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Abstract

Biological Dataset

Results on Protein-signalling Dataset
Causal learning methods are often evaluated in terms of their ability to discover a true underlying DAG struc-
ture.  However, in general the true structure is unknown and may not be a DAG.  We therefore consider evalu-
ating causal learning methods in terms of predicting the effects of interventions on unseen test data.  Given 
this task, we show that there exist a variety of approaches to modeling causality, generalizing DAG-based 
methods.  Our experiments on synthetic and biological data indicate that some non-DAG models perform as 
well or better than DAG-based methods at causal prediction tasks.

Background

Pooling Data Across Actions
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Biological dataset of Sachs et al. [3] measuring protein concentration levels in a T-cell signal-
ling pathway.
11 attributes discritized to 3 levels, 5400 records, 6 experimental conditions (including pure 
observation and 5 different interventions).
Interventions were designed to target single proteins.
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I)  Ignore Actions

II)  Fit Independent Models for Each Action

III)  Fit a Model Conditional on Actions

We fit a separate model P(X|A) for each unique joint configuration of A.  This is advantageous over the ignore 
model in that it makes different predictions for different actions, but the disadvantage of this model is that it 
does not leverage information gained between different action combinations, and can not make a predic-
tion for an unseen configuration of A.

We build a model of P(X|A), where we use some parametric model relating the A’s and X’s.  This will allow us 
to borrow strength across action regimes, and to handle novel actions.

We simply ignore A and build a generative model of P(X). This has the advantage that we gain statistical 
strength by pooling data across the actions, but has the disadvantage that we make the same prediction 
for all actions.

Predictive Accuracy on Completely Unseen Actions

Predictive Accuracy on Rarely Seen Actions

Predictive Accuracy On Previously Observed Actions

[4] A. P. Dawid. Beware of the DAG! Journal of Machine Learning Research, 2009.  To appear.

We examined 4 ways to generate a conditional model of the data X given the action A:

IV)  Assume Perfect Interventions
We assume perfect interventions, and find the MAP DAG to represent the causal structure of the system.  
Since we know the targets of the interventions, we can do inference for new actions by Pearl’s graph-
surgery method.

Goal:

Why Causal DAGs are popular 
for this task:

To predict the results of unobserved actions on a system.  Formally, to predict P(X|A) where X are the ob-
served variables, and A is a previously unseen action.

A causal DAG has an arrow from A to B iff A causes B. 
Pearl [1] showed that under some curcumstances, causal 
DAGs are the appropriate tool to use to model interven-
tions.  

If interventions are ‘perfect’ ( affect only one node ) and 
affect only observable nodes, then modeling interventions 
can be done correctly by performing “graph surgery”: Cut-
ting the arcs leading into the intervened node, and condi-
tioning on the intervened value as in a normal DAG.

Using causal DAGs in this way, one can predict the effects 
of novel interventions on a system.

Even though the biological interventions were de-
signed to only affect one target, the perfect interven-
tion model performs relatively poorly.  Learning the 
targets of actions ( Conditional DAG ) performs much 
better.

All Independent and Conditional methods perform 
similarily.  

All models ignoring the actions performed poorly.

Conditonal UGMs need less data to learn a new action 
than independent UGMs

Thus, statistical strength can be borrowed across ac-
tions, even without knowing the targets of interven-
tions.

All methods perform similarily, even those that 
ignore actions.

The perfect DAG model, designed specifically to pre-
dict the effects of new actions,  performs slightly 
worse than some conditional models.

Similar results hold for synthetic datasets sampled 
from Structural Equation Models.

Alternate Models

I)  Mixture Models

II)  Undirected Graphical Models

III)  Uncertain Intervention DAG

When modeling P(X), we construct a Markov Random Field, with factors for each Xi node and each Xi - Xj 
edge.

For modeling P(X|A), we construct a Conditional Random Field, in which we additionally create factors for 
each Xi - Xj edge, and for each (Xi , Xi , Ak) triple.

Eaton et al. [2] showed that if interventions are not perfect, we can learn the targets and effects of each 
action, by learning an expanded graph.  The graph is expanded by adding a new node for each action.

Shown here are results of the perfect intervention and uncertain intervention DAG models on the protein 
signalling dataset:

In the Ignore and Independent scenarios, we fit a Mixture of Independent Multinomials 
( A.K.A. Mixture of Bernoullis ).

In the conditional case, we fit a mixture of independent logistic regressors. 
( Similar to a Mixture of Experts )

Conclusions
Causal learning can be viewed as the task of modeling the effects of unseen actions, as opposed to finding 
the ‘true causal structure’ of a system.

Many different models besides DAGs are effective at this task.

Caveats:
In general, observational data will only recover graph structure up to Markov equivalence.
Graph surgery operation is only applicable if interventions perfectly affect only visible nodes.
The true independence structure may have indendencies not representable by a DAG. [4]

If any of these caveats hold, we may be better off using another model.
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MAP DAG in Perfect Intervention Model:

Has more edges than biological model
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MAP DAG in Uncertain Intervention Model:

Data suggest that interventions were not perfect,

and affected multiple nodes.
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Visualization of the dataset.   “I” and “E” boxes represent

interventions on specific proteins.  (Source: [3])
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