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Introduction

How has the life of a machine learning engineer changed 
in the past decade?

Many tasks that previously required human experts 
are starting to be automated

feature 
engineering

algorithm 
configuration

probabilistic 
inference

probabilistic 
programming

Stan

model selection

?



The probabilistic modeling pipeline

Design a 
model

Fit the  
model

Evaluate the 
model

Can we identify good models automatically?

Two challenges: 

Automating each stage of this pipeline 

Identifying a promising set of candidate models



The probabilistic modeling pipeline

Design a 
model

Fit the 
model

Evaluate the 
model



Matrix decompositions

Votes
Senators all of one  

Senator’s votes

record of votes 
on one motion or bill

Example: Senate votes, 2009-2010



Matrix decompositions

= +

Clustering the Senators

Observations
Cluster 
centers

Cluster 
assignments

Within-cluster 
variability

Which groups of 
Senators vote for a 

particular bill/motionWhich cluster a 
Senator belongs to



Matrix decompositions

= +

Clustering the Senators

Observations
Cluster 
centers

Cluster 
assignments

Within-cluster 
variability



Matrix decompositions

= +

Clustering the votes

Observations
Cluster 
centers

Cluster 
assignments

Within-cluster 
variability

which cluster a 
vote belongs to

which Senators tend 
to vote for one sort of 

bill/motion

what sorts of 
bills/motions one 
Senator tends to 

vote for



Matrix decompositions

= +

Clustering the votes

Observations
Cluster 
centers

Cluster 
assignments

Within-cluster 
variability



Matrix decompositions

= +

Dimensionality reduction

Observations Residuals

Representation of 
a vote

Representation of 
a Senator



Matrix decompositions

= +

Dimensionality reduction

Observations Residuals



Matrix decompositions

Co-clustering Senators and Votes

+

+



Matrix decompositions

Co-clustering Senators and Votes

+

+



Matrix decompositions

…

No structure Cluster columns Cluster rows

Dimensionality 
reduction Co-clustering



The probabilistic modeling pipeline

Design a 
model

Fit the 
model

Evaluate the 
model



Building models compositionally

We build models by composing simpler motifs

Clustering Dimensionality
reduction Binary attributes

Heavy-tailed
distributions
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(Ghahramani, 
1999 NIPS tutorial)

Building models compositionally



Generative models

Generation
Posterior
Inference

Tell a story of how 
datasets get 
generated 

This gives a joint 
probability 
distribution over 
observations and 
latent variables

Infer a good 
explanation of 
how a particular 
dataset was 
generated 

Find likely values 
of the latent 
variables 
conditioned on the 
observations

Observations

Latent variables

v

h

p(h,v) = p(h)p(v|h) p(h|v)



Space of models: building blocks

Gaussian
(G)

Multinomial
(M)

Bernoulli 
(B)

Integration
(C)

�i � Gamma(a, b)
�j � Gamma(a, b)

uij � Normal(0,��1
i ��1

j )

� � Dirichlet(�)
ui � Multinomial(�)

pj � Beta(�, �)
uij � Bernoulli(pj)

uij =
�

1 if i � j
0 otherwise

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Space of models: generative process

M G G+

MT + G

1. Sample all leaf matrices 
independently from their 
corresponding prior 
distributions

2. Evaluate the resulting 
expression

We represent models as algebraic expressions.

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Space of models: grammar

Gaussian
(G)

Multinomial
(M)

Bernoulli 
(B)

Integration
(C)

Production rules:

GStarting symbol:

clustering G � MG + G | GMT + G
M � MG + G

low rank G � GG + G
binary features G � BG + G | GBT + G

B � BG + G
M � B

linear dynamics G � CG + G | GCT + G
sparsity G � exp(G) �G

clustering G � MG + G | GMT + G
M � MG + G

low rank G � GG + G
binary features G � BG + G | GBT + G

B � BG + G
M � B

linear dynamics G � CG + G | GCT + G
sparsity G � exp(G) �G

clustering G � MG + G | GMT + G
M � MG + G

low rank G � GG + G
binary features G � BG + G | GBT + G

B � BG + G
M � B

linear dynamics G � CG + G | GCT + G
sparsity G � exp(G) �G

clustering G � MG + G | GMT + G
M � MG + G

low rank G � GG + G
binary features G � BG + G | GBT + G

B � BG + G
M � B

linear dynamics G � CG + G | GCT + G
sparsity G � exp(G) �G

clustering G � MG + G | GMT + G
M � MG + G

low rank G � GG + G
binary features G � BG + G | GBT + G

B � BG + G
M � B

linear dynamics G � CG + G | GCT + G
sparsity G � exp(G) �G

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



M G +

GMT +

GExample: co-clustering

G

G MT G+

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012

G� GM� + G
G�MG + G



Examples from the literature

no structure

clustering

co-clustering
(e.g. Kemp et al., 2006) binary features

(Griffiths and 
Ghahramani, 2005)

