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Directed Graphical Models

Represent large joint distribution using ”local” relationships specified by the
graph

Each random variable is a node

The edges specify the statistical dependencies

We have seen directed acyclic graphs
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Directed Acyclic Graphs

Represent distribution of the form

p(y1, · · · , yN) =
∏
i

p(yi |yπi )

with πi the parents of the node i

Factorizes in terms of local conditional probabilities

Each node has to maintain p(yi |yπi )

Each variable is CI of its non-descendants given its parents

{yi ⊥ yπ̃i |yπi} ∀i

with yπ̃i the nodes before yi that are not its parents

Such an ordering is a ”topological” ordering (i.e., parents have lower
numbers than their children)

Missing edges imply conditional independence
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Example

What’s the joint probability distribution?
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Internal Representation

For discrete variables, each node stores a conditional probability table (CPT)
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Are DGM Always Useful?

Not always clear how to choose the direction for the edges

Example: Modeling dependencies in an image

Figure : Causal MRF or a Markov mesh

Unnatural conditional independence, e.g., see Markov Blanket
mb(8) = {3, 7} ∪ {9, 13} ∪ {12, 4}, parents, children and co-parents

Alternative: Undirected Graphical models (UGMs)
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Undirected Graphical Models

Also called Markov random field (MRF) or Markov network

As in DGM, the nodes in the graph represent the variables

Edges represent probabilistic interaction between neighboring variables

How to parametrize the graph?

In DGM we used CPD (conditional probabilities) to represent
distribution of a node given others
For undirected graphs, we use a more symmetric parameterization that
captures the affinities between related variables.
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Semantics of the Graph: Conditional Independence

Global Markov Property: xA ⊥ xB |xC iff C separates A from B (no path in
the graph), e.g., {1, 2} ⊥ {6, 7}|{3, 4, 5}

Markov Blanket (local property) is the set of nodes that renders a node t
conditionally independent of all the other nodes in the graph

t ⊥ V \ cl(t)|mb(t)

where cl(t) = mb(t) ∪ t is the closure of node t. It is the set of neighbors,
e.g., mb(5) = {2, 3, 4, 6, 7}.
Pairwise Markov Property

s ⊥ t|V \ {s, t} ⇐⇒ Gst = 0
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Dependencies and Examples

Pairwise: 1 ⊥ 7|rest

Local: 1 ⊥ rest|2, 3

Global: 1, 2 ⊥ 6, 7|3, 4, 5

→ See page 119 of Koller and Friedman for a proof
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Image Example

Complete the following statements:

Pairwise: 1 ⊥ 7|rest?, 1 ⊥ 20|rest?,1 ⊥ 2|rest?

Local: 1 ⊥ rest|?, 8 ⊥ rest|?

Global: 1, 2 ⊥ 15, 20|?
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DGM and UGM

From Directed to Undirected via moralization

From Undirected to Directed via triangulation

See (Kohler and Friedman) book if interested
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Not all UGM can be represented as DGM

(a) (b) (c)

Fig. (a) Two independencies: (A ⊥ C |D,B) and (B ⊥ D|A,C )

Can we encode this with a DGM?

Fig. (b) First attempt: encodes (A ⊥ C |D,B) but it also implies that
(B ⊥ D|A) but dependent given both A,C

Fig. (c) Second attempt: encodes (A ⊥ C |D,B), but also implies that B
and D are marginally independent.
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Not all DGM can be represented as UGM

Example is the V-structure

Undirected model fails to capture the marginal independence (X ⊥ Y ) that
holds in the directed model at the same time as ¬(X ⊥ Y |Z )
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Cliques

A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge
→ i.e., the subgraph induced by the clique is complete

The maximal clique is a clique that cannot be extended by including one
more adjacent vertex

The maximum clique is a clique of the largest possible size in a given graph

What are the maximal cliques? And the maximum clique in the figure?
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Parameterization of an UGM

y = (y1, · · · , ym) the set of all random variables

Unlike DGM, since there is no topological ordering associated with an
undirected graph, we can’t use the chain rule to represent p(y)

Instead of associating conditional probabilities to each node, we associate
potential functions or factors with each maximal clique in the graph

For a clique c , we define the potential function or factor

ψc(yc |θc)

to be any non-negative function, with yc the restriction to a subset of
variables in y

The joint distribution is then proportional to the product of clique potentials

Any positive distribution whose CI are represented with an UGM can be
represented this way (let’s see this more formally)
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Factor Parameterization

Theorem (Hammersley-Clifford)

A positive distribution p(y) > 0 satisfies the CI properties of an undirected graph
G iff p can be represented as a product of factors, one per maximal clique, i.e.,

p(y|θ) =
1

Z (θ)

∏
c∈C

ψc(yc |θc)

with C the set of all (maximal) cliques of G , and Z (θ) the partition function
defined as

Z (θ) =
∑
y

∏
c∈C

ψc(yc |θc)

Proof.

