CSC412:
Adversarial Training

David Duvenaud

Slides from lan Goodfellow, Roger Grosse and Sebastian Nowozin



(GGenerative Modeling
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Training examples




Fully Visible Belief Nets

e Explicit formula based on chain (Frey et al, 1996)

rule:
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PlxelCNN elephants
e Generation not controlled by a (van den Ord et al 2016)
latent code

e Disadvantages:

e O(n) sample generation cost



Amazing quality
Sample generation slow

WaveNet

Output
Dilation = 8

Hidden Layer
Dviation = 4

Hidden Layer
Duation = 2

Hidden Layer
Dilation = 1

Input

Two minutes to synthesize

one second of audio

(Goodfellow 2016)



Change of Variables

y = g(z) = pz(x) = py(9(x))

e.g. Nonlinear ICA (Hyvérinen 1999)

det (

dg(x)

ox

Disadvantages:

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

invertible

)

- Transformation must be

- Latent dimension must

match visible dimension

(Goodfellow 2016)



Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)

log p(x) > log p()
Jqu logp(a: z)+ H(q)

CIFAR—lO Samples
(Kingma et al 2016)

— Dkuv (q(2)|lp(z | x))

Disadvantages:

-Not asymptotically
consistent unless ¢ is
perfect

-Samples tend to have lower

quality

(Goodfellow 2016)



Boltzmann Machines

p(x) = exp (~E(x. 2))

7 = ZZeXp  2))

e Partition function is intractable
e May be estimated with Markov chain methods

e Generating samples requires Markov chains too

(Goodfellow 2016)



(GANSs

Use a latent code

Asymptotically consistent (unlike variational
methods)

No Markov chains needed
Often regarded as producing the best samples

e No good way to quantify this

(Goodfellow 2016)



Generator Network
r = G(z; H(G))

-Must be differentiable
- No invertibility requirement

@ - Trainable for any size of z

Some guarantees require z to have higher
dimension than z

- Can make z conditionally Gaussian given z but
need not do so

(Goodfellow 2016)



Generative Adversarial Networks

A 1-dimensional example:

input
distribution
output
distribution
e :
V/ >
function
computed by Y .
the network
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Generative Adversarial Networks

D(x)

f
!

discriminator

X OR x = G(z)

real-world
Image generator

N

code vector

eI Py —— p—r 15/ 1



Generative Adversarial Networks

Updating the discriminator:

D(x)
update the discriminator
4 weights using backprop
on the classification objective
X OR
real-world
Image generator
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Generative Adversarial Networks

Updating the generator:

D(x)

backprop the derivatives,
but don’t modify the
discriminator weights

flip the sign
of the derivatives

G(z)

X =

!
f
)
f

update the generator
weights using backprop

f
I

Roger Grosse CSC321 Lecture 22: Adversarial Learning



Training Procedure

o Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

A minibatch of training examples
e A minibatch of generated samples

e Optional: run £ steps of one player for every step of
the other player.

(Goodfellow 2016)



Minimax Game

L
I = =S Banpia log D(@) — 5

2
JG) — _ (D)

1

. log (1 — D (G(2)))

-Equilibrium is a saddle point of the discriminator loss

-Resembles Jensen-Shannon divergence

-Generator minimizes the log-probability of the discriminator

being correct

(Goodfellow 2016)



Solution
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(Goodfellow 2016)



Discriminator Strategy

Optimal D(x) for any pgata(@) and pmeodel () is always

pdata(m)
Pdata (37) = Pmodel (113)

Discriminator / Data
\ ;: Model
------------ whe /

distribution

D(x) =

Estimating this ratio

using supervised learning is

the key approximation

W T
mechanism used by GANS //// \\\

(Goodfellow 2016)



Non-Saturating Game

1 1
D) = =By, log D(@) — S, log (1 - D (G(2)))

1
JG) = —5Ezlog D (G(2))

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken

-Heuristically motivated; generator can still learn even when

discriminator successfully rejects all generator samples

(Goodfellow 2016)



DCGAN Architecture

Most “deconvs”’ are batch normalized

256

N
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Deconv 2 N,
Deconv 3 \
Deconv 4

Image

(Radford et al 2015)

(Goodfellow 2016)



DCGANS for LSUN Bedrooms

(Radford et al 2015)

(Goodfellow 2016)



Vector Space Arithmetic

Man
with glasses

Woman with Glasses

(Radford et al, 2015)

(Goodfellow 2016)



Batch norm in G can cause

(Goodfellow 2016)




Non-convergence in GANS

e Exploiting convexity in function space, GAN training is theoretically
guaranteed to converge if we can modity the density functions directly,
but:

e Instead, we modify G (sample generation function) and D (density

ratio), not densities
e We represent G and D as highly non-convex parametric functions

e “Oscillation”: can train for a very long time, generating very many

different categories of samples, without clearly generating better samples

e Mode collapse: most severe form of non-convergence

(Goodfellow 2016)



Mode Collapse

min max V(G, D) # max min V(G, D)

e [ in inner loop: convergence to correct distribution

e (G in inner loop: place all mass on most likely point

Target

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016) S—



Mode collapse causes low

output diversity

this small bird has a pink  this magnificent fellow is Key- GAN (Reed 2016b) This work
breast and crown, and black almost all black with a red _pﬂs_ A man in a orange JaCket_Wllh sunglasses and a hat ski down a hill.

primaries and secondaries. crest, and white cheek patch.

7

ThlS ﬂy is 1n black trunks and smmmmg underwater.

tenms laler in a blue iolo shirt is lookmi down at the ieen court

(Reed et al, submitted to
ICLR 2017)

the flower has petals that this white and yellow flower «
are bright pinkish purple have thin white petals and a X
with white stigma round yellow stamen .

