## The (Local) Reparameterization Trick

D. Kingma, T. Salimans, M. Welling <u>https://arxiv.org/abs/1506.02557</u>, <u>https://arxiv.org/abs/1312.6114</u>

Slides by Ray Xiao <u>tianrui.xiao@mail.utoronto.ca</u>

- Helmholtz machine
- The general reparameterization trick
- Look at the formulation of variational inference and SGVB
- Discuss the drawback of the SGVB estimator
- Introduce an alternative estimator (local reparameterization trick)

## Before VAEs

- Helmholtz Machine
  - Multiple stochastic latent layers, each specified by  $p(h_{k-1}|h_k)$  in the generative model; reverse in the recognition model
  - Trained using the wake-sleep algorithm
  - Minimize the cost function  $C(d) = \sum_{\alpha} Q(\alpha|x)C(\alpha, x) (-\sum_{\alpha} Q(\alpha|x)logQ(\alpha|x))$
  - $C(\alpha, x)$  is the cost of describing the input vector x using the "total representations"  $\alpha$
  - $Q(\alpha|x)$  is the conditional distribution of the recognition weights over total representations
- The cost function is analogous to the Helmholtz free energy of a physical system



- For a dataset of N observations  $D = \{x^{(n)}\}_{n=1}^{n=N}$
- There is a simple latent space z:
  - $z \sim p_{\theta}(z)$
  - $x|z \sim p_{\theta}(x|z)$
  - The exact posterior distribution from Bayes' Rule is intractable
- Goal
  - Learn approx. parameters
  - Infer latent variables based on new observations
  - Parameterize model  $q_{\phi}(z|x)$  to approximate p(z|x)
  - Measure by maximizing the variational lower bound:  $\log p(x) \ge L(\theta, \phi) = -D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) + E_{q_{\phi}}[\log p_{\theta}(x|z)] = E_{q_{\phi}}[-\log q_{\phi}(z|x) + \log p_{\theta}(x,z)]$
  - Wish to optimize the variational lower bound w.r.t. the two parameters
  - The MC gradient estimator for  $\phi$  is  $\nabla_{\phi} E_{q_{\phi}}[f(z)]$  which exhibits high variance

# Reparameterization trick

Reparameterised form Original form Backprop  $= g(\phi, x, \varepsilon)$  $\sim q(z|\varphi,x)$ ∂f/∂zi ∠ ~ p(ε) φ  $\partial f / \partial \phi_i$  $\simeq \partial L / \partial \varphi_i$ 

: Deterministic node

: Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014] Kingma & Welling, NIPS workshop 2015

### Auto-encoding VB algorithm

Parameterize as  $p_{\theta}(z)$ ,  $q_{\phi}(z|x)$ 

Repeat

Sample x (datapoint/minibatch)

Sample  $\epsilon \sim p(\epsilon)$ 



Calculate gradients  $g_{\theta}$ ,  $g_{\phi} = \nabla_{\theta,\phi} L(\theta,\phi; x, g(\epsilon,\phi))$  of the minibatch estimator Update parameters

Until convergence

By parameterizing the latent variable z as a deterministic function of a random variable drawn from a prior, we can backprop the gradient to the parameters  $\phi$ .

### Stochastic Gradient Variational Bayes

- Trick is to reparameterize  $z = f_{\phi}(\epsilon, x)$  where f is differentiable and  $\epsilon \sim p(\epsilon)$  is a random noise variable
- $L(\theta,\phi;x^i) = -D_{KL}(q_\phi(z|x^i)||p_\theta(z)) + \frac{1}{L}\sum_{l=1}^{L}(\log p_\theta(x^i|z^{i,l}))$
- For a minibatch of size M, we have a Monte Carlo estimator for the full dataset:  $L_D(\phi) \approx L_D^{SGVB}(\phi) = \frac{N}{M} \sum_{i=1}^{M} (-D_{KL}(q_{\phi}(z|x^i)||p_{\theta}(z)) + \log p_{\theta}(x^i|z^i = f_{\phi}(\epsilon, x))) = \frac{N}{M} \sum_{i=1}^{M} L_i$
- This estimator is unbiased and differentiable w.r.t. φ, so the gradient is also unbiased. Now we have a Monte Carlo estimate, and assuming we can calculate the KL divergence similarly or analytically

### Variance of the SGVB estimator

• 
$$Var[L_D^{SGVB}(\phi)] = \frac{N^2}{M^2} \left( \sum_{i=1}^M Var[L_i] + \sum_{i=1}^M \sum_{j=i+1}^M Cov[L_i, L_j] \right) = N^2 \left( \frac{1}{M} Var[L_i] + \frac{M^{-1}}{M} Cov[L_i, L_j] \right)$$

- Note from above that the variance can be dominated by the covariance terms
- If the variance is large, the stochastic gradient descent won't converge to local optimum
- Thus we want an estimator with zero covariance

### Local Reparameterization Trick

- Propose an estimator with zero covariance
- We sample from the intermediate variables  $f(\epsilon)$  instead of sampling from the noise distribution directly
- Example: fully connected NN with 1 hidden layer, 1000 units
- Input matrix A (M x 1000), then neuron activation B = AW
- Suppose posterior approx. of weights to be a fully factorized Gaussian:  $q_{\phi}(w_{i,j}) = N(\mu_{i,j}, \sigma_{i,j}^2)$
- This way we can ensure zero covariance by sampling a separate W for each example, but it's inefficient

- Note the weights influence B, which are of lower dimension, so we can sample random activations B instead
- For a factorized Gaussian posterior on W, we also have a factorized Gaussian for activations:
  - $q_{\phi}(b_{m,j}|A) = N(\gamma_{m,j}, \delta_{m,j})$
  - $\gamma_{m,j} = \sum_{i=1}^{1000} a_{m,i} \mu_{i,j}$   $\delta_{m,j} = \sum_{i=1}^{1000} a_{m,i}^2 \delta_{i,j}^2$
  - So we can sample the activations from the implied Gaussian distribution directly as  $b_{m,j} = \gamma_{m,j} + \sqrt{\delta_{m,j}} \zeta_{m,j} \quad \zeta_{m,j} \sim N(0,1)$

