilon_{\sigma}$ \mathbf{f} is a latent function which we need to do inference about.

Definition

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y}=\mathbf{f}(\mathbf{x})+\epsilon_{\sigma}$ \mathbf{f} is a latent function which we need to do inference about． A GP prior distribution over \mathbf{f} means that，for any finite set of indices \mathbf{X} ，

$$
p\left(\mathbf{f}_{\mathbf{x}} \mid \theta\right)=\mathcal{N}\left(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X})\right)
$$

Definition

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y}=\mathbf{f}(\mathbf{x})+\epsilon_{\sigma}$ \mathbf{f} is a latent function which we need to do inference about. A GP prior distribution over \mathbf{f} means that, for any finite set of indices \mathbf{X},

$$
p\left(\mathbf{f}_{\mathbf{x}} \mid \theta\right)=\mathcal{N}\left(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X})\right)
$$

where

$$
K_{i j}=k_{\theta}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

is the covariance function or kernel, which specifies the covariance between two function values $f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right)$ given their locations $\mathrm{x}_{1}, \mathbf{x}_{2}$.

Definition

Assume our data (\mathbf{X}, \mathbf{y}) is generated by $\mathbf{y}=\mathbf{f}(\mathbf{x})+\epsilon_{\sigma}$ \mathbf{f} is a latent function which we need to do inference about. A GP prior distribution over \mathbf{f} means that, for any finite set of indices \mathbf{X},

$$
p\left(\mathbf{f}_{\mathbf{x}} \mid \theta\right)=\mathcal{N}\left(\mu_{\theta}(\mathbf{X}), \mathbf{K}_{\theta}(\mathbf{X}, \mathbf{X})\right)
$$

where

$$
K_{i j}=k_{\theta}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

is the covariance function or kernel, which specifies the covariance between two function values $f\left(\mathbf{x}_{1}\right), f\left(\mathbf{x}_{2}\right)$ given their locations $\mathbf{x}_{1}, \mathbf{x}_{2}$.
e.g.

$$
k_{\theta}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2 \theta}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|_{2}^{2}\right)
$$

Sampling from a GP

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100;
    x = linspace( -2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for j = 1:N
        for k = 1:N
            sigma(j,k) = covariance( x(j), x(k) );
        end
    end
    % Specify that the prior mean of f is zero.
    mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
    k = exp( -0.5*( x - y ) ^2 );
end
```


Sampling from a GP

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100;
    x = linspace( -2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for j = 1:N
        for k = 1:N
            sigma(j,k) = covariance( x(j), x(k) );
        end
    end
    % Specify that the prior mean of f is zero.
    mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
    k = exp( -0.5*( x - y ) ^2 );
end
```


Sampling from a GP

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100;
    x = linspace( -2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for j = 1:N
        for k = 1:N
            sigma(j,k) = covariance( x(j), x(k) );
        end
    end
    % Specify that the prior mean of f is zero.
    mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
    k = exp( -0.5*( x - y ) ^2 );
end
```


Sampling from a GP

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100;
    x = linspace( -2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for j = 1:N
        for k = 1:N
            sigma(j,k) = covariance( x(j), x(k) );
        end
    end
    % Specify that the prior mean of f is zero.
    mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, y)
    k = exp( -0.5*( x - y )^2 );
end
```


Sampling from a GP

```
function simple_gp_sample
    % Choose a set of x locations.
    N = 100;
    x = linspace( -2, 2, N);
    % Specify the covariance between function
    % values, depending on their location.
    for j = 1:N
        for k = 1:N
            sigma(j,k) = covariance( x(j), x(k) );
        end
    end
    % Specify that the prior mean of f is zero.
    mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Periodic covariance function.
function c = covariance(x, y)
    c = exp( -0.5*( 部(( x - y )*1.5).^2 ));
end
```


