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• Helmholtz machine
• The general reparameterization trick
• Look at the formulation of variational inference and SGVB
• Discuss the drawback of the SGVB estimator
• Introduce an alternative estimator (local reparameterization trick)



Before VAEs
• Helmholtz Machine

• Multiple stochastic latent layers, each specified 
by 𝑝(ℎ𝑘−1|ℎ𝑘) in the generative model; 
reverse in the recognition model

• Trained using the wake-sleep algorithm
• Minimize the cost function 𝐶 𝑑 =
 𝛼 𝑄 𝛼 𝑥 𝐶 𝛼, 𝑥 − (− 𝛼 𝑄 𝛼 𝑥 𝑙𝑜𝑔𝑄(𝛼|𝑥))

• 𝐶(𝛼, 𝑥) is the cost of describing the input 
vector x using the “total representations” 𝛼

• 𝑄(𝛼|𝑥) is the conditional  distribution of the 
recognition weights over total representations

• The cost function is analogous to the 
Helmholtz free energy of a physical system



• For a dataset of N observations D = 𝑥 𝑛
𝑛=1
𝑛=𝑁

• There is a simple latent space z:
• 𝑧 ~ 𝑝𝜃 𝑧
• 𝑥|𝑧 ~ 𝑝𝜃(𝑥|𝑧)
• The exact posterior distribution from Bayes’ Rule is intractable

• Goal
• Learn approx. parameters
• Infer latent variables based on new observations
• Parameterize model 𝑞𝜙(𝑧|𝑥) to approximate 𝑝(𝑧|𝑥)
• Measure by maximizing the variational lower bound: log 𝑝 𝑥 ≥ 𝐿 𝜃, 𝜙 =
− 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃 𝑧|𝑥 ) + 𝐸𝑞𝜙[log 𝑝𝜃 𝑥|𝑧 ] = Eq𝜙[−log q𝜙 z x +
log p𝜃 x, z ]

• Wish to optimize the variational lower bound w.r.t. the two parameters
• The MC gradient estimator for 𝜙 is 𝛻𝜙𝐸𝑞𝜙 𝑓 𝑧 which exhibits high variance



Kingma & Welling, NIPS workshop 2015



Auto-encoding VB 
algorithm
Parameterize as  𝑝𝜃 𝑧 , 𝑞𝜙(𝑧|𝑥)
Repeat

Sample x (datapoint/minibatch)
Sample 𝜖 ~ 𝑝(𝜖)
Calculate gradients 𝑔𝜃, 𝑔𝜙 = 𝛻𝜃,𝜙𝐿(𝜃, 𝜙; 𝑥, 𝑔 𝜖, 𝜙 ) of the minibatch estimator
Update parameters

Until convergence
By parameterizing the latent variable z as a deterministic function of a 
random variable drawn from a prior, we can backprop the gradient to 
the parameters 𝜙.



Stochastic Gradient Variational Bayes

• Trick is to reparameterize z = 𝑓𝜙(𝜖, 𝑥) where f is differentiable and 
𝜖 ~ 𝑝(𝜖) is a random noise variable

• 𝐿 𝜃, 𝜙; 𝑥𝑖 = −𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥𝑖 ||𝑝𝜃(𝑧)) +
1
𝐿
 𝑙=1𝐿 (log 𝑝𝜃(𝑥𝑖|𝑧𝑖,𝑙))

• For a minibatch of size M, we have a Monte Carlo estimator for the full 
dataset: 𝐿𝐷 𝜙 ≈ 𝐿𝐷𝑆𝐺𝑉𝐵 𝜙 =
𝑁
𝑀
 𝑖=1𝑀 (−𝐷𝐾𝐿(𝑞𝜙 𝑧 𝑥𝑖 ||𝑝𝜃 𝑧 ) + log 𝑝𝜃(𝑥𝑖|𝑧𝑖 = 𝑓𝜙(𝜖, 𝑥))) =