#### Importance Weighted Autoencoders

Yuri Burda, Roger Grosse, & Ruslan Salakhutdinov (2016)

"Get a tighter lower bound by sampling k times from the approximate posterior"

Geoffrey Roeder (roeder@cs.toronto.edu) October 14, 2016

#### Outline

#### Motivations

Limitations of Vanilla VAEs VAE Training Refresher Why Vanilla VAEs are Suboptimal

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits

#### **Motivations**

#### Outline

#### Motivations

#### Limitations of Vanilla VAEs

VAE Training Refresher

Why Vanilla VAEs are Suboptima

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits

#### Importance Weighted Autoencoder (IWAE) Idea

• We want to learn flexible approximate posteriors to have a rich probability model

#### Importance Weighted Autoencoder (IWAE) Idea

- We want to learn flexible approximate posteriors to have a rich probability model
- Vanilla VAE (Auto-Encoding Variational Bayes) uses a single sample of the latent variable for each datapoint when estimating the gradient

#### Importance Weighted Autoencoder (IWAE) Idea

- We want to learn flexible approximate posteriors to have a rich probability model
- Vanilla VAE (Auto-Encoding Variational Bayes) uses a single sample of the latent variable for each datapoint when estimating the gradient
- IWAE ("eye-way") learns a more flexible posterior by averaging multiple samples of the posterior scaled according to importance weights

#### Outline

#### Motivations

VAE Training Refresher

#### Vanilla VAEs Refresher: Stochastic Backpropagation

 Train VAEs by optimizing lower bound *L* on log-posterior, equivalent to minimizing *KL*(q<sub>φ</sub>(z|x)||p(z|x))

$$\log p(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[ \log \frac{p_{\theta}(z,x)}{q_{\phi}(z|x)} \Big] = \mathcal{L}(\theta,\phi;x)$$
(1)

#### Vanilla VAEs Refresher: Stochastic Backpropagation

 Train VAEs by optimizing lower bound *L* on log-posterior, equivalent to minimizing *KL*(q<sub>φ</sub>(z|x)||p(z|x))

$$\log p(x) \geq \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[ \log \frac{p_{\theta}(z,x)}{q_{\phi}(z|x)} \Big] = \mathcal{L}(\theta,\phi;x) \qquad (1)$$

• Reparameterize  $z=g_{\phi}(\epsilon,x)$  and obtain gradient by auto-diff

$$\nabla_{\theta,\phi} \ \mathcal{L}(\theta,\phi;x) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} \Big[ \nabla_{\theta,\phi} \log \frac{p_{\theta}(g_{\phi}(\epsilon,x),x)}{q_{\phi}(g_{\phi}(\epsilon,x)|x)} \Big] \quad (2)$$

#### Vanilla VAEs Refresher: Stochastic Backpropagation

 Train VAEs by optimizing lower bound L on log-posterior, equivalent to minimizing KL(q<sub>\phi</sub>(z|x)||p(z|x))

$$\log p(x) \geq \mathbb{E}_{z \sim q_{\phi}(z|x)} \Big[ \log \frac{p_{\theta}(z,x)}{q_{\phi}(z|x)} \Big] = \mathcal{L}(\theta,\phi;x) \qquad (1)$$

• Reparameterize  $z=g_{\phi}(\epsilon,x)$  and obtain gradient by auto-diff

$$\nabla_{\theta,\phi} \ \mathcal{L}(\theta,\phi;x) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} \Big[ \nabla_{\theta,\phi} \log \frac{p_{\theta}(g_{\phi}(\epsilon,x),x)}{q_{\phi}(g_{\phi}(\epsilon,x)|x)} \Big] \quad (2)$$

• Estimate by MC: generate K samples of  $\epsilon$  and evaluate

$$\frac{1}{K} \sum_{i=1}^{K} \nabla_{\theta,\phi} \log \frac{p_{\theta}(g_{\phi}(\epsilon^{(i)}, x), x)}{q_{\phi}(g_{\phi}(\epsilon^{(i)}, x)|x)}$$
(3)

#### Outline

#### Motivations

Limitations of Vanilla VAEs VAE Training Refresher Why Vanilla VAEs are Suboptimal

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits

 Optimizer maximizes ∇<sub>θ,φ</sub> L(θ, φ; x) w.r.t. φ, θ where each step estimates gradient based on a single sample z ~ q<sub>φ</sub>(z|x)

- Optimizer maximizes ∇<sub>θ,φ</sub> L(θ, φ; x) w.r.t. φ, θ where each step estimates gradient based on a single sample z ~ q<sub>φ</sub>(z|x)
- This harshly penalizes any stochastic samples that don't explain the data well

- Optimizer maximizes ∇<sub>θ,φ</sub> L(θ, φ; x) w.r.t. φ, θ where each step estimates gradient based on a single sample z ~ q<sub>φ</sub>(z|x)
- This harshly penalizes any stochastic samples that don't explain the data well
- Encourages learned approximate posterior to be approximately factorial (random variables are statistically independent so that  $p(y_1, ..., y_L) = \prod_{j=1}^{L} p(y_j)$ ), with parameters that are learnable through nonlinear regression (as the final layer of a neural network)

#### **IWAE Solution**

#### Outline

Motivations

Limitations of Vanilla VAEs VAE Training Refresher Why Vanilla VAEs are Suboptime

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits

Consider an arbitrary E<sub>p(z)</sub>[f(z)] where p(z) is a complicated distribution, f(z) is any function, and q(z) any easy-to-sample and easy-to-evaluate distribution

- Consider an arbitrary E<sub>p(z)</sub>[f(z)] where p(z) is a complicated distribution, f(z) is any function, and q(z) any easy-to-sample and easy-to-evaluate distribution
- Sampling from p(z) is hard, so we'd rather sample from q(z). This introduces a bias, because the expectation is w.r.t. p(z).