Conditional Posterior

After conditioning on some data (\mathbf{X}, \mathbf{y}),

$$
p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)
$$

Conditional Posterior

After conditioning on some data (\mathbf{X}, \mathbf{y}),

$$
\begin{aligned}
p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right) & =\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
& =\mathcal{N}(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) \mathcal{N}\left(\mathbf{f} \mid \mu, K_{\theta}(\mathbf{X}, \mathbf{X})\right)
\end{aligned}
$$

Conditional Posterior

After conditioning on some data（ \mathbf{X}, \mathbf{y} ），

$$
\begin{aligned}
p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)= & \frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
= & \mathcal{N}(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) \mathcal{N}\left(\mathbf{f} \mid \mu, K_{\theta}(\mathbf{X}, \mathbf{X})\right) \\
= & \mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y}\right. \\
& \left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Conditional Posterior

$$
\begin{aligned}
& p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y},\right. \\
&\left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Conditional Posterior

$$
\begin{aligned}
& p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y},\right. \\
&\left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Conditional Posterior

$$
\begin{aligned}
& p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y},\right. \\
&\left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Conditional Posterior

$$
\begin{aligned}
& p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y},\right. \\
&\left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Conditional Posterior

$$
\begin{aligned}
& p\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mathbf{X}, \mathbf{y}, \theta\right)=\mathcal{N}\left(\mathbf{f}\left(\mathbf{x}_{*}\right) \mid \mu=k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} \mathbf{y},\right. \\
&\left.\boldsymbol{\Sigma}=k\left(\mathbf{x}_{*}, \mathbf{x}_{*}\right)-k\left(\mathbf{x}_{*}, \mathbf{X}\right) K^{-1} k\left(\mathbf{X}, \mathbf{x}_{*}\right)\right)
\end{aligned}
$$

Normalization Constant

Problem with Bayesian models：

$$
p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}, \theta)=\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)
$$

Normalization Constant

Problem with Bayesian models:

$$
\begin{aligned}
p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}, \theta) & =\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
& =\frac{p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)}{\int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f}}
\end{aligned}
$$

Normalization Constant

Problem with Bayesian models:

$$
\begin{aligned}
p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}, \theta) & =\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
& =\frac{p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)}{\int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f}}
\end{aligned}
$$

Can actually compute model evidence $p(\mathbf{y} \mid \mathbf{X}, \theta)$, aka Z :

Normalization Constant

Problem with Bayesian models:

$$
\begin{aligned}
p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}, \theta) & =\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
& =\frac{p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)}{\int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f}}
\end{aligned}
$$

Can actually compute model evidence $p(\mathbf{y} \mid \mathbf{X}, \theta)$, aka Z :
$\log p(\mathbf{y} \mid \mathbf{X}, \theta)=\log \int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f}$

Normalization Constant

Problem with Bayesian models:

$$
\begin{aligned}
p(\mathbf{f} \mid \mathbf{X}, \mathbf{y}, \theta) & =\frac{1}{Z} p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) \\
& =\frac{p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta)}{\int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f}}
\end{aligned}
$$

Can actually compute model evidence $p(\mathbf{y} \mid \mathbf{X}, \theta)$, aka Z :

$$
\begin{aligned}
\log p(\mathbf{y} \mid \mathbf{X}, \theta) & =\log \int p(\mathbf{y} \mid \mathbf{f}, \mathbf{X}, \theta) p(\mathbf{f} \mid \theta) d \mathbf{f} \\
& =\underbrace{-\frac{1}{2} \mathbf{y}^{T}\left(\mathbf{K}_{\theta}+\sigma_{\epsilon}^{2} \mathbb{I}\right)^{-1} \mathbf{y}}_{\text {Data-fit }} \underbrace{-\frac{1}{2} \log \left|\mathbf{K}_{\theta}+\sigma_{\epsilon}^{2} \mathbb{I}\right|}_{\text {Bayesian Occam's Razor }}-\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

- Linear Regression

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

- Linear Regression
- Polynomial Regression

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

- Linear Regression
- Polynomial Regression
- Splines

Choice of Kernel Function

Depending on kernel function, GP Regression is equivalent to:

