Causal Learning Space Carving Deep CRFs

Cambridge Interview Technical Talk

David Duvenaud

February 2, 2010

Table of contents

- Causal Learning
 - Background
 - Results
 - Conclusion
- 2 Space Carving
 - Background
 - Results
- 3 Deep CRFs
 - Motivation
 - Recursive Segmentation
 - Learning

Background

- Causal learning methods are often evaluated in terms of their ability to discover a true underlying directed acyclic graph (DAG) structure.
- However, in general the true structure is unknown and may not be a DAG structure.
- We therefore consider evaluating causal learning methods in terms of predicting the effects of interventions on unseen test data.

Background

- We define causal learning as the task of predicting P(X|A), where A are the actions, and X are the observed variables.
- We show that there exist a variety of approaches to modeling P(X|A), generalizing DAG-based methods.
- Our experiments on synthetic and biological data indicate that some non-DAG models perform as well or better than DAG-based methods.

Example of a Causal System

Figure: Biologist's view of the causal links between protein expression levels and gene expression.

Interventional Data

Figure: Interventional Data. Boxes marked 'I' and 'E' denote experiments where an intervention was made on the value of those variables.

Methods of Pooling Data Across Actions

- **1 Ignore Actions**: We simply ignore A and build a generative model of P(X).
- ② Independent Model for Each Action: We fit a separate model P(X|A) for each unique joint configuration of A. Cannot make a prediction for an unseen configuration of A.
- **3** Conditional: We build a model of P(X|A), where we use some parametric model relating the A's and X's. This will allow us to borrow strength across action regimes, and to handle novel actions.
- Assume Perfect Interventions: We assume perfect interventions, and find the MAP DAG representing the system. Inference is done by Pearls graph surgery method.

Off-the-Shelf Models

Generic methods of modeling P(X|A):

- MM: Mixture of Multinomial Logistic Regressors.
- **UGM**: A pairwise CRF, conditional on A.
- DAG: Bayes Model Averaging over all possible DAGs over variables X and A.

Predictive Accuracy on Completely Unseen Actions

Figure: Modeling P(X|A) under joint configurations of A that were never seen in the training data. Lower is better.

Conclusion

- Causal learning can be viewed as the supervised learning problem of modeling P(X|A).
- In realistic situations, standard density estimators are competitive with Causal DAGs.
- This work is to appear in JMLR Special Issue on Causality, alongside Phil Dawid's Beware of the DAG!

Table of contents

- Causal Learning
 - Background
 - Results
 - Conclusion
- 2 Space Carving
 - Background
 - Results
- 3 Deep CRFs
 - Motivation
 - Recursive Segmentation
 - Learning

Space Carving

- We introduce a new technique called space carving for initialization and incremental construction of deep architectures.
- Joint work with Benjamin Marlin and Kevin Murphy.

Models

We consider 3 different models:

- Multi-layer Perceptrons
- Auto-encoder Neural Networks
- Deep Belief Networks

All share a sigmoidal activation function for hidden units.

Hidden units as Hyperplanes

- We set the initial weights for a hidden unit by solving a linear classification problem where the data cases in a specified group form one class, and other data cases form the other class.
- The zero-crossing of this sigmoid defines a hyperplane splitting the groups, 'carving' off a region of input space.

Figure: The black line shows the hyperplane separating the highlighted data points.

Uses for Space Carving

- As a method for initializing the weights in single-hidden-layer MLP's, auto-encoders, and RBMs.
- 2 To initialize the training of each layer in a greedy layer-wise approach to learning deep models. (Pre-pretraining)
- To incrementally construct deep models by iteratively initializing new hidden units at arbitrary depths to reduce loss.

Caltech Silhouettes Dataset

Data points to be separated by a hyperplane.

Weights representing separating hyperplanes. These weights are used to initialize the first layer of the network.

Results as a Pre-preinitialization step on Silhouettes

Figure: Performance on test set during training.

Results as a Pre-preinitialization step on MNIST

Figure: Performance on test set during training.

Results as a Pre-preinitialization Step

Test Error (percent)

Algorithm	Silhouettes	MNIST(4000)
Random init Unsup. carving Supervised carving	44.6 43.0 42.9	4.41 3.77 3.81

Growing and Shrinking a Net

- Space carving can be used to propose new nodes at any layer in an MLP.
- If we use Group L1 to prune nodes, we can grow/shrink the net as we learn.

Growing and Shrinking a Net

Figure: Initial deep, wide net.

Growing and Shrinking a Net

Figure: Net after adding hidden nodes and pruning.

Future Directions

- Effect seems stronger for smaller data sizes.
- Related work: Why does Unsupervised Pre-training Help Deep Learning?, Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, Samy Bengio, Journal of Machine Learning Research (2010).
- This is just one potential heuristic for pre-initializing weights into good basins of attraction.

Table of contents

- Causal Learning
 - Background
 - Results
 - Conclusion
- 2 Space Carving
 - Background
 - Results
- 3 Deep CRFs
 - Motivation
 - Recursive Segmentation
 - Learning

Motivation

- Most image data is weakly labeled, having only bounding boxes or caption data available.
- Feature detectors can be run at multiple scales, and evidence from one scale can help classification at other scales.

Figure: Standard vision models, using pixel level and image-level features to predict the label.

Figure: A hierarchical model with image features providing evidence at every scale.

Figure: A hierarchical factor graph. Yc is the label for the whole image. Each factor is a noisy-OR node, in which inference is linear in the number of children. [Pearl 88]

Figure: Recursive noisy-or graph. Each class has its own tree. Trees are connected at the bottom by soft mutual exclusion links.

Figure: Recursive segmentation on an image.

Learning

We have a logistic regression at each node:

$$\phi_f\left(y_c^{(r)}, x^{(r)}\right) = y_c^{(r)}(x^{(r)})^T W_c^I \tag{1}$$

Which can be learned using EM and with Loopy BP. Gradients are just the difference in marginals between BP with the observed nodes clamped, and unclamped BP:

$$\frac{\partial E[\mathcal{L}]}{\partial W_{c}^{I}} = \sum_{n=1}^{N} \sum_{(i) \in N_{I}} \left(E_{q(y_{cn}^{(i)} | \mathbf{y}_{n}^{obs}, \mathbf{x}_{n}, \mathbf{r}_{n})} [y_{cn}^{(i)} \mathbf{x}_{n}^{(i)}] - E_{p(y_{cn}^{(i)} | \mathbf{x}_{n}, \mathbf{r}_{n})} [y_{c}^{(i)} \mathbf{x}_{n}^{(i)}] \right)
= \sum_{n=1}^{N} \sum_{(i) \in N_{I}} \left(q(y_{cn}^{(i)} | \mathbf{y}_{n}^{obs}, \mathbf{x}_{n}, \mathbf{r}_{n}) - p(y_{c}^{(i)} | \mathbf{x}_{n}, \mathbf{r}_{n}) \right) \mathbf{x}_{n}^{(i)}$$
(2)

Figure: One possible direction: Including deep features, with hidden nodes passing up information from lower layers.

Conclusion

- We use a per-image hierarchical recursive segmentation structure.
- The logical structure of this segmentation allows us to combine evidence at multiple scales, to use weak labels, such as bounding boxes or captions.
- Inference is done using Loopy BP, and learning is done using EM.
- Joint work with Ben Marlin, Kevin Murphy, and probably Tom Dean at Google this summer.