𝑁
𝑀
 𝑖=1𝑀 𝐿𝑖

• This estimator is unbiased and differentiable w.r.t. 𝜙, so the gradient is also 
unbiased. Now we have a Monte Carlo estimate, and assuming we can 
calculate the KL divergence similarly or analytically



Variance of the SGVB estimator

• 𝑉𝑎𝑟[𝐿𝐷𝑆𝐺𝑉𝐵 𝜙 ] = 𝑁2

𝑀2 ( 𝑖=1
𝑀 𝑉𝑎𝑟 𝐿𝑖 +  𝑖=1𝑀  𝑗=𝑖+1𝑀 𝐶𝑜𝑣 𝐿𝑖, 𝐿𝑗 ) =

𝑁2(1
𝑀
𝑉𝑎𝑟 𝐿𝑖 +

𝑀−1
𝑀
𝐶𝑜𝑣 𝐿𝑖, 𝐿𝑗 )

• Note from above that the variance can be dominated by the 
covariance terms

• If the variance is large, the stochastic gradient descent won’t 
converge to local optimum

• Thus we want an estimator with zero covariance



Local Reparameterization Trick
• Propose an estimator with zero covariance
• We sample from the intermediate variables 𝑓 𝜖 instead of sampling 

from the noise distribution directly
• Example: fully connected NN with 1 hidden layer, 1000 units
• Input matrix A (M x 1000), then neuron activation B = AW
• Suppose posterior approx. of weights to be a fully factorized 

Gaussian: 𝑞𝜙 𝑤𝑖,𝑗 = 𝑁(𝜇𝑖,𝑗, 𝜎𝑖,𝑗2 )
• This way we can ensure zero covariance by sampling a separate W for 

each example, but it’s inefficient



• Note the weights influence B, which are of lower dimension, so we 
can sample random activations B instead

• For a factorized Gaussian posterior on W, we also have a factorized 
Gaussian for activations:

• 𝑞𝜙 𝑏𝑚,𝑗|𝐴 = 𝑁 𝛾𝑚,𝑗, 𝛿𝑚,𝑗
• 𝛾𝑚,𝑗 =  𝑖=11000 𝑎𝑚,𝑖𝜇𝑖,𝑗 𝛿𝑚,𝑗 =  𝑖=11000 𝑎𝑚,𝑖2 𝛿𝑖,𝑗2

• So we can sample the activations from the implied Gaussian distribution 
directly as 𝑏𝑚,𝑗 = 𝛾𝑚,𝑗 + 𝛿𝑚,𝑗𝜁𝑚,𝑗 𝜁𝑚,𝑗~𝑁 0, 1



Importance Weighted Autoencoders

Yuri Burda, Roger Grosse, & Ruslan Salakhutdinov (2016)

”Get a tighter lower bound by sampling k times from the

approximate posterior”

Geo↵rey Roeder (roeder@cs.toronto.edu)

October 14, 2016
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Importance Weighted Autoencoder (IWAE) Idea

• We want to learn flexible approximate posteriors to have a

rich probability model

• Vanilla VAE (Auto-Encoding Variational Bayes) uses a single

sample of the latent variable for each datapoint when

estimating the gradient

• IWAE (”eye-way”) learns a more flexible posterior by

averaging multiple samples of the posterior scaled according

to importance weights

4
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Vanilla VAEs Refresher: Stochastic Backpropagation

• Train VAEs by optimizing lower bound L on log-posterior,

equivalent to minimizing KL(q�(z |x)||p(z |x))

log p(x) � E
z⇠q�(z|x)

h
log

p✓(z , x)

q�(z |x)

i
= L(✓,�; x) (1)

• Reparameterize z = g�(✏, x) and obtain gradient by auto-di↵

r✓,� L(✓,�; x) = E✏⇠N (0,1)

h
r✓,� log

p✓(g�(✏, x), x)

q�(g�(✏, x)|x)

i
(2)

• Estimate by MC: generate K samples of ✏ and evaluate

1

K

KX

i=1

r✓,� log
p✓(g�(✏(i), x), x)

q�(g�(✏(i), x)|x)
(3)
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The Problem

