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Intro

Policy π maps states (observation) to actions: π(s) = a

Action-Value Function Q gives expected total reward from a state
and action from some policy

Qπ(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st = s, at = a] (1)

Optimal Action-Value Function Q∗ gives best value possible from any
policy

Q∗(s, a) = max
π

E[rt+1 + γrt+2 + γ2rt+3 + ...|st = s, at = a, π] (2)

= Es′ [r + γmax
a′

Q∗(s ′, a′)|s, a] (3)

Dayeol Choi Deep RL Nov. 4th 2016 2 / 13



Deep Q Networks (DQN)

Idea: want to replicate successes of Supervised Learning in
Reinforcement Learning.

Q∗ is a function, so we can approximate with a Deep Network.

Loss Function for Q-learning updates (MSE)

L(w) = E

[(
r + γmax

a′
Q(s ′, a′,w)− Q(s, a,w)

)2
]

Loss is difference between target value (fixed) and current estimate of
Q.

Gradient of Loss

∇wL(w) = E
[(

r + γmax
a′

Q(s ′, a′,w)− Q(s, a,w)

)
∇wQ(s, a,w)

]
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Architecture of DQN
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Architecture of DQN cont.
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Architecture of DQN cont..
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Issues

1 Observations are sequential and correlated (non iid).

How about destroying the temporal structure?

2 Data distribution depends on policy (action), which may change
drastically with small changes in Q.

Good policy at some situations will be irrelevant at other situations.

3 Gradients are sensitive to scale of Rewards

Gradient Clipping, restrict reward e.g. r ∈ [−1, 1], batch normalization
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Experience Replay [Lin 1993]

Helps with the first two issues (correlated observations, non-stationary
data distribution).

First, choose action from ε-greedy policy, then store (st , at , rt , st+1)
to memory D.

Sample a mini-batch of (s, a, r , s ′) ∼ D and use that to optimize loss.

L(w) = Es,a,r ,s′∼D

[(
r + γmax

a′
Q(s ′, a′,w)− Q(s, a,w)

)2
]

By doing batch learning, we gained some protection from correlated
observations and non-stationary data distribution.

However, we have lost the temporal structure of the data.

Instead of looking at individual experience samples, we could replay
sequences of experiences (lessons).
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Fixed Target Q Network

Often, whenever we update Q(st , at) by increasing it, Q(st+1, at) is
increased for all actions.

This means our target r + γmaxa Q(s, a,w) is also increased.

Our updates to Q and our targets are correlated.

To fix this correlation, we add a delay between updates to Q and
computation of targets.

This is done by computing targets using older sets of parameters, not
the most recent.
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Q-Learning vs DQN
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Linear vs. Nonlinear Function Approximator

Effect of replacing a Deep Network with a shallow network with one linear
hidden layer.
Note: Previous work using linear function approximation will sometimes
perform better than shallow network e.g. 129.1 in Enduro.
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The learning algorithm
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