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Course of tutorial

• What problem are we solving with BayesOpt?

• Gaussian Process review: notebook

• Acquisition functions

• EI Example



What problem are we solving?



Machine Learning Basics
• Given: input/output pairs

• Goal: find a function that maps inputs to outputs 

• Want to predict correct outputs for unseen inputs



Example: Linear Regression
• Problem: fit a curve to one-dimensional data

• Model: linear weights with polynomial basis 

• Training algorithm: least squares 

• Validation: 5-fold cross-validation



Meta-Parameters
• The model parameters are the regression coefficients.

• We train these with least squares.

• Are there any other parameters?
• Yes!

• Polynomial degree

• Choice of basis (Polynomial, Fourier, Wavelet, …)

• Learning algorithm (Least squares, gradient descent, …)

• Regularization strength

• Regularizer (L1, L2, …)



Meta-Parameters
• Modeling decisions or free variables that cannot be 

trained using gradient (or other principled) methods.

• Can only evaluate a setting of the meta-parameters 
by training the model.

• This is very expensive, we want to do this as little as 
possible.



Typical Search Strategies
• Expert Intuition

• Grid Search

• Random Search

• Grad Student Search



Optimization Framework
• Meta-parameter search is an optimization problem!

• There is some latent, potentially noisy function that maps meta-
parameter settings to a score.

• The input domain is bounded to some reasonable range.

• Find the setting that minimizes the score.

• Each function evaluation is expensive, so we need to 
be clever about how often we query it.



Uncertainty
• In order to perform global optimization we need to 

characterize our uncertainty.
• Explore places we are unsure about.

• Exploit when we are sure we can improve.

• Two major sources of uncertainty:
• Process noise - the observations are not perfectly accurate.

• Model uncertainty - the response surface is one of many sensible 
possibilities.



Bayesian Optimization
• Mockus, 1978

1. Incorporate a prior over the space of possible objective 
functions.

2. Combine the prior and likelihood (model fit to data) to get 
a posterior over function values given observations.

3. Select the next input to evaluate based on the posterior.

• According to what strategy?



Gaussian Processes
• Distribution over functions

• The observations at points                                   are jointly Gaussian

• Specified by a mean                       and covariance

• Predictive mean and covariance given observations

• Intuition:
• A prior for smooth functions

• Similar inputs (high covariance) have similar outputs

• Can compute expected value and uncertainty for test inputs easily



GPs as Distributions over 
Functions

Prior Posterior

*Samples in blue



GPs Allow High Level 
Specification

• Gaussian processes are nonparametric, their behaviour is 
specified at a high level by the choice of kernel.

Infinitely differentiable Twice differentiable

See “The Kernel Cookbook” by David Duvenaud for high level advice on choosing kernels.
http://mlg.eng.cam.ac.uk/duvenaud/cookbook/index.html
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Gaussian Process Notebook



Acquisition Functions



Choosing where to Search Next
• The GP gives us a mean and variance for 

each input.

- Minimum expected value: purely exploitative

- Maximum uncertainty: purely explorative

- Expected improvement: trade-off  
(Mockus, 1978)

- Many other acquisition functions have been 
proposed in the literature



Exploration-exploitation tradeoff
Recall the expressions for GP prediction:

We should choose the next point x where the mean is high 
(exploitation) and the variance is high (exploration). 

We could balance this tradeoff with an acquisition function as 
follows:
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Probability of Improvement



An acquisition function: Probability of Improvement



An acquisition function: Probability of Improvement



An acquisition function: Probability of Improvement



Expected Improvement



Utilitarian view: We need models to make the right decisions under 
uncertainty. Inference and decision making are intertwined.

Learned posterior Cost/Reward model u(x,a)

Bayes and decision theory

P(x=healthy|data) = 0.9

P(x=cancer|data) = 0.1

We choose the action that maximizes the expected utility, or 
equivalently, which minimizes the expected cost.

EU(a=no treatment) = 

EU(a=treatment) = 

EU(a) =          u(x,a) P(x|data)
x
ΣΣΣΣ
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An expected utility criterion
At iteration n+1, choose the point that minimizes the distance 
to the objective evaluated at the maximum x*:

We don’t know the true objective at the maximum. To 
overcome this, Mockus proposed the following acquisition 
function:
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Expected improvement

For this acquisition, we can obtain an analytical expression:



Acquisition 
functions



Example: Expected Improvement



Simple Example



Simple Example
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Simple Example



Check out Spearmint:
https://github.com/HIPS/Spearmint

Bayesian Optimization package for 
Python, Matlab

https://github.com/HIPS/Spearmint

