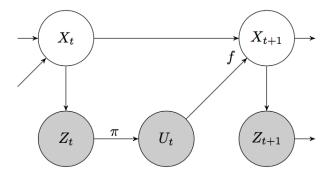
PILCO: A Model-Based and Data-Efficient Approach to Policy Search

(M.P. Deisenroth and C.E. Rasmussen)

CSC2541 November 4, 2016

PILCO Graphical Model

PILCO – Probabilistic Inference for Learning COntrol



- Latent states {X_t} evolve through time based on previous states and controls
- Policy π maps Z_t , a noisy observation of X_t , into a control, U_t

Transitions follow dynamic system

$$x_t = f(x_{t-1}, u_{t-1})$$

where $x \in \mathbb{R}^D$, $u \in \mathbb{R}^F$ and f is a latent function.

Let π be parameterized by θ and $u_t = \pi(x_t, \theta)$. The objective is to find π that minimizes expected cost of following π for T steps

$$J^{\pi}(\theta) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_{t}}[c(\mathbf{x}_{t})]$$

Cost function encodes information about a target state, e.g., $c(x)=1-\exp(-\|x-x_{\rm target}\|^2/\sigma_c^2)$

- 1: *Define* policy's functional form: $\pi : z_t \times \psi \to u_t$.
- 2: *Initialise* policy parameters ψ randomly.
- 3: repeat
- 4: *Execute* system, record data.
- 5: *Learn* dynamics model.
- 6: *Predict* system trajectories from $p(X_0)$ to $p(X_T)$.
- 7: Evaluate policy: $I(t) = \sum_{i=1}^{T} e^{t \mathbf{E}}$

$$J(\psi) = \sum_{t=0}^{I} \gamma^{t} \mathbb{E}_{X} [\operatorname{cost}(X_{t}) | \psi].$$

8: *Optimise* policy:

$$\psi \leftarrow \arg \min J(\psi).$$

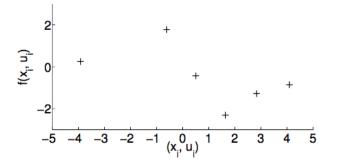
9: **until** policy parameters ψ converge

- 1: *Define* policy's functional form: $\pi : z_t \times \psi \to u_t$.
- 2: *Initialise* policy parameters ψ randomly.
- 3: repeat
- 4: *Execute* system, record data.
- 5: *Learn* dynamics model.
- 6: *Predict* system trajectories from $p(X_0)$ to $p(X_T)$.
- 7: Evaluate policy: $J(\psi) = \sum_{t=0}^{T} \gamma^{t} \mathbb{E}_{X}[\operatorname{cost}(X_{t})|\psi].$
- 8: Optimise policy:

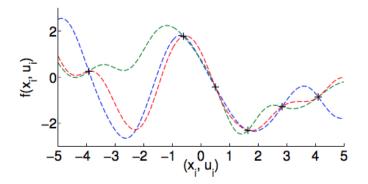
$$\psi \leftarrow \arg \min J(\psi).$$

9: **until** policy parameters ψ converge

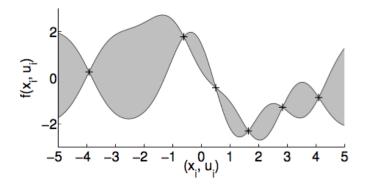
Multiple plausible function approximators of f



Multiple plausible function approximators of f



Define a Gaussian process (GP) prior on the latent dynamic function \boldsymbol{f}



Let the prior of f be $\mathcal{GP}(0, k(\tilde{x}, \tilde{x}'))$ where $\tilde{x} \triangleq [x^T u^T]^T$ and the squared exponential kernel is given by

$$k(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}') = \alpha^2 \exp\left(-\frac{1}{2}(\tilde{\mathbf{x}} - \tilde{\mathbf{x}}')^\top \mathbf{\Lambda}^{-1}(\tilde{\mathbf{x}} - \tilde{\mathbf{x}}')\right)$$