- Linear Regression
- Polynomial Regression
- Splines
- Kalman Filters

Choice of Kernel Function

Depending on kernel function，GP Regression is equivalent to：
－Linear Regression
－Polynomial Regression
－Splines
－Kalman Filters
－Generalized Additive Models

Choice of Kernel Function

Depending on kernel function，GP Regression is equivalent to：
－Linear Regression
－Polynomial Regression
－Splines
－Kalman Filters
－Generalized Additive Models
Can use gradients of model evidence to learn which model best explains the data；no need for cross－validation．

Not just for 1-D continuous functions

- D-dimensional input

Not just for 1-D continuous functions

- D-dimensional input
- Functions over discrete domains

Not just for 1-D continuous functions

- D-dimensional input

- Functions over discrete domains
- Functions over strings, trees, trajectories

Not just for 1-D continuous functions

- D-dimensional input

- Functions over discrete domains
- Functions over strings, trees, trajectories
- Classification

Performance

CCSDataset

[Blei et. al, 2011]

Limitations

- Slow: $O\left(N^{3}\right)$ means that $N<3000$.

Limitations

- Slow: $O\left(N^{3}\right)$ means that $N<3000$.
- Recently some good $O\left(N M^{2}\right)$ approximations (FITC).

Limitations

- Slow: $O\left(N^{3}\right)$ means that $N<3000$.
- Recently some good $O\left(N M^{2}\right)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.

Limitations

- Slow: $O\left(N^{3}\right)$ means that $N<3000$.
- Recently some good $O\left(N M^{2}\right)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.
- Non-Gaussian noise requires approximate inference.

Limitations

- Slow: $O\left(N^{3}\right)$ means that $N<3000$.
- Recently some good $O\left(N M^{2}\right)$ approximations (FITC).
- Most commonly used kernels have fairly limited generalization abilities.
- Non-Gaussian noise requires approximate inference.

Best choice if:

- Data is small / expensive to gather.
- You want to do anything besides point prediction.

Outline

Gaussian Process Regression
 Definition
 Properties

Additive Gaussian Processes
Central Modeling Assumption Interpretability
Related Work
Results

Central Dogma

Central modeling assumption:

Central Dogma

Central modeling assumption：

We hope our high－dimensional function can be written as a sum of orthogonal low－dimensional functions．

Central Dogma

Central modeling assumption：

We hope our high－dimensional function can be written as a sum of orthogonal low－dimensional functions．
it＇s far easier to learn ten 1－dimensional functions than one 10－dimensional function！

Additivity in GPs

Easy to express additive property in a GP：

$k_{2}\left(x_{2}, x_{2}^{\prime}\right)$
1D kernel

$$
k_{1}\left(x_{1}, x_{1}^{\prime}\right)+k_{2}\left(x_{2}, x_{2}^{\prime}\right)
$$

$=$

Additivity in GPs

Easy to express additive property in a GP：

$=$

$$
k_{1}\left(x_{1}, x_{1}^{\prime}\right)+k_{2}\left(x_{2}, x_{2}^{\prime}\right)
$$

1D kernel
$+$

$k_{1}\left(x_{1}, x_{2}^{\prime}\right)$

$k_{2}\left(x_{2}, x_{2}^{\prime}\right)$
1D kernel

$$
\begin{gathered}
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { draw from } \\
\text { 1st order GP }
\end{gathered}
$$

We can extend our prior to include more interaction terms:

We can extend our prior to include more interaction terms:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
& f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{4}\left(x_{4}\right) \\
+ & f_{12}\left(x_{1}, x_{2}\right)+f_{13}\left(x_{1}, x_{3}\right)+f_{14}\left(x_{1}, x_{4}\right)+f_{23}\left(x_{2}, x_{3}\right)+f_{24}\left(x_{2}, x_{4}\right)+f_{34}\left(x_{1}\right. \\
+ & f_{123}\left(x_{1}, x_{2}, x_{3}\right)+f_{124}\left(x_{1}, x_{2}, x_{4}\right)+f_{134}\left(x_{1}, x_{3}, x_{4}\right)+f_{234}\left(x_{2}, x_{3}, x_{4}\right) \\
+ & f_{1234}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

