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PILCO Graphical Model

PILCO — Probabilistic Inference for Learning COntrol

@ Latent states {X;} evolve through time based on previous
states and controls

@ Policy m maps Z;, a noisy observation of X;, into a control, U;
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PILCO Objective

Transitions follow dynamic system

= f@—1,w—1)

where z € RP, w € RF and f is a latent function.

Let m be parameterized by 6 and u; = 7(x¢,0). The objective is to
find 7 that minimizes expected cost of following 7 for T' steps

TO) =3 Bxle(x)

Cost function encodes information about a target state, e.g.,
c(x) =1 —exp(—||lz — Ttarget[|*/07)
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Algorithm

Algorithm 1 PILCO

1: Define policy’s functional form: 7 : 2; X ¥ — uy.

2: Initialise policy parameters 1) randomly.

3: repeat

4:  Execute system, record data.
Learn dynamics model.
Predict system trajectories from p(Xp) to p(Xr).
Evaluate policy:

() = 2274 vEx [cost(X,)ly].
8:  Optimise policy:
1 «— argmin J(¢).
P

AN

9: until policy parameters 1 converge
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Dynamics Model Learning

Multiple plausible function approximators of f
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Dynamics Model Learning

Multiple plausible function approximators of f
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Dynamics Model Learning

Define a Gaussian process (GP) prior on the latent dynamic

function f
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Dynamics Model Learning

Let the prior of f be GP(0,k(%,3')) where 7 = [xTu]" and the
squared exponential kernel is given by

k(% %) = o exp (- (X —X') AT (% - X))
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Dynamics Model Learning

Let Ay = x4 — w41 + € where e ~ N(0,3.) and
Y. = diag([oc,,...,0:p]). The GP yields one-step predictions (see
Section 2.2 in reference 3)

P(Xt|xt—1,ut—1) = N(Xt |#t; Et) )
e = %1 + Ef[A],
Zt = V&I’f[At] .

Given n training inputs X = [Z1,...,%,] and corresponding
training targets y = [A1,...,A,], the posterior GP
hyper-parameters are learned by evidence maximization (type 2
maximum likelihood).
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Algorithm

Algorithm 1 PILCO

1: Define policy’s functional form: 7 : 2; X ¥ — uy.

2: Initialise policy parameters 1) randomly.

3: repeat

4:  Execute system, record data.
Learn dynamics model.
Predict system trajectories from p(Xp) to p(Xr).
Evaluate policy:

J@) = -7 v'Ex [cost(X,)[y].
8:  Optimise policy:
1 — argmin J(¢).
P

AN
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Policy Evaluation

In evaluating objective J7 (), we must calculate p(x;) since
0= E
O=3""  Bxlelx)

We have z; = x4—1 + Ay — €, where in general, computing p(Ay) is
analytically intractable.

Instead, p(A;) is approximated with a Gaussian via moment
matching.
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Moment Matching

e Input distribution p(z¢—1,us,) is assumed Gaussian
@ When propagated through the GP model, we obtain p(A;)

e p(A;) is approximated by a Gaussian via moment matching
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Moment Matching

p(x¢) can now be approximated with N (1, X¢) where

Mt = pt—1 + pa
Y =31+ XA+ cov[xi—1, A¢] + cov[As, x¢—1]

cov[xs_1, A¢] = cov[xs_1,us_1] X, lcovus_q, Ay

uA and XA are computed exactly via iterated expectation and
variance

pA = Bx (B [f(Ri1)[Xi-1]]

O-ga. =]Eit—1 [Va‘rf [Aﬂlit—l]] +Ef,it—1 [Ai] - (JU’GL‘\)z
Uib =Ef,it—1 [AGAb] _MGAI"’E y a 7& b,
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Algorithm

Algorithm 1 PILCO
1: Define policy’s functional form: 7 : 2; X ¥ — uy.
2: Initialise policy parameters 1) randomly.

3: repeat
4:  Execute system, record data.

Learn dynamics model.

Predict system trajectories from p(Xp) to p(Xr).

Evaluate policy:

J() = 3o 7' Ex[cost(X;)[¢].
8: | Optimise policy:
1 — argmin J(¢).
(0

AN

9: until policy parameters 1 converge
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Analytic Gradient for Policy Improvement

o Let & = E,,[c(x)] so that J™(8) = ST &.

e & depends on 6 through p(x;), which depends on € through
p(x—1), which depends on 6 through u; and ¥4, ..., which
depends on 6 based on p, and X, where u; = 7(x¢,0).

@ Chain rule is used to calculate derivatives

@ Analytic gradients allow for gradient-based non-convex
optimization methods, e.g., CG or L-BFGS
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Data-Efficiency

| cart-pole cart-double-pole unicycle

state space R* R® R'?
# trials <10 20-30 ~ 20
experience =~ 20s ~ 60s-90s ~ 20s-30s
parameter space R305 R1816 R28
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Advantages and Disadvantages

Advantages

o Data-efficient

@ Incorporates model-uncertainty into long-term planning

@ Does not rely on expert knowledge, i.e., demonstrations, or
task-specific prior knowledge.

Disadvantages

e Not an optimal control method. If p(X;) do not cover the
target region and o, induces a cost that is very peaked around
the target solution, PILCO gets stuck in a local optimum
because of zero gradients.

@ Learned dynamics models are only confident in areas of the
state space previously observed.

@ Does not take temporal correlation into account. Model
uncertainty treated as uncorrelated noise
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Extension: PILCO with Bayesian Filtering

R. McAllister and C. Rasmussen, “Data-Efficient Reinforcement Learning in Coninuous-State POMDPs."
https://arxiv.org/abs/1602.02623
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