Let $\Delta_t = x_t - x_{t-1} + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, \Sigma_{\varepsilon})$ and $\Sigma_{\varepsilon} = \operatorname{diag}([\sigma_{\varepsilon_1}, \dots, \sigma_{\varepsilon_D}])$. The GP yields one-step predictions (see Section 2.2 in reference 3)

$$egin{aligned} p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_{t-1}) &= \mathcal{N}ig(\mathbf{x}_t \, | \, \mu_t, \mathbf{\Sigma}_tig) \,, \ \mu_t &= \mathbf{x}_{t-1} + \mathbb{E}_f[\Delta_t] \,, \ \mathbf{\Sigma}_t &= \mathrm{var}_f[\Delta_t] \,. \end{aligned}$$

Given n training inputs $\tilde{X} = [\tilde{x}_1, \dots, \tilde{x}_n]$ and corresponding training targets $y = [\Delta_1, \dots, \Delta_n]$, the posterior GP hyper-parameters are learned by evidence maximization (type 2 maximum likelihood).

- 1: *Define* policy's functional form: $\pi : z_t \times \psi \to u_t$.
- 2: *Initialise* policy parameters ψ randomly.
- 3: repeat
- 4: *Execute* system, record data.
- 5: *Learn* dynamics model.
- 6: *Predict* system trajectories from $p(X_0)$ to $p(X_T)$.
- 7: Evaluate policy: $J(\psi) = \sum_{t=0}^{T} \gamma^{t} \mathbb{E}_{X} [\operatorname{cost}(X_{t})|\psi].$
- 8: *Optimise* policy:

$$\psi \leftarrow \operatorname*{arg\,min}_{\psi} J(\psi).$$

9: **until** policy parameters ψ converge

In evaluating objective $J^{\pi}(\theta)$, we must calculate $p(x_t)$ since

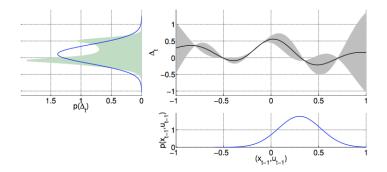
$$J^{\pi}(\theta) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_{t}}[c(\mathbf{x}_{t})]$$

We have $x_t = x_{t-1} + \Delta_t - \varepsilon$, where in general, computing $p(\Delta_t)$ is analytically intractable.

Instead, $p(\Delta_t)$ is approximated with a Gaussian via moment matching.

Moment Matching

- Input distribution $p(x_{t-1}, u_{t_1})$ is assumed Gaussian
- \bullet When propagated through the GP model, we obtain $p(\Delta_t)$
- $\bullet \ p(\Delta_t)$ is approximated by a Gaussian via moment matching



Moment Matching

 $p(x_t)$ can now be approximated with $\mathcal{N}(\mu_t, \Sigma_t)$ where

$$\mu_t = \mu_{t-1} + \mu_{\Delta}$$

$$\Sigma_t = \Sigma_{t-1} + \Sigma_{\Delta} + \operatorname{cov}[\mathbf{x}_{t-1}, \Delta_t] + \operatorname{cov}[\Delta_t, \mathbf{x}_{t-1}]$$

$$\operatorname{cov}[\mathbf{x}_{t-1}, \Delta_t] = \operatorname{cov}[\mathbf{x}_{t-1}, \mathbf{u}_{t-1}] \Sigma_u^{-1} \operatorname{cov}[\mathbf{u}_{t-1}, \Delta_t]$$

 μ_Δ and Σ_Δ are computed exactly via iterated expectation and variance

$$\mu_{\Delta}^{a} = \mathbb{E}_{ ilde{\mathbf{x}}_{t-1}}[\mathbb{E}_{f}[f(ilde{\mathbf{x}}_{t-1})| ilde{\mathbf{x}}_{t-1}]]$$

$$\begin{split} &\sigma_{aa}^2 = \mathbb{E}_{\tilde{\mathbf{x}}_{t-1}} \left[\operatorname{var}_f [\Delta_a | \tilde{\mathbf{x}}_{t-1}] \right] + \mathbb{E}_{f, \tilde{\mathbf{x}}_{t-1}} [\Delta_a^2] - (\mu_{\Delta}^a)^2 \\ &\sigma_{ab}^2 = \mathbb{E}_{f, \tilde{\mathbf{x}}_{t-1}} [\Delta_a \Delta_b] - \mu_{\Delta}^a \mu_{\Delta}^b \,, \quad a \neq b \,, \end{split}$$