sparse coding 
(e.g. Olshausen and Field, 1996)

low-rank approximation
(Salakhutdinov and

Mnih, 2008)

Bayesian clustered tensor factorization 
(Sutskever et al., 2009)

binary matrix factorization
(Meeds et al., 2006)

random walk

linear dynamical system

dependent gaussian scale mixture
(e.g. Karklin and Lewicki, 2005)

...
...

......

Figure 2: Examples of existing machine learning models which fall under our framework. Arrows represent models reachable using a
single production rule. Only a small fraction of the 2496 models reachable within 3 steps are shown, and not all possible arrows are
shown.

smart initialization step is followed by generic Gibbs sam-
pling over the entire model. We note that our initialization
procedure generalizes “tricks of the trade” whereby com-
plex models are initialized from simpler ones (Kemp et al.,
2006; Miller et al., 2009).

In addition to simplifying the engineering, this procedure
allows us to reuse computations between different struc-
tures. Most of the computation time is in the initialization
steps. Each of these steps only needs to be run once on the
full matrix, specifically when the first production rule is ap-
plied. Subsequent initialization steps are performed on the
component matrices, which are considerably smaller. This
allows a large number of high level structures to be fit for a
fraction of the cost of fitting them from scratch.

5 Scoring candidate structures

Performing model selection requires a criterion for scoring
individual structures which is informative yet tractable. To
motivate our method, we first discuss two popular choices:
marginal likelihood of the input matrix and entrywise mean
squared error (MSE). Marginal likelihood, the probability
of the data with all the latent variables integrated out, is
widely used in Bayesian model selection. Unfortunately,
this requires integrating out all of the latent component ma-
trices, whose posterior distribution is highly complex and
multimodal. While elegant solutions exist for particular
models, estimating the data marginal likelihood generically
is still extremely difficult. At the other extreme, one can
hold out a subset of the entries of the matrix and compute
the mean squared error for predicting these entries. MSE
is easier to implement, but we found that it was unable to
distinguish many of the the more complex structures in our
grammar.

As a compromise between these two approaches, we chose
to evaluate predictive likelihood of held-out rows and

columns. That is, for each row (or column) x of the matrix,
we evaluate p(x|XO), where XO denotes an “observed”
sub-matrix. Like marginal likelihood, this tests the model’s
ability to predict entire rows or columns. However, it can
be efficiently approximated in our class of models using
a small but carefully chosen toolbox corresponding to the
component matrix priors in our grammar. We discuss the
case of held-out rows; columns are handled analogously.

First, by expanding out the products in the expression, we
can write the decomposition uniquely in the form

X = U

1

V

1

+ · · ·+ UnVn + E, (1)

where E is an i.i.d. Gaussian “noise” matrix and the Ui’s
are any of the following: (1) a component matrix G, M ,
or B, (2) some number of Cs followed by G, (3) a Gaus-
sian scale mixture. The held-out row x can therefore be
represented as:

x = V

T
1

u

1

+ · · ·+ V

T
n un + e. (2)

The predictive likelihood is given by:

p(x|XO) =

Z
p(UO, V |XO)p(u|UO)p(x|u, V ) dUO du dV

(3)

where UO is shorthand for (UO1

, . . . , UOn) and u is short-
hand for (u

1

, . . . , un).