- Consider an arbitrary E<sub>p(z)</sub>[f(z)] where p(z) is a complicated distribution, f(z) is any function, and q(z) any easy-to-sample and easy-to-evaluate distribution
- Sampling from p(z) is hard, so we'd rather sample from q(z).
   This introduces a bias, because the expectation is w.r.t. p(z).
- By using importance weights, we correct that bias. The derivation is straightforward:

$$\mathbb{E}_p(z)[f(z)] = \int p(z)f(z)dz = \int q(z)\frac{p(z)}{q(z)}f(z)dz \qquad (4)$$

$$= \int q(z)w(z)f(z)dz \qquad (5)$$

$$= \mathbb{E}_q(z)[w(z)f(z)] \tag{6}$$

$$\approx \frac{1}{K} \sum_{i=1}^{K} w(z^{(i)}) f(z^{(i)})$$
 (7)



Bishop PRML, Fig. 11.8

#### Outline

Motivations

Limitations of Vanilla VAEs VAE Training Refresher Why Vanilla VAEs are Suboptim

IWAE Solution

Inspiration: Importance Sampling

Importance Weighted Autoencoder

Benefits

#### **IWAE** The What

• Take k independent samples to evaluate the loss:

$$\mathcal{L}_{k} = \mathbb{E}_{z^{1},...,z^{k} \sim q(z|x)} \Big[ \log \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z^{i})}{q_{\phi}(z^{i}|x)} \Big]$$
(8)

#### **IWAE** The What

• Take k independent samples to evaluate the loss:

$$\mathcal{L}_{k} = \mathbb{E}_{z^{1},...,z^{k} \sim q(z|x)} \Big[ \log \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z^{i})}{q_{\phi}(z^{i}|x)} \Big]$$
(8)

#### **IWAE** The What

• Take k independent samples to evaluate the loss:

$$\mathcal{L}_{k} = \mathbb{E}_{z^{1},\dots,z^{k} \sim q(z|x)} \Big[ \log \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z^{i})}{q_{\phi}(z^{i}|x)} \Big]$$
(8)

- For simplicity, call  $w^i = \frac{p_{\theta}(x,z^i)}{q_{\phi}(z^i|x)}$ . Then, it's still true that

$$\mathcal{L}_{k} = \mathbb{E}_{q_{\phi}} \Big[ \log \frac{1}{k} \sum_{i=1}^{k} w^{i} \Big] \le \log \mathbb{E}_{q_{\phi}} \Big[ \frac{1}{k} \sum_{i=1}^{k} w^{i} \Big] = \log p(x)$$
(9)

(Hint: to derive this, work backwards from the definitions of  $w^i$  expectation, applying Jensen's inequality)

#### **IWAE:** The Weights

How does this relate to important sampling? Let's look at the gradient of L<sub>k</sub>, defining ψ = (θ, φ) for convenience:

$$\nabla_{\psi} \mathcal{L}_{k} = \nabla_{\psi} \mathbb{E}_{z^{1},...,z^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}^{i} \Big]$$
(10)
How does this relate to important sampling? Let's look at the gradient of L<sub>k</sub>, defining ψ = (θ, φ) for convenience:

$$\nabla_{\psi} \mathcal{L}_{k} = \nabla_{\psi} \mathbb{E}_{z^{1},...,z^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}^{i} \Big]$$
(10)

 Reparameterizing z<sup>i</sup> = g<sub>φ</sub>(ε<sup>i</sup>) let us move the gradient inside the expectation. Rewriting w<sup>i</sup> as w(ε<sup>i</sup>) gives:

 How does this relate to important sampling? Let's look at the gradient of L<sub>k</sub>, defining ψ = (θ, φ) for convenience:

$$\nabla_{\psi} \mathcal{L}_{k} = \nabla_{\psi} \mathbb{E}_{z^{1},...,z^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}^{i} \Big]$$
(10)

 Reparameterizing z<sup>i</sup> = g<sub>φ</sub>(ε<sup>i</sup>) let us move the gradient inside the expectation. Rewriting w<sup>i</sup> as w(ε<sup>i</sup>) gives:

$$\mathbb{E}_{\epsilon^{1},...,\epsilon^{k}}\left[\nabla_{\psi}\log\frac{1}{k}\sum_{i=1}^{k}\boldsymbol{w}(\epsilon^{i})\right]$$
(11)

$$= \mathbb{E}_{\epsilon^{1},...,\epsilon^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} \widetilde{w}(\epsilon^{i}) \nabla_{\psi} \log w(\epsilon^{i}) \Big], \qquad (12)$$

where  $\widetilde{w}(\epsilon^{i}) = \frac{w(\epsilon^{i})}{\frac{1}{k}\sum_{j=1}^{k}w(\epsilon^{j})}$ , weighting the samples.