Can be found in (Koller and Friedman book)

We need the partition function as the potentials are not conditional distributions.

In DGMs we don’t need it
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The partition function

The joint distribution is

p(y|θ) =
1

Z (θ)

∏
c∈C

ψc(yc |θc)

with the partition function

Z (θ) =
∑
y

∏
c∈C

ψc(yc |θc)

This is the hardest part of learning and inference. Why?

Factored structure of the distribution makes it possible to more efficiently do
the sums/integrals needed to compute it.
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Example

p(y) ∝ ψ1,2,3(y1, y2, y3)ψ2,3,5(y2, y3, y5)ψ2,4,5(y2, y4, y5)

ψ3,5,6(y3, y5, y6)ψ4,5,6,7(y4, y5, y6, y7)

Is this representation unique?

What if I want a pairwise MRF?
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Representing Potentials

If the variables are discrete, we can represent the potential or energy
functions as tables of (non-negative) numbers

p(A,B,C ,D) =
1

Z
ψa,b(A,B)ψb,c(B,C )ψc,d(C ,D)ψa,d(A,D)

The potentials are NOT probabilities

They represent compatibility between the different assignments
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Factor product

Given 3 disjoint set of variables X,Y,Z, and factors ψ1(X,Y), ψ2(Y,Z), the
factor product is defined as

ψx,y ,z(X,Y,Z) = ψx,y (X,Y)φy ,z(Y,Z)
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Query about probabilities: marginalization

What’s the p(b0)? Marginalize the other variables!
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Query about probabilities: conditioning

(Original) (Cond. on c1)

Conditioning on an assignment u to a subset of variables U can be done by

1 Eliminating all entries that are inconsistent with the assignment
2 Re-normalizing the remaining entries so that they sum to 1
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Reduced Markov Networks

Let H be a Markov network over X and let U = u be the context. The
reduced network H[u] is a Markov network over the nodes W = X−U where
we have an edge between X and Y if there is an edge between then in H

If U = Grade?

If U = {Grade,SAT}?

R Urtasun (UofT) CSC 412 Feb 2, 2016 24 / 37



Connections to Statistical Physics

The Gibbs Distribution is defined as

p(y|θ) =
1

Z (θ)
exp

(
−
∑
c

E (yc |θc)

)

where E (yc) > 0 is the energy associated with the variables in clique c

We can convert this distribution to a UGM by

ψ(yc |θc) = exp (−E (yc |θc))

High probability states correspond to low energy configurations.

These models are named energy based models
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Log Linear Models

Represent the log potentials as a linear function of the parameters

logψc(yc) = φc(yc)T θc

The log probability is then

log p(y|θ) =
∑
c

φc(yc)T θc − log Z (θ)

This is called log linear model

Example: we can represent tabular potentials

ψ(ys = j , yt = k) = exp([θTstφst ]jk) = exp(θst(j , k))

with φst(ys , yt) = [· · · , I (ys = j , yt = k), · · · ) and I the indicator function
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Example: Ising model

Captures the energy of a set of interacting atoms.

yi ∈ {−1,+1} represents direction of the atom spin.

The graph is a 2D or 3D lattice, and the energy of the edges is symmetric

ψst(ys , yt) =

(
ewst e−wst

e−wst ewst

)
with wst the coupling strength between two nodes. If not connected wst = 0

Often we assume all edges have the same strength, i.e., wst = J 6= 0

If all weights positive, then neighboring spins likely same spin (ferromagnets,
associative Markov network)

If weights are very strong, then two models, all +1 and all -1

If weights negative, then anti-ferromagnets. Not all the constraints can be
satisfied, and the prob. distribution has multiple modes

Also individual node potentials that encode the bias of the individual atoms
(i.e., external field)
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More on Ising Models

Captures the energy of a set of interacting atoms.

yi ∈ {−1,+1} represents direction of the atom spin.