• Optimizer maximizes r✓,� L(✓,�; x) w.r.t. �, ✓ where each

step estimates gradient based on a single sample z ⇠ q�(z |x)

• This harshly penalizes any stochastic samples that don’t

explain the data well

• Encourages learned approximate posterior to be approximately

factorial (random variables are statistically independent so

that p(y1, ..., y
L

) =
Q

L

j=1 p(yj)), with parameters that are

learnable through nonlinear regression (as the final layer of a

neural network)
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IWAE Solution
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Importance Sampling in Monte Carlo estimation

• Consider an arbitrary E
p(z)[f (z)] where p(z) is a complicated

distribution, f (z) is any function, and q(z) any

easy-to-sample and easy-to-evaluate distribution

• Sampling from p(z) is hard, so we’d rather sample from q(z).

This introduces a bias, because the expectation is w.r.t. p(z).

• By using importance weights, we correct that bias. The

derivation is straightforward:

E
p

(z)[f (z)] =

Z
p(z)f (z)dz =

Z
q(z)

p(z)

q(z)
f (z)dz (4)

=

Z
q(z)w(z)f (z)dz (5)

= E
q

(z)[w(z)f (z)] (6)

⇡ 1

K

KX

i=1

w(z(i))f (z(i)) (7)
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Importance Sampling in Monte Carlo estimation

Bishop PRML, Fig. 11.8
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IWAE The What

• Take k independent samples to evaluate the loss:

L
k

= E
z

1,...,zk⇠q(z|x)

h
log

1

K

KX

i=1

p✓(x , z i )

q�(z i |x)

i
(8)

• With respect to reparameterization, take k samples of

✏i ⇠ N(0, I) and proceed as before on each e

i an independent

sample

• For simplicity, call w i = p✓(x ,zi )
q�(zi |x)

. Then, it’s still true that

L
k

= E
q�

h
log

1

k

kX

i=1

w

i

i
 logE

q�

h1
k

kX

i=1

w

i

i
= log p(x)

(9)

(Hint: to derive this, work backwards from the definitions of

w

i expectation, applying Jensen’s inequality)
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IWAE: The Weights

• How does this relate to important sampling? Let’s look at the

gradient of L
k

, defining  = (✓,�) for convenience:

r Lk

= r E
z

1,...,zk

h1
k

kX

i=1

w

i

i
(10)

• Reparameterizing z

i = g�(✏i ) let us move the gradient inside

the expectation. Rewriting w

i as w(✏i ) gives:

E✏1,...,✏k
h
r log

1

k

kX

i=1

w(✏i )
i

(11)

= E✏1,...,✏k
h1
k

kX

i=1

e
w(✏i )r logw(✏i )

i
, (12)

where e
w(✏i ) = w(✏i )

1
k

P
k

j=1 w(✏j )
, weighting the samples.
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IWAE: Weighted ELBO

• Recalling that w(✏i ) =
p✓(x ,g�(✏i ))
q�(g�(✏i )|x)

, we can analyze how

e
w(✏i )r logw(✏i ) behaves as an optimization objective:

e
w(✏i )r (log p✓(x , g�(✏

i ))� log q�(g�(✏
i )|x)) (19)

• The log joint term encourages the recognition network q� to

adjust the latent representations so the generator network

makes better predictions

• The log approximate posterior term encourages the network to

have a spread out distribution over the latent variables.

• Both terms are scaled by an importance weight for that
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Outline

Motivations

Limitations of Vanilla VAEs

VAE Training Refresher

Why Vanilla VAEs are Suboptimal

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits
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IWAE: Theoretical Result

Theorem

For all k, the lower bounds satisfy

log p(x) � L
k+1 � L

k

(20)

Morever, if p(z , x)/q(z |x) is bounded, then L
k

approaches

log p(x) as k goes to infinity.