How does this relate to important sampling? Let's look at the gradient of  $\mathcal{L}_k$ , defining  $\psi = (\theta, \phi)$  for convenience:

$$\nabla_{\psi} \mathcal{L}_{k} = \nabla_{\psi} \mathbb{E}_{z^{1},...,z^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} w^{i} \Big]$$
(13)

Reparameterizing  $z^i = g_{\phi}(\epsilon^i)$  let us move the gradient inside the expectation. Rewriting  $w^i$  as  $w(\epsilon^i)$  gives:

$$\mathbb{E}_{\epsilon^{1},...,\epsilon^{k}} \Big[ \nabla_{\psi} \log \frac{1}{k} \sum_{i=1}^{k} w(\epsilon^{i}) \Big]$$
(14)  
=  $\mathbb{E}_{\epsilon^{1},...,\epsilon^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} \widetilde{w}(\epsilon^{i}) \nabla_{\psi} \log w(\epsilon^{i}) \Big],$ (15)

where  $\widetilde{w}(\epsilon^{i}) = \frac{w(\epsilon^{i})}{\frac{1}{k}\sum_{j=1}^{k}w(\epsilon^{j})}$ , weighting the samples

How does this relate to important sampling? Let's look at the gradient of  $\mathcal{L}_k$ , defining  $\psi = (\theta, \phi)$  for convenience:

$$\nabla_{\psi} \mathcal{L}_{k} = \nabla_{\psi} \mathbb{E}_{z^{1},...,z^{k}} \Big[ \frac{1}{k} \sum_{i=1}^{k} w^{i} \Big]$$
(16)

Reparameterizing  $z^i = g_{\phi}(\epsilon^i)$  let us move the gradient inside the expectation. Rewriting  $w^i$  as  $w(\epsilon^i)$  gives:

$$\mathbb{E}_{\epsilon^{1},\ldots,\epsilon^{k}} \left[ \nabla_{\psi} \log \frac{1}{k} \sum_{i=1}^{k} w(\epsilon^{i}) \right]$$
(17)
$$= \mathbb{E}_{\epsilon^{1},\ldots,\epsilon^{k}} \left[ \frac{1}{k} \sum_{i=1}^{k} \widetilde{w}(\epsilon^{i}) \nabla_{\psi} \log \frac{p_{\theta}(x,z^{i})}{q_{\phi}(z^{i}|x)} \right],$$
(18)

where  $\widetilde{w}(\epsilon^{j}) = \frac{w(\epsilon^{j})}{\frac{1}{k}\sum_{j=1}^{k}w(\epsilon^{j})}$ , weighting the samples

• Recalling that  $w(\epsilon^i) = \frac{p_{\theta}(x, g_{\phi}(\epsilon^i))}{q_{\phi}(g_{\phi}(\epsilon^i)|x)}$ , we can analyze how  $\widetilde{w}(\epsilon^i) \nabla_{\psi} \log w(\epsilon^i)$  behaves as an optimization objective:

 $\widetilde{w}(\epsilon^{i})\nabla_{\psi}(\log p_{\theta}(x, g_{\phi}(\epsilon^{i})) - \log q_{\phi}(g_{\phi}(\epsilon^{i})|x))$ (19)

- Recalling that  $w(\epsilon^i) = \frac{p_{\theta}(x, g_{\phi}(\epsilon^i))}{q_{\phi}(g_{\phi}(\epsilon^i)|x)}$ , we can analyze how  $\widetilde{w}(\epsilon^i) \nabla_{\psi} \log w(\epsilon^i)$  behaves as an optimization objective:  $\widetilde{w}(\epsilon^i) \nabla_{\psi} (\log p_{\theta}(x, g_{\phi}(\epsilon^i)) - \log q_{\phi}(g_{\phi}(\epsilon^i)|x))$  (19)
- The log joint term encourages the recognition network  $q_{\phi}$  to adjust the latent representations so the generator network makes better predictions

• Recalling that  $w(\epsilon^{i}) = \frac{p_{\theta}(x, g_{\phi}(\epsilon^{i}))}{q_{\phi}(g_{\phi}(\epsilon^{i})|x)}$ , we can analyze how  $\widetilde{w}(\epsilon^{i})\nabla_{\psi}\log w(\epsilon^{i})$  behaves as an optimization objective:  $\widetilde{w}(\epsilon^{i})\nabla_{\psi}(\log p_{\theta}(x, g_{\phi}(\epsilon^{i})) - \log q_{\phi}(g_{\phi}(\epsilon^{i})|x))$  (19)

- The log joint term encourages the recognition network q<sub>φ</sub> to adjust the latent representations so the generator network makes better predictions
- The log approximate posterior term encourages the network to have a spread out distribution over the latent variables.

- Recalling that  $w(\epsilon^i) = \frac{p_{\theta}(x, g_{\phi}(\epsilon^i))}{q_{\phi}(g_{\phi}(\epsilon^i)|x)}$ , we can analyze how  $\widetilde{w}(\epsilon^i) \nabla_{\psi} \log w(\epsilon^i)$  behaves as an optimization objective:  $\widetilde{w}(\epsilon^i) \nabla_{\psi} (\log p_{\theta}(x, g_{\phi}(\epsilon^i)) - \log q_{\phi}(g_{\phi}(\epsilon^i)|x))$  (19)
- The log joint term encourages the recognition network q<sub>φ</sub> to adjust the latent representations so the generator network makes better predictions
- The log approximate posterior term encourages the network to have a spread out distribution over the latent variables.
- Both terms are scaled by an importance weight for that sample of the latent variables, which ensures that non-representative samples incur smaller penalties

## Outline

#### Motivations

Limitations of Vanilla VAEs VAE Training Refresher Why Vanilla VAEs are Suboptime

## IWAE Solution

Inspiration: Importance Sampling Importance Weighted Autoencode

Benefits

#### Theorem

For all k, the lower bounds satisfy

$$\log p(x) \ge \mathcal{L}_{k+1} \ge \mathcal{L}_k \tag{20}$$

Morever, if p(z,x)/q(z|x) is bounded, then  $\mathcal{L}_k$  approaches  $\log p(x)$  as k goes to infinity.

#### Theorem

For all k, the lower bounds satisfy

$$\log p(x) \ge \mathcal{L}_{k+1} \ge \mathcal{L}_k \tag{20}$$

Morever, if p(z,x)/q(z|x) is bounded, then  $\mathcal{L}_k$  approaches  $\log p(x)$  as k goes to infinity.

