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Difficult	Inference	Problems	

•  Undirected	graphical	model	

•  Belief	propagation	is	fast	if	argument	lists	of	Φjs	are	small,	
and	form	a	junction	tree	

•  For	directed	graphical	models,	observations	at	the	leaves	
induce	dependencies	amongst	latent	variables	

•  One	alternative	is	to	utilize	a	variational	approximation,	such	
as	mean-@ield	

•  Another	popular	approach:	Monte	Carlo	methods	



Monte	Carlo	Methods	

•  Useful	in	many	settings,	
including:	
–  Numerical	integration	
–  Function	approximation	
–  Optimization	

Generally,	anywhere	we	need	to	compute	dif@icult	integrals	
–  Posterior	marginals	
–  Finding	moments	(expectations)	
–  Predictive	distributions	
–  Model	comparison	



Monte	Carlo	methods	
•  Very	general	approach	to	Bayesian	computation:	obtain	
a	sample	of	points	from	posterior	distribution,	use	it	to	
make	Monte	Carlo	estimates	

•  Each	sample	point	will	contain	values	for	all	the	
unknown	parameters	

•  Use	this	sample	to	approximate	expected	values	by	
averages	over	sample	points	

•  Example:	sample	K	values	θ1,…,θK	for	a	parameter	from	
P(θ|data),	approximate	predictive	probability:	
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Simple	Monte	Carlo	
•  Statistical	sampling	can	be	applied	to	any	expectation	
•  In	general	we	can	@ind	the	expectation	of	f(x)	by	sampling:	
	

•  The	function	f(x)	is	arbitrary,	so	this	is	very	general	

•  Example:	making	predictions	
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Proper6es	of	Monte	Carlo	
•  Estimator:	
	

•  Estimator	is	unbiased	

•  Variance	shrinks		
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Poten6al	problems	with	Monte	Carlo	

•  Samples	may	not	be	independent:	can	have	much	smaller	
effective	sample	size	

•  If	computing	expectation	of	f(x),	need	to	ensure	that	
expectation	not	dominated	by	regions	of	low	probability	

•  Next	question:	how	to	generate	samples?	



Sampling	from	a	DGM	
•  Ancestral	pass	for	directed	graphical	model	

–  Sample	each	top	level	variable	from	its	marginal	
–  Sample	each	other	node	from	its	conditional	once	its	
parents	have	been	sampled	



Sampling	from	distribu6ons	
How	to	convert	samples	from	a	Uniform[0,1]	generator?	

h(y) =

Z y
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p(y0)dy0

sample		u	~	Uniform[0,1]	

y(u) = h�1(u)

But	in	many	cases	dif@icult	to	compute,	invert	h(y)	



Rejec6on	sampling	
Can	sample	x	non-uniformly:	@ind	one	that	approximates	P(x)	
Sampling	underneath	a																													curve	is	also	valid		

Draw	underneath	a	simple	curve	
	
	
–  Draw	
–  Height	

Discard	the	point	if	
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Importance	sampling	
Computing	both																									then	throwing	x	away	seems	wasteful	
Instead	rewrite	the	integral	as	an	expectation	under	Q:	
	
	
	
	
	
This	is	just	simple	Monte	Carlo	again,	so	it	is	unbiased	
																																	is	called	the	importance	weight	
	
Importance	sampling	also	applies	when	integral	is	not	an	
expectation	
Divide	and	multiply	any	integrand	by	a	convenient	distribution	

P̃ (x), Q̃(x)

Z
f(x)P (x)dx =

Z
f(x)

P (x)

Q(x)
Q(x)dx

⇡ 1

S

SX

s=1

f(x(s))
P (x(s))

Q(x(s))

r

(s) =
P (x(s))

Q(x(s))



Importance	sampling	(cont.)	

Here	we	assumed	we	could	evaluate																							:	
	
If	not,	we	can	still	apply	importance	sampling	
	
	
	
	
	
	
	
Issues:	effective	sample	size	often	<<	S;	few	samples	where	
f(x)P(x)	large	
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Summary	

For	probabilistic	graphical	models,	often	need	to	compute	sums	
and	integrals,	eg.,	expectations,	marginal	&	posterior	distributions	
	
Monte	Carlo	approximates	expectations	with	a	sample	average	
	
Rejection	sampling	draws	samples	from	complex	distributions	
	
Importance	sampling	applies	Monte	Carlo	to	sums/integrals	in	
general		
	



Applica6on	to	large	PGMs	

But	in	many	probabilistic	graphical	models,	we	cannot	decompose	
P(X)	into	low-dimensional	conditionals	
	