The energy associated is

P(y) =
1

Z
exp

∑
i,j

1

2
wi,jyiyj +

∑
i

biyi

 =
1

Z
exp

(
1

2
yTWy + bTy

)
The energy can be written as

E (y) = −1

2
(y − µ)TW(y − µ) + c

with µ = −W−1u, c = 1
2µ

TWµ

Looks like a Gaussian... but is it?

Often modulated by a temperature p(y) = 1
Z exp(−E (y)/T )

T small makes distribution picky
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Example: Hopfield networks

A Hopfield network is a fully connected Ising model with a symmetric weight
matrix W = WT

The main application of Hopfield networks is as an associative memory
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Example: Potts Model

Multiple discrete states yi ∈ {1, 2, · · · ,K}
Common to use

ψst(ys , yt) =

eJ 0 0
0 eJ 0
0 0 eJ


If J > 0 neighbors encourage to have the same label

Phase transition: change of behavior, J = 1.44 in example

Figure : Sample from a 10-state Potts model of size 128× 128 for (a) J = 1.42,
(b) J = 1.44, (c) J = 1.46
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More on Potts

Used in image segmentation: neighboring pixels are likely to have the same
discrete label and hence belong to the same segment

p(y|x, θ) =
1

Z

∏
i

ψi (yi |x)
∏
i,j

ψi,j(yi , yj)
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Example: Gaussian MRF

Is a pairwise MRF

p(y|θ) ∝
∏
s∼t

ψst(ys , yt)
∏
t

ψt(yt)

ψst(ys , yt) = exp

(
−1

2
ysΛstyt

)
ψt(yt) = exp

(
−1

2
Λtty

2
t + ηtyt

)
The joint distribution is then

p(y|θ) ∝ exp

[
ηTy − 1

2
yTΛy

]

This is a multivariate Gaussian with Λ = Σ−1 and η = Λµ

If Λst = 0 (structural zero), then no pairwise connection and by factorization
theorem

ys ⊥ yt |y−(st) ⇐⇒ Λst = 0

UGM are sparse precision matrices. Used for structured learning
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Factor Graphs

A factor graph is a graphical model representation that unifies directed and
undirected models

It is an undirected bipartite graph with two kinds of nodes.

Round nodes represent variables,
Square nodes represent factors

and there is an edge from each variable to every factor that mentions it.

Represents the distribution more uniquely than a graphical model
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Factor Graphs for Directed Models

One factor per CPD (conditional distribution) and connect the factor to all
the variables that use the CPD
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Learning using Gradient methods

MRF in log-linear form

p(y|θ) =
1

Z (θ)
exp

(∑
c

θTc φc(yc)

)

Given training examples y(i), the scaled log likelihood is

`(θ) = − 1

N

∑
i

log p(y(i)|θ) =
1

N

∑
i

[
−
∑
c

θTc φc(y(i)c ) + log Z (i)(θ)

]

Since MRFs are in the exponential family, this function is convex in θ

We can find the global maximum, e.g., via gradient descent

∂`

∂θc
=

1

N

∑
i

[
−φc(y(i)c ) +

∂

∂θc
log Z (i)(θ)

]

The first term is constant for each iteration of gradient descent, it is called
the empirical means
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Moment Matching
∂`

∂θc
=

1

N

∑
i

[
−φc(y(i)c ) +

∂

∂θc
log Z (i)(θ)

]
The derivative of the log partition function w.r.t. θc is the expectation of
the c’th feature under the model

∂ log Z (θ)

∂θc
=
∑
y

φc(y)p(y|θ) = E [φc(y)]

Thus the gradient of the log likelihood is

∂`

∂θc
=

[
− 1

N

∑
i

φc(y(i)c )

]
+ E [φc(y)]

The second term is the contrastive term or unclamped term and requires
inference in the model (it has to be done for each step in gradient descent)

Dif. of the empirical distrib. and model’s expectation of the feature vector

∂`

∂θc
= −Epemp [φc(y)] + Ep(·|θ)[φc(y)]

At the optimum the moments are matched (i.e., moment matching)
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Approximated Methods

In UGM, no closed form solution to the ML estimate of the parameters,
need to do gradient-based optimization

Computing each gradient step requires inference → very expensive (NP-hard
in general)

Many approximations exist: stochastic approaches, pseudo likelihood, etc
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