• Under reasonable conditions and given sufficient computing time, we can make the lower bound on the marginal likelihood as tight as we want

#### Theorem

For all k, the lower bounds satisfy

$$\log p(x) \ge \mathcal{L}_{k+1} \ge \mathcal{L}_k \tag{20}$$

Morever, if p(z,x)/q(z|x) is bounded, then  $\mathcal{L}_k$  approaches  $\log p(x)$  as k goes to infinity.

- Under reasonable conditions and given sufficient computing time, we can make the lower bound on the marginal likelihood as tight as we want
- This comes at the cost of a linear increase in complexity in the training of the recognition network (we need an extra k forward and backwards passes of the recognition network)

#### Theorem

For all k, the lower bounds satisfy

$$\log p(x) \ge \mathcal{L}_{k+1} \ge \mathcal{L}_k \tag{20}$$

Morever, if p(z,x)/q(z|x) is bounded, then  $\mathcal{L}_k$  approaches  $\log p(x)$  as k goes to infinity.

- Under reasonable conditions and given sufficient computing time, we can make the lower bound on the marginal likelihood as tight as we want
- This comes at the cost of a linear increase in complexity in the training of the recognition network (we need an extra k forward and backwards passes of the recognition network)
- Empirical results on MNIST and OMNIGLOT confirm the theoretical result here: compared to a VAE with equivalent

• Method is agnostic as to choice of recognition / generative distributions

- Method is agnostic as to choice of recognition / generative distributions
- Con: not cheap computationally. See paper for an extra trick to reduce the linear complexity by a constant factor.

- Method is agnostic as to choice of recognition / generative distributions
- Con: not cheap computationally. See paper for an extra trick to reduce the linear complexity by a constant factor.
- Useful to quantify progress towards a theoretical lower bound.
  I.e., run for k = 5000 times, evaluate how much better your new method works compared to previous methods in terms of their progress to the baseline

Thanks for listening! If you want a copy of these slides, email me at roeder@cs.toronto.edu

# Structured encoding/decoding

We'll be talking about different ways of:

- adding structure to the encoder and decoder,
- make q(z|x) or p(x|z) more complex
- "interpret" the latent space

# Variational Inference with Normalizing Flows

#### CSC 2541 Seminar: Structured Encoders/Decoders

Slides by Lisa Zhang

October 14, 2016

# The elephant in the room



Figure 1: https://commons.wikimedia.org/w/index.php?curid=22613018 One problem with vanilla variational inference is that we can never recover the true posterior distribution.

 $q(z|x) \neq p(z|x)$ 

Not even in the asymptotic regime.

We know that a more faithful q(z|x) gives better result, if we can sample from it.

Transform a (simple) probability density through a sequence of invertible mappings.

Hopefully we will

- still be able to sample from this distribution
- better approximate the complex p(z|x) distributions
- $\blacktriangleright$  recover the true distribution as length of sequence  $\rightarrow\infty$

## Normalizing Flows

- $f : \mathbb{R}^d \to \mathbb{R}^d$  smooth, invertible, with  $f^{-1} = g$ .
- z random variable with density q(z)
- z' = f(z) random variable

$$q(z') = q(z) \left| \det \frac{\partial f^{-1}}{\partial z'} \right| = q(z) \left| \det \frac{\partial f}{\partial z'} \right|^{-1}$$

Successively applying for a chain of K transformation

$$z_{\mathcal{K}} = f_{\mathcal{K}} \circ \dots \circ f_{2} \circ f_{1}(z_{0})$$
$$\ln q_{\mathcal{K}}(z_{\mathcal{K}}) = \ln q_{0}(z_{0}) - \sum_{k=1}^{\mathcal{K}} \ln \left| \det \frac{\partial f_{k}}{\partial z_{k-1}} \right|$$

The expectation w.r.t. density  $q_K$  can be computed without explicitly writing down  $q_K$ ; such an expectation can be rewritten as:

$$\mathbb{E}_{q_{\mathcal{K}}}[h(z)]] = \mathbb{E}_{q_0}[h(f_{\mathcal{K}} \circ \cdots \circ f_2 \circ f_1(z_0))]$$

So we can specify a complex q(z|x) starting with a simple distribution (e.g. Gaussian), then apply normalizing flows to get a complex/multimodel distribution.

What it looks like



Figure 2: https://arxiv.org/abs/1505.05770

## Architecture



Figure 3: https://arxiv.org/abs/1505.05770

## Invertible linear-time transformations

For scalable inference, we need  $f_l$  that allows for low-cost computation of the determinant of the Jacobian.

## Example

- Planar Flow: contractions/expansions around a hyperplane
- Radial Flow: contractions/expansions around a point



Figure 4: https://arxiv.org/abs/1505.05770

## **Planar Flow**

Transformations of form

$$f(z) = z + uh(w^T z + b)$$

Can show that

$$\left|\det\frac{\partial f}{\partial z}\right| = \left|1 + u^{\mathsf{T}}\psi(z)\right|$$

where  $\psi(z) = h'(w^T z + b)w$ .

Modifies the density by a series of contractions and expansions in the direction perpendicular to the hyperplane  $w^T z + b = 0$ .

## **Radial Flow**

Transformations of form

$$f(z) = z + \beta h(\alpha, r)(z - z_0)$$

Can also compute  $\left|\det \frac{\partial f}{\partial z}\right|$  in O(D) time.

Modifies the density by a series radial contractions and expansions around the reference point  $z_0$ .