	
Undirected	graphical	models:	
	
	
Posterior	of	a	directed	graphical	model	
	
	
	
But	we	often	don’t	know	Z	or	P(E)	
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Applica6on	to	high-dimensional	problems	

Picking	a	good	sampling	distribution	becomes	hard	in	high	
dimensions	
	
Major	contributions	to	integral	can	be	hidden	in	small	areas	
	
Danger	of	missing	those		à	need	to	search	for	high	values	of	f(x)	
	
Both	rejection	and	importance	sampling	scale	badly	with	high	D	
	
Example:		
	
Rejection:	requires	σ≥1	à	fraction	of	proposals	accepted	=	σ-D	

Importance:	variance	of	importance	weights	=		
	

P (x) = N (0, I) Q(x) = N (0,�2
I)
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Markov	chain	Monte	Carlo	

An	alternative	is	to	generate	dependent	samples	
	
Like	rejection,	importance	sampling,	here	we	sample	from	a	
proposal	distribution	
	
But	now	maintain	record	of	current	state,	and	proposal	distribution	
depends	on	it,	so	sample	sequence	forms	Markov	chain	
	
Aim:	Design	a	Markov	chain	M	whose	moves	tend	to	increase	P(x)	if	
it	is	small	–	the	stationary	distribution	should	be	the	target	density	
	
This	chain	encodes	a	search	strategy:	start	at	an	arbitrary	x,	run	
chain	for	a	while	to	@ind	an	x	with	reasonably	high	P(x)	
	



Picking	PM	

MCMC	works	well	if	f(x)/	PM(x)	has	low	variance	
	
f(x)	>>	PM(x)	means	there	is	a	region	of	comparatively	large	
f(x)	that	we	do	not	sample	enough	
	
f(x)	<<	PM(x)	means	that	we	waste	samples	in	regions	where	
f(x)	≈	0	
	
So	for	example	if	f(x)	=	g(x)	P(x),	could	ask	for	PM	=	P	



Metropolis	algorithm	
•  First	MCMC	algorithm	(from	1953),	still	popular	today	
•  Metropolis	algorithm	designed	to	sample	from	π(x),	a	
Markov	chain	that	transitions	from	state	x	to	x’:	
–  Candidate	x*	is	proposed	according	to	some	probability	
S(x,x*)	

–  Candidate	accepted	as	next	state	with	probability					 	
	min[1,π(x*)/	π(x)]	

If	x	accepted	then	x’=x*.		Else	x’=x	
•  Provided	chain	can’t	get	trapped,	can	show	that	distribution	
of	state		gets	arbitrarily	close	to		π	after	suf@iciently	many	
transitions	

•  Good	choice	of	proposal	distribution,	S,	is	crucial	to	getting	
chain	to	converge	to	π	rapidly	



Metropolis	Has6ngs	

Way	of	getting	chain	M	with	desired	stationary	distribution	
	
Basic	strategy:		
–  Start	from	arbitrary	x	
–  Repeatedly	tweak	x	a	little	to	get	x’	
–  If	P	(x’)	≥		P	(x)		move	to	x’	
–  If	P	(x’)		<<		P	(x)		stay	at	x	
–  In	intermediate	cases,	randomize	

	
MH	has	one	parameter:	how	do	we	tweak	x	to	get	x’		?	
	
Encoded	in	one-step	proposal	distribution	Q(x’|x)	
	



Metropolis	Has6ngs	algorithm	

MH	is	de@ined	as	follows:	
	
Sample	x’	~	Q(x’|x)	
	
Compute		
	
With	probability	p,	set	x	ß	x’	
	
Repeat	
	

Stop	after,	say,	t	steps	(possibly	<<	t	distinct	samples)	

p = min

 
1,

P̃ (x0)Q(x|x0)

P̃ (x)Q(x0|x)

!