• Under reasonable conditions and given su�cient computing

time, we can make the lower bound on the marginal likelihood

as tight as we want

• This comes at the cost of a linear increase in complexity in

the training of the recognition network (we need an extra k

forward and backwards passes of the recognition network)

• Empirical results on MNIST and OMNIGLOT confirm the

theoretical result here: compared to a VAE with equivalent

architectures, IWAE estimator works better
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IWAE: Summary

• Method is agnostic as to choice of recognition / generative

distributions

• Con: not cheap computationally. See paper for an extra trick

to reduce the linear complexity by a constant factor.

• Useful to quantify progress towards a theoretical lower bound.

I.e., run for k = 5000 times, evaluate how much better your

new method works compared to previous methods in terms of

their progress to the baseline
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Thanks for listening!

If you want a copy of these slides, email me at

roeder@cs.toronto.edu

21



Structured encoding/decoding

We’ll be talking about di↵erent ways of:

I adding structure to the encoder and decoder,

I make q(z |x) or p(x |z) more complex

I “interpret” the latent space



Variational Inference with Normalizing Flows

CSC 2541 Seminar: Structured Encoders/Decoders

Slides by Lisa Zhang

October 14, 2016



The elephant in the room

Figure 1:
https://commons.wikimedia.org/w/index.php?curid=22613018



The elephant in the room

One problem with vanilla variational inference is that we can never
recover the true posterior distribution.

q(z |x) 6= p(z |x)

Not even in the asymptotic regime.

We know that a more faithful q(z |x) gives better result, if we can
sample from it.



Normalizing Flows

Transform a (simple) probability density through a sequence of
invertible mappings.

Hopefully we will

I still be able to sample from this distribution

I better approximate the complex p(z |x) distributions
I recover the true distribution as length of sequence ! 1



Normalizing Flows

I f : IRd ! IRd smooth, invertible, with f �1 = g .

I z random variable with density q(z)

I z 0 = f (z) random variable

q(z 0) = q(z)

����det
@f �1

@z 0

���� = q(z)

����det
@f

@z 0

����
�1

Successively applying for a chain of K transformation

zK = fK � · · · � f2 � f1(z0)

ln qK (zK ) = ln q0(z0)�
KX

k=1

ln

����det
@fk
@zk�1

����



Law of the Unconscious Statistician

The expectation w.r.t. density qK can be computed without
explicitly writing down qK ; such an expectation can be rewritten
as:

EqK [h(z)]] = Eq0 [h(fK � · · · � f2 � f1(z0))]

So we can specify a complex q(z |x) starting with a simple
distribution (e.g. Gaussian), then apply normalizing flows to get a
complex/multimodel distribution.



What it looks like

Figure 2: https://arxiv.org/abs/1505.05770



Architecture

Figure 3: https://arxiv.org/abs/1505.05770



Invertible linear-time transformations
For scalable inference, we need fl that allows for low-cost
computation of the determinant of the Jacobian.

Example

I Planar Flow: contractions/expansions around a hyperplane

I Radial Flow: contractions/expansions around a point

Figure 4: https://arxiv.org/abs/1505.05770



Planar Flow

Transformations of form

f (z) = z + uh(wT z + b)

Can show that

����det
@f

@z

���� =
���1 + uT (z)

���

where  (z) = h0(wT z + b)w .

Modifies the density by a series of contractions and expansions in
the direction perpendicular to the hyperplane wT z + b = 0.



Radial Flow

Transformations of form

f (z) = z + �h(↵, r)(z � z0)

Can also compute
��det@f@z

�� in O(D) time.

Modifies the density by a series radial contractions and expansions
around the reference point z0.