# Results: MNIST

| Model                                      | $-\ln p(\mathbf{x})$ |
|--------------------------------------------|----------------------|
| DLGM diagonal covariance                   | $\leq 89.9$          |
| DLGM+NF (k = 10)                           | $\leq 87.5$          |
| DLGM+NF (k = 20)                           | $\leq 86.5$          |
| DLGM+NF (k = 40)                           | $\leq 85.7$          |
| DLGM+NF (k = 80)                           | $\leq 85.1$          |
| DLGM+NICE $(k = 10)$                       | $\leq 88.6$          |
| DLGM+NICE ( $k = 20$ )                     | $\leq 87.9$          |
| DLGM+NICE ( $k = 40$ )                     | $\leq 87.3$          |
| DLGM+NICE $(k = 80)$                       | $\leq 87.2$          |
| Results below from (Salimans et al., 2015) |                      |
| DLGM + HVI (1 leapfrog step)               | 88.08                |
| DLGM + HVI (4 leapfrog steps)              | 86.40                |
| DLGM + HVI (8 leapfrog steps)              | 85.51                |
| Results below from (Gregor et al., 2014)   |                      |
| DARN $n_h = 500$                           | 84.71                |
| DARN $n_h = 500$ , adaNoise                | 84.13                |

Table 2. Comparison of negative log-probabilities on the test set for the binarised MNIST data.

Figure 5: https://arxiv.org/abs/1505.05770

| Table 3. Test set performance on the CIFAR-10 data. |        |        |        |        |  |
|-----------------------------------------------------|--------|--------|--------|--------|--|
|                                                     | K = 0  | K = 2  | K = 5  | K = 10 |  |
| $-\ln p(\mathbf{x})$                                | -293.7 | -308.6 | -317.9 | -320.7 |  |

Figure 6: https://arxiv.org/abs/1505.05770

## Conclusion

- The distribution p(z|x) may be highly non-Gaussian
- ► We take q(z|x) to be something that starts off as a simple density, then transforms through normalizing flows
- We recover p(z|x) in the limit as  $K \to \infty$

Convolutional/Deconvolutional VAEs Learning to Generate Chairs, Tables and Cars with Convolutional Networks

University of Toronto

Friday October 14th, 2016

### Overview







## Recall the ELBO

- The ELBO can be written as:  $\mathbb{E}_{z \sim Q_{\phi}}[\log P_{\theta}(X|z)] - \mathcal{D}[Q_{\phi}(z|X)||P(z)]$
- The decoder is any function f : Z × θ → X that is continuous in θ and allows us to evaluate P<sub>θ</sub>(X|z). Similarly the encoder can be any function continuous in φ that allows quick evaluation of Q<sub>φ</sub>(z|X)
- We can use 'structured' encoders and decoders (such as RNNs/CNNs) that are better suited to our specific problem.

# Dealing with image inputs to VAEs

- We saw the demo of a VAE trained on MNIST that uses an MLP as its encoder and decoder
- A CNN seems like a more natural choice for encoding the latent state especially for **large images**
- How do we invert the convolution and pooling operations to get a decoder?
|      | Problem Description |
|------|---------------------|
| 0000 |                     |
|      |                     |

### **Up-convolution**

- In order to map a dense representation to a high dimensional image, we need to **unpool** the feature maps (i.e. increase their spatial span)
- One simple approach is to replace each entry of a feature map by an s × s block with the entry value in the top left corner and zeros elsewhere, followed by a convolution step.



FIGURE 1: Unpooling and Convolution

Source: What are deconvolutional layers?

Structured Encoder/Decoder

# Generating 2-D projections from 3-D models

Given a set of 3D models (of chairs, tables, or cars), , train a neural network capable of generating 2D projec- tions of the models given:

- Model number (defining the style)
- Viewpoint (azimuth and elevation)
- Transformation parameters(color, brightness, saturation, zoom, etc)



FIGURE 2: 2-D projections of chairs, tables and cars

(CSC 2541)

# Generating 2-D projections from 3-D models



FIGURE 3: Architecture of network that generates 128x128 images

## Network Architecture

Motivation

- The class identity is passed through an inference network that encodes it to a latent state z such that  $z^i \sim q_\phi(z^i|c)$
- The up-convolutional network then **decodes** the latent state to give the mean of the Gaussian distribution for the image

$$p(T_{\theta}^{i}(\mathbf{x}^{i}.\mathbf{s}^{i})|\mathbf{z}^{i},\theta^{i},\mathbf{v}^{i}) = \mathcal{N}(u_{RGB}(\hat{h}(\mathbf{z}^{i},\mathbf{v}^{i},\theta^{i}),\mathbf{\Sigma})$$
(1)

• The objective is the variational lower bound:

 $\mathbb{E}_{z}[\log p(T_{\theta_{i}}(\mathbf{x}^{i}.\mathbf{s}^{i}|\mathbf{z}^{i})) + \log p(T_{\theta_{i}}\mathbf{s}^{i}|\mathbf{z}^{i})] - KL(q(\mathbf{z}|\mathbf{c}^{i})||p(\mathbf{z}^{i}))$ (2) with  $z \sim q_{\phi}(\mathbf{z}|\mathbf{c}^{i})$ 

### Experiments



FIGURE 4: Interpolating between chairs

### Experiments



FIGURE 5: Feature arithmetics

### Experiments



FIGURE 6: Knowledge transfer

# Generating sentences from a continuous space

YULIA RUBANOVA

Class presentation for CSC 2541

# Sequence autoencoder

Both encoder and decoder are RNNs

- Generates one word at a time
- Can model complex distributions over sentences with long-term dependences
- Does not incorporate global features (style, topic, highlevel syntactic features)

i went to the store to buy some groceries *i* store to buy some groceries . *i* were to buy any groceries . horses are to buy any groceries . horses are to buy any animal . horses the favorite any animal . horses the favorite favorite animal . horses are my favorite animal .

Sentences produced by greedily decoding from points between two sentence encodings with a conventional autoencoder.