- 1: *Define* policy's functional form: $\pi : z_t \times \psi \to u_t$.
- 2: *Initialise* policy parameters ψ randomly.
- 3: repeat
- 4: *Execute* system, record data.
- 5: *Learn* dynamics model.
- 6: *Predict* system trajectories from $p(X_0)$ to $p(X_T)$.
- 7: Evaluate policy: $J(\psi) = \sum_{t=0}^{T} \gamma^{t} \mathbb{E}_{X}[\operatorname{cost}(X_{t})|\psi].$
- 8: Optimise policy: $\psi \leftarrow \underset{\psi}{\operatorname{arg\,min}} J(\psi).$
- 9: **until** policy parameters ψ converge

- Let $\mathcal{E}_t = \mathbb{E}_{x_t}[c(x_t)]$ so that $J^{\pi}(\theta) = \sum_{t=1}^T \mathcal{E}_t$.
- \mathcal{E}_t depends on θ through $p(x_t)$, which depends on θ through $p(x_{t-1})$, which depends on θ through μ_t and Σ_t , ..., which depends on θ based on μ_u and Σ_u , where $u_t = \pi(x_t, \theta)$.
- Chain rule is used to calculate derivatives
- Analytic gradients allow for gradient-based non-convex optimization methods, e.g., CG or L-BFGS

	cart-pole	cart-double-pole	unicycle
state space	\mathbb{R}^4	\mathbb{R}^{6}	\mathbb{R}^{12}
# trials	≤ 10	20 - 30	≈ 20
experience	$pprox 20\mathrm{s}$	$pprox 60\mathrm{s}{-}90\mathrm{s}$	$pprox 20\mathrm{s}{-30\mathrm{s}}$
parameter space	\mathbb{R}^{305}	\mathbb{R}^{1816}	\mathbb{R}^{28}

Advantages and Disadvantages

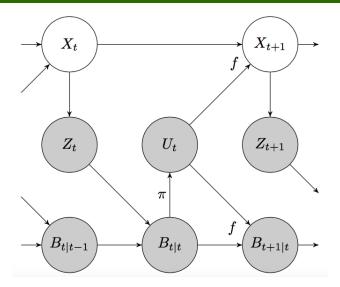
Advantages

- Data-efficient
- Incorporates model-uncertainty into long-term planning
- Does not rely on expert knowledge, i.e., demonstrations, or task-specific prior knowledge.

Disadvantages

- Not an optimal control method. If $p(X_i)$ do not cover the target region and σ_c induces a cost that is very peaked around the target solution, PILCO gets stuck in a local optimum because of zero gradients.
- Learned dynamics models are only confident in areas of the state space previously observed.
- Does not take temporal correlation into account. Model uncertainty treated as uncorrelated noise

Extension: PILCO with Bayesian Filtering



R. McAllister and C. Rasmussen, "Data-Efficient Reinforcement Learning in Coninuous-State POMDPs." https://arxiv.org/abs/1602.02523

- M.P. Deisenroth and C.E. Rasmussen, "PILCO: A Model-Based and Data-Efficient Approach to Policy Search" in Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
- R. McAllister and C. Rasmussen, "Data-Efficient Reinforcement Learning in Coninuous-State POMDPs." https://arxiv.org/abs/1602.02523
- C.E. Rasmussen and C.K.I. Williams (2006) Gaussian Processes for Machine Learning. MIT Press. www.gaussianprocess.org/gpml/chapters
- C.M. Bishop (2006). Pattern Recognition and Machine Learning Chapter 6.4. Springer. ISBN 0-387-31073-8.