Results: MNIST

Figure 5: https://arxiv.org/abs/1505.05770



Results: CIFAR-10

Figure 6: https://arxiv.org/abs/1505.05770



Conclusion

I The distribution p(z |x) may be highly non-Gaussian

I We take q(z |x) to be something that starts o↵ as a simple
density, then transforms through normalizing flows

I We recover p(z |x) in the limit as K ! 1



Convolutional/Deconvolutional VAEs
Learning to Generate Chairs, Tables and Cars with Convolutional

Networks

University of Toronto

Friday October 14th, 2016
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Motivation Problem Description Experiments

Overview

1 Motivation

2 Problem Description

3 Experiments
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Motivation Problem Description Experiments

Recall the ELBO

The ELBO can be wri�en as:
Ez⇠Q� [log P✓(X |z)]�D[Q�(z|X)||P(z)]
The decoder is any function f : Z ⇥ ✓ ! X that is continuous
in ✓ and allows us to evaluate P✓(X |z). Similarly the encoder
can be any function continuous in � that allows quick
evaluation of Q�(z|X)
We can use ’structured’ encoders and decoders (such as
RNNs/CNNs) that are be�er suited to our specific problem.

(CSC 2541) Structured Encoder/Decoder Friday October 14th, 2016 3 / 14



Motivation Problem Description Experiments

Dealing with image inputs to VAEs

We saw the demo of a VAE trained on MNIST that uses an MLP
as its encoder and decoder
A CNN seems like a more natural choice for encoding the
latent state especially for large images
How do we invert the convolution and pooling operations to
get a decoder?

(CSC 2541) Structured Encoder/Decoder Friday October 14th, 2016 4 / 14



Motivation Problem Description Experiments

Up-convolution

In order to map a dense representation to a high dimensional
image, we need to unpool the feature maps (i.e. increase their
spatial span)
One simple approach is to replace each entry of a feature map
by an s × s block with the entry value in the top le� corner and
zeros elsewhere, followed by a convolution step.

F����� 1: Unpooling and Convolution

Source: What are deconvolutional layers?
(CSC 2541) Structured Encoder/Decoder Friday October 14th, 2016 5 / 14



Motivation Problem Description Experiments

Generating 2-D projections from 3-D models

Given a set of 3D models (of chairs, tables, or cars), , train a neural
network capable of generating 2D projec- tions of the models given:

Model number (defining the style)
Viewpoint (azimuth and elevation)
Transformation parameters(color, brightness, saturation, zoom,
etc)

F����� 2: 2-D projections of chairs, tables and cars
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Motivation Problem Description Experiments

Generating 2-D projections from 3-D models

F����� 3: Architecture of network that generates 128x128 images
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Motivation Problem Description Experiments

Network Architecture

The class identity is passed through an inference network that
encodes it to a latent state z such that zi ⇠ q�(zi|c)
The up-convolutional network then decodes the latent state to
give the mean of the Gaussian distribution for the image

p(T i
✓(xi.si)|zi,✓i,vi) = N (uRGB(ĥ(zi,vi,✓i),Σ) (1)

The objective is the variational lower bound:

Ez[log p(T✓i(xi.si|zi))+ log p(T✓isi|zi)]�KL(q(z|ci)||p(zi)) (2)

with z ⇠ q�(z|ci)
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Motivation Problem Description Experiments

Experiments

F����� 4: Interpolating between chairs
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Motivation Problem Description Experiments

Experiments

F����� 5: Feature arithmetics
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Motivation Problem Description Experiments

Experiments

F����� 6: Knowledge transfer
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Generating	sentences	from	
a	continuous	space
YULIA	RUBANOVA

Class	presentation	for	CSC	2541



Sequence	autoencoder

§ Generates	one	word	at	a	time

§ Can	model	complex	
distributions	over	sentences	
with	long-term	dependences

§ Does	not	incorporate	global	
features	(style,	topic,	high-
level	syntactic	features)

Sentences	produced	by	
greedily	decoding	from	
points	between	two	
sentence	encodings	with	a	
conventional	autoencoder.

Both	encoder	and	decoder	are	RNNs



RNN	variational autoencoder



Optimization	challenge
Model	encodes	useful	information	in	Z when:
§ KL	divergence	between	posterior	and	prior	is	non-zero

§ Reconstruction	error	is	relatively	small	

Otherwise	model	learns	to	ignore	z	and	sets	q(z|x)	to	be	
equal	to	p(z)

Reconstruction	error

KL	divergence	of	the	
posterior	from	the	prior



Solution	to	optimization	issue
During	training,	add	variable	weight	w to	the	KL	term.	