(Reed et al 2016)

(Goodfellow 2016)



Minibatch GAN on ImageNet
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(Salimans et al 2016) (Gotlo 2010



Problems with Counting

“<", !
.“0.'. ¢

N
(Goodfellow 2016)



Problems with Global

Structure




Discrete outputs

e (G must be differentiable
e Cannot be differentiable if output is discrete
e Possible workarounds:

 REINFORCE (Williams 1992)

e Concrete distribution (Maddison et al 2016) or Gumbel-
softmax (Jang et al 2016)

e Learn distribution over continuous embeddings, decode to
discrete

(Goodfellow 2016)



Can train GANs with any
divergence

GAN (Jensen-Shannon) Hellinger Kullback-Leibler

Slide from Sebastian Nowozin



f-GAN [Nowozin et al, 2016]

Name Output activation g dom ¢~ Conjugate f*(t) (1)
Total variation < tanh(v) —1<t<: 0
Kullback-Leibler (KL) v N exp(t — 1) 1
Reverse KL —exp(v) R_ —1 —log(—t) —1
Pearson \? v R T’ 0
Neyman y? 1 —exp(v) t<1 2—2y1—1t 0
Squared Hellinger 1 — exp(v) t<1 = 0
Jeffrey v R W(e'™) + o= +t—2 0
Jensen-Shannon log(2) — log(1 + exp(—w)) t < log(2) —log(2 — exp(t)) 0
Jensen-Shannon-weighted —mlogm — log(1 +exp(—v)) t< —7mlogm (1 —m)log ﬁ 0
GAN —log(1 + exp(—v)) R_ —log(1 — exp(t)) —log(2)
a-div. (o < 1, a # 0) —— —log(1 + exp(—v)) t < = |%(1‘(05 —1)4 1)1 — 1 0
a-div. (a > 1) v R Lt(a—1)+ 1)a-1 — X 0




LLoss does not seem to explain

Takeaway: the approximation strategy

matters more than the loss Goodiellon 2016



Relation to VAES

Same graphical model: z -> x

VAEs have an explicit likelihood: p(x|z)
GANSs have no explicit likelihood
* aka implicit models, likelihood-free models

Can use same trick for implicit g(z|x)



Generalizing these ideas

* Adversarial Variational Bayes. Lars Mescheder,
Sebastian Nowozin, Andreas Geiger, 2017

e Learning in Implicit Generative Models. Shakir
Mohamed, Balaji Lakshminarayanan, 2016

e Variational Inference using Implicit Distributions.
Ferenc Huszar, 2017

* Deep and Hierarchical Implicit Models. Dustin
Tran, Rajesh Ranganath, David Blei, 2017



lakeaways

e Can train a latent-variable model without
specitying a likelihood function at the last layer

* This is nice because most likelihoods (e.qg.
spherical Gaussians on pixels) are nonsense that
we only added to smooth out the objective

e Similar to move from Exact inference to MCMC to
var. inf: Don’t restrict model to allow easy
inference - just let a neural network clean up atfter.



Other uses

e Same as any other generative latent-variable
model



Image to Image Translation

Ground truth

Input

Labels to Street Scene

input

output
output

eiI to Map

(Goodfellow 2016)

(Isola et al 2016)



1GAN

x = + Generative Image Manipulation

youtube
(Zhu et al 2016)

(Goodfellow 2016)



Single Image Super-Resolution

bicubic SRResNet SRGAN
(23.44dB/0.7777)

(21.59dB/0.6423)

-

(Ledig et al 2016)

(Goodfellow 2016)



Semi-Supervised Classification

CIFAR-10

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
Ladder network [24] 20.404+0.47
CatGAN [14] 19.584+0.46
Our model 21.831+2.01 19.61+2.09 18.631+2.32 17.724+1.82

Ensemble of 10 of our models

19.2240.54 17.2540.66 15.5940.47 14.874+0.89

SVHN

Model Percentage of incorrectly predicted test examples
for a given number of labeled samples
500 1000 2000

DGN [21] 36.0240.10
Virtual Adversarial [22] 24.63
Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.614+0.24

Our model 18.44 4 4.8 8.11 £ 1.3 6.16 &= 0.58
Ensemble of 10 of our models 5.88 £ 1.0

(Salimans et al 2016) (Goodtilo 201



Learning interpretable latent codes /

controlling the generation process
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InfoGAN (Chen et al 2016)



PPGN for caption to image

oranges on a table next to a Ilquor bottle

(Nguyen et al 2016)

(Goodfellow 2016)



Class wrap-up



ML as a bag of tricks

Fast special cases: Extensible tamily:

e K-means e Mixture of Gaussians

 Kernel Density Estimation ¢ Latent variable models

e SVMs e (Gaussian processes
* Boosting * Deep neural nets
* Random Forests * Bayesian neural nets

 K-Nearest Neighbors o 77



Regularization as a bag of
tricks

Fast special cases: Extensible tamily:

* Early stopping

* Ensembling

e Stochastic variational

* L2 Regularization inference

e (Gradient noise
* Dropout

* Expectation-Maximization



A language of models

e Hidden Markov Models, Mixture of Gaussians,
Logistic Regression

* These are simply “sentences” - examples from a
language of models.

 We will try to show larger family, and point out
common special cases.



Al as a bag of tricks

Russel and Norvig's parts of Al: Extensible family:

 Machine learning

« Natural language processing * Deep probabillistic
atent-variable

models + decision
« Automated reasoning theory

« Knowledge representation

o Computer vision

 Robotics



Where are we now"”

 Open research areas:
e Optimization (especially minimax)
e (Generalizing style transfer
 Bayesian GANs, VAEs
 Model-based RL
e Bayesian neural networks
e Learning discrete latent structure

e |earning discrete model structure



Thanks a lot!