# RNN variational autoencoder



# Optimization challenge

Model encodes useful information in **Z** when:

- KL divergence between posterior and prior is non-zero
- Reconstruction error is relatively small

Otherwise model learns to ignore z and sets q(z|x) to be equal to p(z)

 $\begin{aligned} \mathcal{L}(\theta;x) &= -\mathrm{KL}(q_{\theta}(\vec{z}|x)||p(\vec{z})) & \longleftarrow & \mathrm{KL} \, \mathrm{divergence} \, \mathrm{of} \, \mathrm{the} \\ &+ \mathbb{E}_{q_{\theta}(\vec{z}|x)}[\log p_{\theta}(x|\vec{z})] & \longleftarrow \, \mathrm{Reconstruction} \, \mathrm{error} \\ &\leq \log p(x) \end{aligned}$ 

# Solution to optimization issue

During training, add variable weight **w** to the KL term.

At start set w zero, then increase this weight.



# Word dropout

Randomly replace some fraction of the conditioned-on word tokens with the generic unknown word token UNK

This forces the model to rely on **Z** to make good predictions



# Word dropout

| 100% word keep                                                                                                                 | 75% word keep                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| " no , " he said .<br>" thank you , " he said .                                                                                | " love you , too . "<br>she put her hand on his shoulder and followed him<br>to the door .                   |
| 50% word keep                                                                                                                  | 0% word keep                                                                                                 |
| " maybe two or two . "<br>she laughed again , once again , once again , and<br>thought about it for a moment in long silence . | <i>i i hear some of of of</i><br><i>i was noticed that she was holding the in in of the</i><br><i>the in</i> |

# Interpolation

 $\vec{z}(t) = \vec{z}_1 * (1-t) + \vec{z}_2 * t$  with  $t \in [0, 1]$ .

"i want to talk to you ." "i want to be with you ." "i do n't want to be with you ." i do n't want to be with you . she did n't want to be with him .

he was silent for a long moment . he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn . Paths between pairs of random points in VAE space

# More examples

Three sentences which were used as inputs to the VAE, presented with greedy decodes from the mean of the posterior distribution, and from three samples from that distribution.

| INPUT     | we looked out at the setting sun .             | i went to the kitchen .                  | how are you doing ?    |
|-----------|------------------------------------------------|------------------------------------------|------------------------|
| MEAN      | they were laughing at the same time .          | $i \ went \ to \ the \ kitchen$ .        | what are you doing $?$ |
| SAMP. 1   | ill see you in the early morning .             | $i \ went \ to \ my \ apartment$ .       | " are you sure ?       |
| SAMP. $2$ | $i \ looked \ up \ at \ the \ blue \ sky$ .    | $i \ looked \ around \ the \ room$ .     | what are you doing $?$ |
| SAMP. 3   | $it \ was \ down \ on \ the \ dance \ floor$ . | $i \ turned \ back \ to \ the \ table$ . | what are you doing $?$ |

# Summary

Variational autoencoder:

- Can decode plausible sentences from every reasonable point in the latent space
- Produces coherent new sentences that interpolate between known sentences
- Models global features in a continuous latent variable Z
- Has similar performance to RNN, when global representation is not necessary

DeepMind DRAW Deep Recurrent Attentive Writer

#### CSC2541 Structured Encoder/Decoders

October 14, 2016

CSC2541 Structured Encoder/Decoders (Univ

DeepMind DRAW

October 14, 2016 1 / 15

3

(日) (周) (三) (三)

# Generative Modelling

**Conventional VAEs** 



CSC2541 Structured Encoder/Decoders (Univ

### **DRAW** Architecture



(日) (四) (王) (王) (王)

Iterative equations

For t = 1, ..., T, DRAW computes

$$\hat{x}_t = x - \boldsymbol{\sigma}(c_{t-1})$$

$$r_t = read(x, \hat{x}_t, h_{t-1}^{dec})$$

$$h_t^{enc} = RNN^{enc}(h_{t-1}^{enc}, [r_t, h_{t-1}^{dec}])$$

$$z_t \sim Q(Z_t | h_t^{enc})$$

$$h_t^{dec} = RNN^{dec}(h_{t-1}^{dec}, z_t)$$

$$c_t = c_{t-1} + write(h_t^{dec})$$

• Diagonal gaussian  $Q(Z_t|h_t^{enc}) = \mathcal{N}(Z_t|\mu_t, \sigma_t)$  parametrised by

$$\mu_t = W(h_t^{enc})$$
$$\sigma_t = \exp(\mu_t)$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Diagonal gaussian  $Q(Z_t|h_t^{enc}) = \mathcal{N}(Z_t|\mu_t, \sigma_t)$  parametrised by

$$\mu_t = W(h_t^{enc})$$
$$\sigma_t = \exp(\mu_t)$$

• latent prior  $P(Z_t) = \mathcal{N}(0, I)$ 

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Diagonal gaussian  $Q(Z_t|h_t^{enc}) = \mathcal{N}(Z_t|\mu_t, \sigma_t)$  parametrised by

$$\mu_t = W(h_t^{enc})$$
$$\sigma_t = \exp(\mu_t)$$

• latent prior 
$$P(Z_t) = \mathcal{N}(0, I)$$

easy to sample;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Diagonal gaussian  $Q(Z_t|h_t^{enc}) = \mathcal{N}(Z_t|\mu_t, \sigma_t)$  parametrised by

$$\mu_t = W(h_t^{enc})$$
$$\sigma_t = \exp(\mu_t)$$

• latent prior 
$$P(Z_t) = \mathcal{N}(0, I)$$

• easy to sample; simplified loss

イロト イポト イヨト イヨト 二日

• Diagonal gaussian  $Q(Z_t|h_t^{enc}) = \mathcal{N}(Z_t|\mu_t, \sigma_t)$  parametrised by

$$\mu_t = W(h_t^{enc})$$
$$\sigma_t = \exp(\mu_t)$$

• latent prior 
$$P(Z_t) = \mathcal{N}(0, I)$$

easy to sample; simplified loss

• reparameterization trick enables efficient gradient propagation

イロト イポト イヨト イヨト 二日

Unrolled graph



CSC2541 Structured Encoder/Decoders (Univ

DeepMind DRAW

æ

Loss

• reconstruction loss given model  $D(X|c_T)$ 

$$\mathcal{L}^x = -\log D(x|c_T)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Loss

