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Introduction

How has the life of a machine learning engineer changed

in the past decade?

Many tasks that previously required human experts
are starting to be automatead
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The probabilistic modeling pipeline

Can we identity good models automatically?

Design a Fit the Evaluate the
—_— —_—
model model model

Two challenges:
Automating each stage of this pipeline

|dentifying a promising set of candidate models



The probabilistic modeling pipeline

Design a Fit the Evaluate the
—_—
model model model



Matrix decompositions

Example: Senate votes, 2009-2010

Senators B
all of one

__— Senator’s votes

record of votes
on one motion or bill



Matrix decompositions

Clustering the Senators

| Cluster Cluster Within-cluster
Observations assignments  centers variability

Which groups of
Senators vote for a
Which cluster a particular bill/motion

Senator belongs to



Matrix decompositions

Clustering the Senators

| Cluster Cluster Within-cluster
Observations assignments  centers variability
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Matrix decompositions

Clustering the votes

| Cluster Cluster Within-cluster
Observations centers assignments variability

which cluster a
what sorts of vote belongs to

bills/motions one which Senators tend
Senator tends to to vote for one sort of

vote for bill/motion



Matrix decompositions

Clustering the votes

| Cluster Cluster Within-cluster
Observations centers assignments variability




Matrix decompositions

Dimensionality reduction

Observations Residuals

Representation of

a vote
Representation of

a Senator



Matrix decompositions

Dimensionality reduction

Observations Residuals




Matrix decompositions

Co-clustering Senators and Votes

|




Matrix decompositions

Co-clustering Senators and Votes




Matrix decompositions
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The probabilistic modeling pipeline

Design a Fit the Evaluate the
—_—
model model model



Building models compositionally

We build models by composing simpler motifs
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Building models compositionally

SBN, mix : mixture
Boltzmann .
Machines red-dim ._reduc.ed
dimension
hier Factorial HMM dyn : dynamics

el dyn distrib : distributed
representation

Cooperative e
Vector distrib hier : hierarchical
Quantization nonlin : nonlinear

switch : switching

MM
Mixture of
Gaussians _
(VQ) mix
red-dim _
Mixture of

HMMs
mix
Gaussian Mixture of
Factor Analyzers
red-dim
dyn
mix
Factor Analysis

Switching _
(PCA) State-space (Ghahramani,
4 dyn Models 1999 NIPS tutorial)




Generative models

_ Posterior

Generation Inference

Latent variables h
Infer a good
f I \ explanation of
Tell a story of how t . L how a particular
datasets get 5  dataset was
generated generated
|
+

This gives a joint U Find likely values
probability of the latent

distribution over
observations and
latent variables

variables
conditioned on the
observations

Observations v
p(h,v) = p(h)p(v|h) p(h|v)



Space of models: building blocks

-
Ai ~ Gamma(a, b) | 7 ~ Dirichlet(«)
vj ~ Gamma(a, b) u; ~ Multinomial(7)
.- u;; ~ Normal(0, )\Z-_lyj_l)
Gaussian Multinomial
(G) (M)
pj ~ Beta(oé,ﬂ) 1 Ujj = { 1 its > ‘7
u;; ~ Bernoulli(p,) 0 otherwise
Bernoulli Integration
(B) ()

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Space of models: generative process

We represent models as algebraic expressions.

1. Sample all leaf matrices
independently from their

corresponding prior

distributions

- 2. BEvaluate the resulting

/ expression

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Space of models: grammar

S
Gaussian Multinomial
(G) (M)
Bernoulli Integration
(B) (C)

Starting symbol: G

Production rules:

clustering G — MG+ G | GM! + G

low rank

i !r \ill

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Example: co-clustering

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Examples from the literature

(exp(GG + G) o G)G + G

(MG + G)(GM Ty G)+ G dependent gaussian scale mixture

Bayesian clustered tensor factorization (e.g. Karklin and*ewicki, 2005)

(Sutskever et al., 2009) B(GBT LO)+C
. binary matrix factorization (exp(G) o G)G +G coe
(Meeds et al., 2006) sparse coding
\ * (e.g. Olshausen and Field, 1996)
M(GM' +G)+G (CG+G)G + G
co-clustering BG+G GG+ G linear dynamical system
(e.g. Kemp et al., 2006) binary features  low-rank approximation/( .

(Griffiths and (Salakhutdinov and

\ k / Ghahramani, 2005) Mnih, 2008) CG+ G /

]\14G + G \ / _yp- random walk
clustering .

no structure

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



The probabilistic modeling pipeline

Design a Fit a Evaluate the
model model model

Posterior
Inference




Algorithms: posterior inference

fit a clustering

Recursive initialization

G- MG+GPD

implement one algorithm per production rule
share computation between models

Choose the model dimension using Bayesian nonparametrics

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Posterior inference algorithms

Can make use of model-specific algorithmic tricks carefully designed for
individual production rules:

CD\_% (A+UCV) ! =
At —ATlUu(ct+vaTlo)TtvAaT?

Eliminating variables Linear algebra
analytically identities
T \*é? '
SO
tractable High-level
substructures

transition operators



The probabilistic modeling pipeline

Design a Fit a Evaluate the
>
model model model

We evaluate models on the probability they assign to held-out subsets of
the observation matrix.



The probabilistic modeling pipeline

Design a Evaluate the
> >
model model model

Want to search over the large, open-ended space of models
Key problem: the search space is very large!
over 1000 models reachable in 3 productions

how to choose a promising set of models to evaluate?



Algorithms: structure search

A brief history of models of natural images...