Metropolis	Has6ngs	algorithm	
Example:	approximate	distribution	whose	one	std	deviation	
contour	given	by	an	ellipse,		
	
	

Q(x0|x), N (x,�2)



Metropolis	Has6ngs	notes	

Only	need	P(x)	up	to	constant	factor:	nice	for	problems	where	
normalizing	constant	is	hard	
	
Ef@iciency	determined	by:	
–  How	fast	Q(x’|x)	moves	us	around	
–  How	high	acceptance	probability	p	is	
	

Tension	between	fast	Q	and	high	p	



Metropolis	Has6ngs	notes	

MCMC	gives	approximate,	correlated	samples	from	the	target	
distribution	P*(x)	
	
Uses	a	biased	random	walk	that	explores	P*(x)	
	
	



Valid	MCMC	operators	
De@ine	transition	probabilities		
	
Marginals:		
	
A	transition	distribution	is	invariant,	or	stationary,	wrt	a	Markov	
chain	if	each	step	leaves	that	distribution	invariant	
	
So	the	target	distribution	is	invariant	if	TP*	=	P*	
	
	
Also,	need	to	show	that	distribution	converges	to	required	
invariant	distribution	for	any	initial	distribution:	ergodic	
	
Then	P*	is	called	the	equilibrium	distribution		
			
	

X

x

T (x0  x)P ⇤(x) = P

⇤(x0)

P (x0) =
X

x

P (x0|x)P (x)

T (x0  x) = P (x0|x)



Discrete	example	

	
	
	
	
P*	is	an	invariant	distribution	of	T	because	TP*	=	P*	
	
	
Also	P*	is	the	equilibrium	distribution	of	T:	
	
	
	
Ergodicity	requires	that	TK(x’	ß	x)	>	0	for	all	x’:	P*(x’)>0	
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Detailed	balance	
	
Detailed	balance	means	that	!	x	!	x’	and	!	x’	!	x	are	equally	
probable	
	

	 	T(x’	"	x)	P*(x)	=	T(x	"	x’)	P*(x’)	
	
Detailed	balance	implies	the	invariant	condition	
	
	
	
A	Markov	chain	that	respects	detailed	balance	is	reversible	
	
To	show	that	P*	is	an	invariant	distribution	can	show	that	detailed	
balance	is	satisQied	
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Metropolis	limita6ons	
	
Proposal	distribution	has	signi@icant	effect	on	performance	
	
Common	proposal	is	Gaussian	centered	on	current	state	

	 	Q(x’|x)	=	N(x,σ2)	
–  Small	σ	:	slow	random	walk	with																																																											
long	correlation	times		
	~	(L/σ)2	iterations	

–  Large	σ	:	many	rejections	

	
Bottom	line:	if	length	scales	over	which	the	distributions	vary	are	
very	different	across	dimensions,	then	M-H	may	converge	slowly	



Gibbs	sampling	
	
A	simple,	general	MCMC	algorithm,	with	no	rejections	
–  Initialize	x	to	some	value	
–  Pick	each	variable	in	turn,	or	randomly,	and	resample																														

	P(xi|x−i)	

	
Step	size	governed	by	conditional	
		distribution	–	need	O((L/l)2)	steps	
		to	get	independent	samples	from		
		distribution	



Gibbs	sampling	is	easy	
	
Based	on	convenient	features	of	conditional	distributions	
	
Conditionals	w/	a	few	discrete	settings	can	be	explicitly	normalized	
	
	
	
	
	
Continuous	conditionals	only	univariate	

	à	amenable	to	standard	sampling	methods	
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Proof	that	Gibbs	sampling	is	valid	
	
Check	detailed	balance	for	component	update	
	
Metropolis-Hastings	proposals:	Q(x’|x)	=	P(x’i|x-i)	

	acceptance	probability:		
	
	

		
	
	

	 												à	accept	with	probability	1	
	
Can	apply	a	series	of	these	operators,	without	needing	to	check	
acceptance	
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Summary	
	
We	need	approximate	methods	to	solve	sums/integrals	
	
Monte	Carlo	does	not	explicitly	depend	on	dimension,	although	
simple	methods	work	only	in	low	dimensions	
	
Markov	chain	Monte	Carlo	(MCMC)	can	make	local	moves.	By	
assuming	less	it	is	more	applicable	to	higher	dimensions	
	
It	produces	approximate,	correlated	samples	
	
Simple	computations	à	easy	to	implement	
	
	
	
	
	



Comparison	to	varia6onal	inference	
	
Bene@its	of	variational	inference:	
–  Fast	for	smallish	problems	
–  Deterministic	
–  Easy	to	know	when	to	stop	
–  Provides	lower	bound	on	log	likelihood	

	
Bene@its	of	sampling:	
–  Easier	to	implement	
–  Applicable	to	broader	class	of	models	(without	nice	
conjugate	priors)	

–  Can	be	faster	when	applied	to	large	models/datasets	


