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Abstract Pooling Data Across Actions Results on Protein-signalling Dataset
Causal learning methods are often evaluated in terms of their ability to discover a true underlying DAG struc- W i od 4 ditional model of the data X g be action A:
ture. However, in general the true structure is unknown and may not be a DAG. We therefore consider evalu- R R s SO DNTITIO0 EToT e data A given the action A: .. . .
ating causal learning methods in terms of predicting the effects of interventions on unseen test data. Given D | Acti Predictive Accu racy On PreVK)USIy Observed Actions
this task, we show that there exist a variety of approaches to modeling causality, generalizing DAG-based gnore ACtions
methods. Our experiments on synthetic and biological data indicate that some non-DAG models perform as We simply ignore A and build a generative model of P(X). This has the advantage that we gain statistical o .
) - . ; . _ ol T | - Eventhough the biological interventions were de-
well or better than DAG-based methods at causal prediction tasks. ?trer}lg;thtpy pooling data across the actions, but has the disadvantage that we make the same prediction 3 :: - I%I - | signed to only affect one target, the perfect interven-
of a. actions. . S 64l = _ tion model performs relatively poorly. Learning the
@ B k d II) Fit |ndependent Models for Each Action 3 62| lonore independent  Conditional  Perfect | targets of actions ( Conditional DAG ) performs much
< | Dbetter.
ac g roun We fit a separate model P(X|A) for each unique joint configuration of A. This is advantageous over the ignore 2 5: =
Goal: model in that it mgkes diffe.rent predictions for different actipns, but the d.isadvantage of this model is that it 2 5:6: | . All Independent and Conditional methods perform
Oal. does not leverage information gained between different action combinations, and can not make a predic- S| - | similarily.
To predict the results of unobserved actions on a system. Formally, to predict P(X|A) where X are the ob- it ot e AR SO ot Of " saf = 4 g L | o .
served variables, and A is a previously unseen action. II1) Fit a Model Conditional on Actions st = { ° Allmodels ignoring the actions performed poorly.
Why C | DAG | We build a model of P(X|A), where we use some parametric model relating the A’s and X’s. This will allow us = 4 £ 8 3 2 § § ¢
y Lausa S arc popuiar Eampering] [ fire ] to borrow strength across action regimes, and to handle novel actions.
for this task: V) A Derfoact Int . Predictive Accuracy on Rarely Seen Actions
A causal DAG has an arrow from A to B iff A causes B. \ /\ >>UMEe FErTec : NEETVENTIONS — IR Conditonal UGMs need less d | i
We assume perfect interventions, and find the MAP DAG to represent the causal structure of the system. Eit DAG Ignore » Londitona S need less data to [earn a new action
Pearl [1] showed that under some curcumstances, causal . . . . _ , - — than independent UGMs
DAGs are the appropriate tool to use to model interven- arm ke Since we know the targets of the interventions, we can do inference for new actions by Pearl’s graph- 8. —— P
tions. surgery method. Y e Thus, statistical strength can be borrowed across ac-
'gv' INE= tions, even without knowing the targets of interven-
If interventions are ‘perfect’ ( affect only one node ) and a ?E'a tions.
affect only observable nodes, then modeling interventions ) 4 s |
can be done correctly by performing “graph surgery”: Cut- eaving A I te n ate M Od e I S 5 e
ting the arcs leading into the intervened node, and condi- s
tioning on the intervened value as in a normal DAG. z | — |
~——
USing causal DAGs in this way, one can prediCt the effects I) M iXtu re MOdEIS = 4ll\(l)umber6I(())ftrain?Ir(1)g exa:é)gles O]le;?]seené(c)ﬂon o0 T80 200
of novel interventions on a system. In the Ignore and Independent scenarios, we fit a Mixture of Independent Multinomials
. ( A.K.A. Mixture of Bernoullis). . . .
Caveats: Predictive Accuracy on Completely Unseen Actions
- In general, observational data will only recover graph structure up to Markov equivalence. In the conditional case, we fit a mixture of independent logistic regressors.
« Graph surgery operation is only applicable if interventions perfectly affect only visible nodes. ( Similar to a Mixture of Experts ) 12 ' * All methods perform similarily, even those that
* The true independence structure may have indendencies not representable by a DAG. [4] . . 1.15 GGG Conditional  Perfec ignore actions.
II) Undirected Graphical Models g
If any of these caveats hold, we may be better off using another model. * The perfect DAG model, designed specifically to pre-
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When modeling P(X), we construct a Markov Random Field, with factors for each X node and each X - Xj

edge. dict the effects of new actions, performs slightly

worse than some conditional models.
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Biological Dataset

* Biological dataset of Sachs et al. [3] measuring protein concentration levels in a T-cell signal-
ling pathway.

* 11 attributes discritized to 3 levels, 5400 records, 6 experimental conditions (including pure
observation and 5 different interventions).

For modeling P(X|A), we construct a Conditional Random Field, in which we additionally create factors for
each X - Xj edge, and for each (X, X, A ) triple.

Relative Negative Log-Likelihood

Similar results hold for synthetic datasets sampled
from Structural Equation Models.
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III) Uncertain Intervention DAG

Eaton et al. [2] showed that if interventions are not perfect, we can learn the targets and effects of each
action, by learning an expanded graph. The graph is expanded by adding a new node for each action.
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Conclusions

* Interventions were designed to target single proteins.

Shown here are results of the perfect intervention and uncertain intervention DAG models on the protein

signalling dataset:
» Causal learning can be viewed as the task of modeling the effects of unseen actions, as opposed to finding
the ‘true causal structure’of a system.
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