Olshausen and
Field, 1994

- 2

Model patches as linear Model the heavy-tailed
combinations of uncorrelated distributions of coefficients

basis functions @

oriented edges
similar to simple cells

Sanger, 1988

Ha N
ol LA
XA
I =8EN

Fourier representation

Karklin and Lewicki,
2005, 2008

Model the dependencies
between scales of
coefficients

N/

high-level texture
representation similar
to complex cells



Algorithms: structure search

Refining models = applying productions

Based on this intuition, we apply a greedy search procedure

~\t/

M(GM*" +G)+G

"t/

MG+ G

\'\ /[



Experiments: simulated data

Tested on simulated data where we know the correct structure

low-rank

clustering

binary latent features
co-clustering

binary matrix factorization
BCTF

sparse coding

dependent GSM

random walk

linear dynamical system

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: simulated data

Tested on simulated data where we know the correct structure

— Increasing noise —»
o =1 0% =3

low-rank GG+ G
clustering MG+ G
binary latent features @ BG + G

co-clustering M(GMT +G)+ G

binary matrix factorization  (BG + G)BT + G
BCTF (MG + G)(GMT +G) + G
sparse coding  (exp(G) o G)G + G
dependent GSM  @O(exp(G) o G)G + G
randomwalk CG+ G
linear dynamical system (CG + G)G + G

Usually chooses the correct structure in low-noise conditions

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: simulated data

Tested on simulated data where we know the correct structure

A
I
"4

— Increasing noise —»

o =1 0% =3 o? =10
low-rank GG+ G GG+ G LG
clustering MG+ G MG+ G MG+ G
binary latent features @ BG + G BG + G BG + G
co-clustering M(GMT +G)+ G M GMT +G)+G oGMT + G
binary matrix factorization  (BG + G)BT + G GG+ G GG+ G
BCTF (MG + G)(GMT +G)+G @oGM” +G _ Te:
sparse coding  (exp(G) o G)G + G (exp(G) o G)G + G @G
dependent GSM  @O(exp(G) o G)G + G Diexp(G) o G) G+ G @OBG+G
randomwalk CG+ G CG+G e
linear dynamical system (CG + G)G + G (CG+G)G+ G @BG + G

Usually chooses the correct structure in low-noise conditions

Gracefully falls back to simpler models under heavy noise

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT+G  (MG+G)M' +G —

t

Cluster votes.

22 clusters

largest: party line Cluster Senators.
Democrat, party line
Republican, all yea 11 clusters

others are series of N0 cross-party clusters
votes on single i1ssues

No third level model
improves by more than
I nat

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT+G  (MG+G)M' +G —
Motion capture CG+G C(GG+G)+G —

T A
Model 1:
Data: motion capture of Independent
a person walking. Each Markov chains
rOw gives a person’s
displacement and joint Model 2:
angles in one frame. Correlations in

joint angles

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT+G  (MG+G)M' +G
Motion capture CG+G C(GG+G)+G
Image patches GG+ G (exp(G) o G)G + G

(exp(GG + G) o )G+ G

0) A
Data: 1,000 12x12 Model 1: Low-

patches from 10 blurred rank approximation
' ' PCA).
and whitened images. ( ) Model 2: Sparsify

coefficients to get
. H sparse coding

A

Model 3: Model
dependencies between
scale variables

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT+G  (MG+G)M' +G —

Motion capture CG+G C(GG+G)+G —
Image patches GG+ G (exp(G)oG)G+G  (exp(GG+G)oG)G+ G

Concepts MG+ G MGG +G)+G —

Data: Mechanical Turk f T

users’ judgments to 218 Model 1: Model 2:

questions about 1000 Cluster entities. [ ow-rank representation of
entities cluster centers.

39 clusters

8 dimensions
Dimension 1: living vs. nonliving

Dimension 2: large vs. small

Grosse, Salakhutdinov, Freeman,
and Tenenbaum, UAI 2012



“Structure discovery in nonparametric regression through compositional
kernel search,” ICML 201 3.

David Duvenaud, James Lloyd, Roger Grosse,
Josh Tenenbaum, and Zoubin Ghahramani,



Compositional structure search for time series

Gaussian processes are distributions over functions,
specified by kernels.

Primitive kernels: Composite kernels:

MANANNAN MNAN SN,
O =

SE PER LIN x LIN SE x PER

O e

LIN RQ LIN + PER LIN x PER




Compositional structure search for time series

SE LIN

// =

SE + PER + RQ SE x (PER + RQ)

N




Compositional structure search for time series

radio critical frequency
(SE + RQ) x (PER + CS)
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An automatic report for the dataset : 01-airline

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data. The first 2
additive components explain 98.5% of the variation in the data as shown by the coefficient of de-
termination (R?) values in table 1. The first 3 additive components explain 99.8% of the variation
in the data. After the first 3 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.19%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:



(exp(GG +G)oG)G 4+ G
(MG +G)(GMT +G)+G dependent gaussian scale mixture
Bayesian clustered tensor factorization (e.g. Karklin and*ewxclu, 2005)

(Sutskever et al., 2009) B(GB" +G)+ G

vee binary matrix factorization (exp(G) o G ).(" + G e
(Meeds et al., 2006) sparse coding
A * (.g. Olshausen and Field, 1996)
M(GM' +G)+ G (CG+G)G+G
SO-Cinstering BG +G GG+G lincar dynamical system
(e.g. Kemp et al., 2006) binary features  low-rank approximatio " ..
‘ (Griffiths and (Salakhutdinov and
- : Mnih, 2008
~__ L _A* Ghahramani, 2005) ni ) e /
PG \ / random walk
clustering — . /
no structure
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