In order to evaluate this integral, we generate samples from
the posterior p(UO, V |X) using the techniques described
in Section 4, and compute the sample average of

ppred(x) ,
Z

p(u|UO)p(x|u, V ) du (4)

If the term Ui is a Markov chain, the predictive distribu-
tion p(ui|UO) can be computed using Rauch-Tung-Striebel
smoothing; in the other cases, u and UO are related only

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



The probabilistic modeling pipeline

Design a 
model

Fit a 
model

Evaluate the 
model

Posterior 
Inference



Algorithms: posterior inference

Recursive initialization
fit a clustering 

model

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012

implement one algorithm per production rule 

share computation between models 

Choose the model dimension using Bayesian nonparametrics

G�MG + G



Posterior inference algorithms

Can make use of model-specific algorithmic tricks carefully designed for 
individual production rules:

High-level
transition operators

Linear algebra
identities

(A + UCV )�1 =

A�1 �A�1U(C�1 + V A�1U)�1V A�1

tractable
substructures

Eliminating variables
analytically

x x
xx

x x
x

x
xx

xx xx
x

x x x
xx

x x
x

x
xx

xx xx
x

x



The probabilistic modeling pipeline

Design a 
model

Fit a 
model

Evaluate the 
model

We evaluate models on the probability they assign to held-out subsets of 
the observation matrix.



The probabilistic modeling pipeline

Design a 
model

Fit a 
model

Evaluate the 
model

Want to search over the large, open-ended space of models 

Key problem: the search space is very large! 

over 1000 models reachable in 3 productions 

how to choose a promising set of models to evaluate?



Algorithms: structure search

Model patches as linear 
combinations of uncorrelated 

basis functions

Fourier representation

Sanger, 1988 Olshausen and  
Field, 1994

Model the heavy-tailed 
distributions of coefficients

oriented edges 
similar to simple cells

Karklin and Lewicki, 
2005, 2008

Model the dependencies 
between scales of 

coefficients

high-level texture 
representation similar 

to complex cells

A brief history of models of natural images…



Algorithms: structure search

Refining models = applying productions 

Based on this intuition, we apply a greedy search procedure 

...

...

G

MG + G

M(GMT + G) + G



Experiments: simulated data

Tested on simulated data where we know the correct structure

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: simulated data

Tested on simulated data where we know the correct structure

Usually chooses the correct structure in low-noise conditions

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: simulated data

Tested on simulated data where we know the correct structure

Usually chooses the correct structure in low-noise conditions

Gracefully falls back to simpler models under heavy noise

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT + G —(MG + G)MT + G

Cluster votes.   

22 clusters 

largest: party line 
Democrat, party line 
Republican, all yea 

others are series of 
votes on single issues

Cluster Senators. 

11 clusters 

no cross-party clusters
No third level model 
improves by more than 
1 nat

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT + G —(MG + G)MT + G

CG + G C(GG + G) + GMotion capture —

Data:  motion capture of 
a person walking.  Each 
row gives a person’s 
displacement and joint 
angles in one frame.

Model 1:  
Independent 
Markov chains

Model 2:  
Correlations in 
joint angles

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT + G —(MG + G)MT + G

CG + G C(GG + G) + GMotion capture —

Data:  1,000 12x12 
patches from 10 blurred 
and whitened images.

Model 1:  Low-
rank approximation 
(PCA).

Model 2:  Sparsify 
coefficients to get 
sparse coding Model 3:  Model 

dependencies between 
scale variables

...

GG + G (exp(G) � G)G + G (exp(GG + G) � G)G + GImage patches

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



Experiments: real-world data

Senate votes 09-10 GMT + G —(MG + G)MT + G

CG + G C(GG + G) + GMotion capture —
GG + G (exp(G) � G)G + G (exp(GG + G) � G)G + GImage patches

Data:  Mechanical Turk 
users’ judgments to 218 
questions about 1000 
entities 

Model 1:   
Cluster entities.   

39 clusters

Model 2:  
Low-rank representation of 
cluster centers. 

8 dimensions 

Dimension 1: living vs. nonliving 

Dimension 2: large vs. small

—Concepts MG + G M(GG + G) + G

Grosse, Salakhutdinov, Freeman, 
and Tenenbaum, UAI 2012



“Structure discovery in nonparametric regression through compositional 
kernel search,” ICML 2013. 

David Duvenaud, James Lloyd, Roger Grosse, 
Josh Tenenbaum, and Zoubin Ghahramani,



Compositional structure search for time series

Lin� Lin SE�Per

Lin + Per Lin�Per

SE Per

Lin RQ

Primitive kernels: Composite kernels:

Gaussian processes are distributions over functions, 
specified by kernels.



Compositional structure search for time series



Compositional structure search for time series

radio critical frequency



…



10 minute break