We can extend our prior to include more interaction terms:

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
& f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{4}\left(x_{4}\right) \\
+ & f_{12}\left(x_{1}, x_{2}\right)+f_{13}\left(x_{1}, x_{3}\right)+f_{14}\left(x_{1}, x_{4}\right)+f_{23}\left(x_{2}, x_{3}\right)+f_{24}\left(x_{2}, x_{4}\right)+f_{34}\left(x_{1}\right. \\
+ & f_{123}\left(x_{1}, x_{2}, x_{3}\right)+f_{124}\left(x_{1}, x_{2}, x_{4}\right)+f_{134}\left(x_{1}, x_{3}, x_{4}\right)+f_{234}\left(x_{2}, x_{3}, x_{4}\right) \\
+ & f_{1234}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Corresponding GP model: assign each dimension $i \in\{1 \ldots D\}$ a one-dimensional base kernel $k_{i}\left(x_{i}, x_{i}^{\prime}\right)$ Let $z_{i}=k_{i}\left(x_{i}, x_{i}^{\prime}\right)$

$$
\begin{aligned}
& k_{a_{d d_{1}}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=z_{1}+z_{2}+z_{3}+z_{4} \\
& k_{a_{d}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{1} z_{4}+z_{2} z_{3}+z_{2} z_{4}+z_{3} z_{4} \\
& k_{a_{d d}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=z_{1} z_{2} z_{3}+z_{1} z_{2} z_{4}+z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4} \\
& k_{a_{d d_{4}}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

In D dimensions:

$$
k_{a d d_{1}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{1}^{2} \sum_{i=1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right)
$$

In D dimensions:

$$
\begin{aligned}
& k_{a d d_{1}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{1}^{2} \sum_{i=1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) \\
& k_{a d d_{2}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right)
\end{aligned}
$$

In D dimensions:

$$
\begin{aligned}
& k_{a d d_{1}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{1}^{2} \sum_{i=1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) \\
& k_{a d d_{2}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) \\
& k_{a d d_{3}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{3}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) k_{k}\left(x_{k}, x_{k}^{\prime}\right)
\end{aligned}
$$

In D dimensions:

$$
\begin{aligned}
& k_{a d d_{1}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{1}^{2} \sum_{i=1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) \\
& k_{a d d_{2}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) \\
& k_{a d d_{3}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{3}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) k_{k}\left(x_{k}, x_{k}^{\prime}\right) \\
& k_{a d d_{n}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{n}^{2} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq D} \prod_{d=1}^{N} k_{i_{d}}\left(x_{i_{d}}, x_{i_{d}}^{\prime}\right)
\end{aligned}
$$

In D dimensions:

$$
\begin{aligned}
& k_{a d d_{1}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{1}^{2} \sum_{i=1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) \\
& k_{a d d_{2}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{2}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) \\
& k_{a d d_{3}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{3}^{2} \sum_{i=1}^{D} \sum_{j=i+1}^{D} \sum_{k=j+1}^{D} k_{i}\left(x_{i}, x_{i}^{\prime}\right) k_{j}\left(x_{j}, x_{j}^{\prime}\right) k_{k}\left(x_{k}, x_{k}^{\prime}\right) \\
& k_{a d d_{n}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{n}^{2} \sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq D} \prod_{d=1}^{N} k_{i_{d}}\left(x_{i_{d}}, x_{i_{d}}^{\prime}\right) \\
& k_{a d d_{D}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma_{D}^{2} \prod_{d=1}^{D} k_{d}\left(x_{d}, x_{d}^{\prime}\right)
\end{aligned}
$$