At	start	set	w zero,	then	increase	this	weight.



Word	dropout
Randomly	replace	some	fraction	of	the	conditioned-on	
word	tokens	with	the	generic	unknown	word	token	UNK

This	forces	the	model	to	rely	on	Z to	make	good	predictions



Word	dropout



Interpolation

Paths	between	pairs	
of	random	points	in	
VAE	space

with



More	examples
Three	sentences	which	were	used	as	inputs	to	the	VAE,	presented	with	
greedy	decodes	from	the	mean	of	the	posterior	distribution,	and	from	
three	samples	from	that	distribution.



Summary
Variational autoencoder:

§ Can	decode	plausible	sentences	from	every	reasonable	
point	in	the	latent	space

§ Produces	coherent	new	sentences	that	interpolate	
between	known	sentences	

§ Models	global	features	in	a	continuous	latent	variable	Z
§ Has	similar	performance	to	RNN,	when	global	
representation	is	not	necessary



DeepMind DRAW

Deep Recurrent Attentive Writer

CSC2541 Structured Encoder/Decoders

October 14, 2016

CSC2541 Structured Encoder/Decoders (University of Toronto)DeepMind DRAW October 14, 2016 1 / 15



Generative Modelling

Conventional VAEs
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DRAW Architecture
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DRAW: Network

Iterative equations

For t = 1, ....,T , DRAW computes

x̂

t

= x� �(c
t�1

)

r

t

= read(x, x̂
t

, h

dec

t�1

)

h

enc

t

= RNN

enc(henc
t�1

, [r
t

, h

dec

t�1

])

z

t

⇠ Q(Z
t

|henc
t

)

h

dec

t

= RNN

dec(hdec
t�1

, z

t

)

c

t

= c

t�1

+ write(hdec
t

)

CSC2541 Structured Encoder/Decoders (University of Toronto)DeepMind DRAW October 14, 2016 4 / 15



DRAW: Network

Latent distribution

Diagonal gaussian Q(Z
t

|henc
t

) = N (Z
t

|µ
t

,�

t

) parametrised by

µ

t

= W (henc
t

)

�

t

= exp(µ
t

)

latent prior P (Z
t

) = N (0, I)

easy to sample;

simplified loss

reparameterization trick enables e�cient gradient propagation
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DRAW: Network

Unrolled graph
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DRAW: Network

Loss

reconstruction loss given model D(X|c
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DRAW without attention

read and write operations
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DRAW with attention

attention parameters
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DRAW with attention

N ⇥ N patches extracted from both image and error image
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DRAW with attention

Visualization

Figure: E↵ect of varying � and �
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DRAW Cluttered MNIST Classification
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DRAW Cluttered MNIST Classification
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Core Ideas

Extensions to VAEs

Temporal refinement

RNN ) joint distribution factorizes as product of conditionals, iterative
refinement, as opposed to single step emission

Spatial attention

dynamic attention mechanism increases capability by attending to smaller
regions

Complexity

spatio-temporal properties reduce complexity burden that the autoencoder
learns, allowing for handling of more complex, larger distributions
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Further reading

DRAW paper

Eric Jang’s blog
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Motivation Problem Description Experiments

Conclusion

In our presentation today we discussed several ways of improving
VAEs and making them more suited to several classes of problems

How to e�iciently sample from our approximate posterior
while being able to learn the parameters of the distribution
using the reparametrization trick
Approaches for modelling complicated posterior distributions
using IWAE and Normalizing flows.
Using encoders and decoders that utilize the structure of the
specific problem such as:

Convolutional/Deconvolutional network for images
RNN as encoder/decoder for language models
RNN with a�ention for generating images

(CSC 2541) Structured Encoder/Decoder Friday October 14th, 2016 12 / 14

https://arxiv.org/abs/1506.02557
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1411.5928
https://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1502.04623


Motivation Problem Description Experiments
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