• reconstruction loss given model  $D(X|c_T)$ 

$$\mathcal{L}^x = -\log D(x|c_T)$$

• latent loss  $\mathcal{L}^{z} = \sum_{t}^{T} KL(Q(Z_{t}|h_{t}^{enc})||P(Z_{t}))$ 

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Loss

• reconstruction loss given model  $D(X|c_T)$ 

$$\mathcal{L}^x = -\log D(x|c_T)$$

• latent loss  $\mathcal{L}^{z} = \sum_{t=1}^{T} KL(Q(Z_{t}|h_{t}^{enc})||P(Z_{t}))$ • Gaussian latents  $\Rightarrow \mathcal{L}^{z} = \frac{1}{2} \left( \sum_{t=1}^{T} \mu_{t}^{2} + \sigma_{t}^{2} - \log\sigma_{t}^{2} \right) - T/2$ • total loss  $\mathcal{L} = \left\langle \mathcal{L}^{x} + \mathcal{L}^{z} \right\rangle_{z \sim Q}$ 

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

### DRAW without attention

• read and write operations

$$read(x, \hat{x}_t, h_{t-1}^{dec}) = [x, x_t]$$
$$write(h_t^{dec}) = W(h_t^{dec})$$

イロト イヨト イヨト イヨト

• read and write operations

$$read(x, \hat{x}_t, h_{t-1}^{dec}) = [x, x_t]$$
$$write(h_t^{dec}) = W(h_t^{dec})$$

network doesn't know "where to read" and "where to write"

(日) (周) (三) (三)

• attention parameters

$$(\hat{g}_X, \hat{g}_Y, \log \sigma^2, \log \hat{\delta}, \log \gamma) = W(h_t^{dec})$$

scale centre location and stride

$$g_X = \frac{A+1}{2}(\hat{g}_X + 1)$$
$$g_Y = \frac{B+1}{2}(\hat{g}_Y + 1)$$
$$\delta = \frac{\max(A, B) - 1}{N-1}\hat{\delta}$$

• mean shift (translation) vectors

$$\mu_X^i = g_X + (i - N/2 - 0.5)\delta$$
$$\mu_Y^j = g_Y + (j - N/2 - 0.5)\delta$$

3

• • • • • • • • • • • •

 $\bullet~N$   $\times~N$  patches extracted from both image and error image

$$F_X[i,a] = \frac{1}{Z_X} \exp\left(-\frac{(a-\mu_X^i)^2}{2\sigma^2}\right)$$
$$F_X[j,b] = \frac{1}{Z_Y} \exp\left(-\frac{(b-\mu_Y^j)^2}{2\sigma^2}\right)$$
$$read(x, \hat{x}_t, h_{t-1}^{dec}) = \gamma[F_Y x F_X^T, F_Y \hat{x}_t F_X^T]$$
$$w_t = W(h_t^{dec})$$
$$write(h_t^{dec}) = \frac{1}{\hat{\gamma}} \hat{F}_Y^T w_t \hat{F}_X$$

イロト イ理ト イヨト イヨト 二日

# DRAW with attention

Visualization



#### Figure: Effect of varying $\delta$ and $\sigma$

CSC2541 Structured Encoder/Decoders (Univ

DeepMind DRAW

October 14, 2016 11 / 15

3

イロト イヨト イヨト イヨト

## DRAW Cluttered MNIST Classification



CSC2541 Structured Encoder/Decoders (Univ

DeepMind DRAW

October 14, 2016 12 / 15
Table 1. Classification test error on  $100 \times 100$  Cluttered Translated MNIST.

| Model                                          | Error  |
|------------------------------------------------|--------|
| Convolutional, 2 layers                        | 14.35% |
| RAM, 4 glimpses, $12 \times 12$ , 4 scales     | 9.41%  |
| RAM, 8 glimpses, $12 \times 12$ , 4 scales     | 8.11%  |
| Differentiable RAM, 4 glimpses, $12 \times 12$ | 4.18%  |
| Differentiable RAM, 8 glimpses, $12 \times 12$ | 3.36%  |

イロト イポト イヨト イヨト 二日

### Temporal refinement

RNN  $\Rightarrow$  joint distribution factorizes as product of conditionals, iterative refinement, as opposed to single step emission

#### Spatial attention

dynamic attention mechanism increases capability by attending to smaller regions

#### Complexity

spatio-temporal properties reduce complexity burden that the autoencoder learns, allowing for handling of more complex, larger distributions

# Further reading

- DRAW paper
- Eric Jang's blog

イロト イヨト イヨト イヨト

3

# Conclusion

In our presentation today we discussed several ways of improving VAEs and making them more suited to several classes of problems

- How to efficiently sample from our approximate posterior while being able to learn the parameters of the distribution using the reparametrization trick
- Approaches for modelling complicated posterior distributions using IWAE and Normalizing flows.
- Using encoders and decoders that utilize the structure of the specific problem such as:
  - Convolutional/Deconvolutional network for images
  - RNN as encoder/decoder for language models
  - RNN with attention for generating images

### References I

- Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. *arXiv preprint arXiv:1506.02557*, 2015.
- Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv preprint arXiv:1509.00519*, 2015.
- Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. *arXiv preprint arXiv:1505.05770*, 2015.

## References II

Alexey Dosovitskiy, Jost Springenberg, Maxim Tatarchenko, and Thomas Brox.

Learning to generate chairs, tables and cars with convolutional networks.

2016.

 Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

 Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.