Full additive kernel is a sum of the additive kernels of all orders, weighted by the order variances $\sigma_{1} \ldots \sigma_{D}$

Efficient Evaluation

The nth order additive kernel corresponds to the nth elementary symmetric polynomial

$$
\begin{aligned}
& e_{1}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}+z_{2}+z_{3}+z_{4} \\
& e_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{1} z_{4}+z_{2} z_{3}+z_{2} z_{4}+z_{3} z_{4} \\
& e_{3}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2} z_{3}+z_{1} z_{2} z_{4}+z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4} \\
& e_{4}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

Efficient Evaluation

The nth order additive kernel corresponds to the nth elementary symmetric polynomial

$$
\begin{aligned}
& e_{1}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1}+z_{2}+z_{3}+z_{4} \\
& e_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2}+z_{1} z_{3}+z_{1} z_{4}+z_{2} z_{3}+z_{2} z_{4}+z_{3} z_{4} \\
& e_{3}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2} z_{3}+z_{1} z_{2} z_{4}+z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4} \\
& e_{4}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

Newton-Girard formulae give efficient recursive form:

$$
\begin{equation*}
e_{n}\left(z_{1}, \ldots, z_{D}\right)=\frac{1}{n} \sum_{k=1}^{n}(-1)^{(k-1)} e_{n-k}\left(z_{1}, \ldots, z_{D}\right) \sum_{i=1}^{D} z_{i}^{k} \tag{2.1}
\end{equation*}
$$

Interpretability

Interpretability

Order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

pima	0.1	0.1	0.1	0.3	1.5	96.4	1.4	0.0

liver	0.0	0.2	99.7	0.1	0.0	0.0

$\begin{array}{lllllllllll}\text { heart } & 77.6 & 0.0 & 0.0 & 0.0 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 22.0\end{array}$

concrete	70.6	13.3	13.8	2.3	0.0	0.0	0.0	0.0

pumadyn
$\begin{array}{lllll}\text { servo } & 58.7 & 27.4 & 0.0 & 13.9\end{array}$

housing	0.1	0.6	$\mathbf{8 0 . 6}$	1.4	1.8	0.8	0.7	0.8	$=0.6$	12.7

Interpretability

Figure: Green points indicate the original data, blue points are data after the mean contribution from the other first-order terms has been subtracted. The black line is the posterior mean of a GP with only one term in its kernel.

Related Work

- Vapnik [1998] introduces additive kernel, calling it support vector ANOVA decomposition. Recommend choosing only one order, since must choose hypers by cross-validation.
- Plate [1999] constructs additive GP using only first-order and Dth order terms. Trades off interpretability with goodness of fit.
- Wahba [1990] introduces smoothing-splines ANOVA, a weighted sum of low-D splines, each with an individual weight. In practice, only 1-D and 2-D splines are used.

Additive GPs use all orders of interaction, learn base kernels, are probabilistic.

Hierarchical Kernel Learning (Bach [2009])

- HKL can selects a hull of interaction terms.
- Must use a pre-determined weighting over orders.
- Uses cross-validation to fit all hypers.

Neither class of kernels contains the other.

Local Kernels

A GP prior with squared－exp or Matérn kernels say that either the function doesn＇t change much at all，or that distant points can＇t tell you much about your current position．
－Nice for consistency
－bad for generalization．

Squared－Exp kernel

Additive kernel

Non-Local Kernels

True Function
\& data locations

Squared-exp GP posterior mean

Additive GP
1st-order functions

1st order interactions $k_{1}+k_{2}+k_{3}$

3rd order interactions $k_{1} k_{2} k_{3}$
(Squared-exp kernel)

2nd order interactions
$k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}$

All interactions
$k_{1}+k_{2}+\cdots+k_{1} k_{2} k_{3}$
(Additive kernel)

Results

Table: Regression Mean Squared Error

Method	bach	concrete	pumadyn	servo	housing
Linear	1.031	0.404	0.641	0.523	0.289
GP GAM	1.259	0.149	0.598	0.281	0.161
HKL	$\mathbf{0 . 1 9 9}$	0.147	0.346	0.199	0.151
GP sq-exp	$\mathbf{0 . 0 4 5}$	0.157	$\mathbf{0 . 3 1 7}$	$\mathbf{0 . 1 2 6}$	$\mathbf{0 . 0 9 2}$
GP Additive	$\mathbf{0 . 0 4 5}$	$\mathbf{0 . 0 8 9}$	$\mathbf{0 . 3 1 6}$	$\mathbf{0 . 1 1 0}$	$\mathbf{0 . 1 0 2}$

Table: Regression Negative Log Likelihood

Method	bach	concrete	pumadyn	servo	housing
Linear	2.430	1.403	1.881	1.678	1.052
GP GAM	1.708	0.467	1.195	0.800	0.457
GP sq-exp	$\mathbf{- 0 . 1 3 1}$	0.398	$\mathbf{0 . 8 4 3}$	0.429	$\mathbf{0 . 2 0 7}$
GP Additive	$\mathbf{- 0 . 1 3 1}$	$\mathbf{0 . 1 1 4}$	$\mathbf{0 . 8 4 1}$	$\mathbf{0 . 3 0 9}$	$\mathbf{0 . 1 9 4}$

Summary

- Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and R extra hyperparameters.

Summary

- Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and R extra hyperparameters.
- Add a lot of tractable, intepretable structure to your model.

Summary

- Additive GPs generalize commonly used GPs and GAMs. Only penalty is time and R extra hyperparameters.
- Add a lot of tractable, intepretable structure to your model.
- Allows better generalization if the data supports it.

A puzzle

An experiment Carl did：
－Draw an 8－dimensional function from a GP with a sq－exp kernel

2D Sq－exp kernel

Draw from a GP with a 2D Sq－exp kernel

A puzzle

An experiment Carl did：
－Draw an 8－dimensional function from a GP with a sq－exp kernel

2D Sq－exp kernel

Draw from a GP with a 2D Sq－exp kernel
－Draw train and test points from a Gaussian centered at 0

A puzzle

An experiment Carl did：
－Draw an 8－dimensional function from a GP with a sq－exp kernel

2D Sq－exp kernel

Draw from a GP with
a 2D Sq－exp kernel
－Draw train and test points from a Gaussian centered at 0
－Predict test points from training points

A puzzle

An experiment Carl did:

- Draw an 8-dimensional function from a GP with a sq-exp kernel

2D Sq-exp kernel

Draw from a GP with
a 2D Sq-exp kernel

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points
- How many training points needed to learn?

A puzzle

An experiment Carl did：
－Draw an 8－dimensional function from a GP with a sq－exp kernel

2D Sq－exp kernel

Draw from a GP with
a 2D Sq－exp kernel
－Draw train and test points from a Gaussian centered at 0
－Predict test points from training points
－How many training points needed to learn？
Learning a high－dimensional function from this model class requires exponentially many training points．

A puzzle

An experiment Carl did:

- Draw an 8-dimensional function from a GP with a sq-exp kernel

2D Sq-exp kernel

Draw from a GP with
a 2D Sq-exp kernel

- Draw train and test points from a Gaussian centered at 0
- Predict test points from training points
- How many training points needed to learn?

Learning a high-dimensional function from this model class requires exponentially many training points.
How is it that sq-exp GP regression actually works on high-dimensional functions?

The end!

The end!
Ideas and criticism welcome.
T.A. Plate. Accuracy versus interpretability in flexible modeling: Implementing a tradeoff using Gaussian process models. Behaviormetrika, 26:29-50, 1999. ISSN 0385-7417.
V.N. Vapnik. Statistical learning theory, volume 2. Wiley New York, 1998.
G. Wahba. Spline models for observational data. Society for Industrial Mathematics, 1990. ISBN 0898712440.

