Applications of GANs

e Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network

e Deep Generative Image Models using a Laplacian Pyramid
of Adversarial Networks

e (Generative Adversarial Text to Image Synthesis



Using GANs for Single Image
Super-Resolution

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi



Problem

How do we get a y * *Original,
high resolution (HR)
image from just one
(LR) lower resolution
image?

Answer: We use
super-resolution
(SR) techniques.

Nearest Neighbor Super-resolution

http://www.extremetech.com/wp-content/uploads/2012/07/super-resolution-freckles.jpg 3



Previous Attempts

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777)
s ‘ v “




SRGAN

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.777T) (20.34dB/0.6562)




SRGAN - Generator

e G: generator that takes a low-res image I'R and outputs its high-res
counterpart ISR

e 0 parameters of G,{W.  , b, }

e [SR:|oss function measures the difference between the 2 high-res images

e = arg mm — Z PR (125, T2



SRGAN - Discriminator

e D: discriminator that classifies whether a high-res image is 1"R or ISR

e 0O, parameters of D

min max E;ur.,,_. rary[log Do, (I77)]+
QG QD rain

Eerpg(rery[log(l — Doy (Gog (I77))]



SRGAN - Perceptual Loss Function

Loss is calculated as weighted combination of:

-> Content loss
—=> Adversarial loss

=> Regularization loss



SRGAN - Content Loss

Instead of MSE, use loss function based on RelLU layers of pre-trained VGG
network. Ensures similarity of content.

o @,:feature map of j" convolution before i maxpooling
o Wij and Hij: dimensions of feature maps in the VGG

Wi, Hij
1 7
SR - HR
ZVGGfi.j — Wi i H; ; § : E :(Cbi:j(f ):c:,'y

Jor=1 g=1

~ ¢i,i(Go (I"™))z,y)”



SRGAN - Adversarial Loss

Encourages network to favour images that reside in manifold of natural images.

N
&6 = ) —10g Dy, (Gog (I'1))

=1

A Natural Image Manifold
MSE-based Solution

"pixel-wise average
s Of possible solutions”




SRGAN - Regularization Loss

Encourages spatially coherent solutions based on total variations.

W rH

TV_T‘QWH ZZHVG ILR

=1 y=1
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SRGAN - Examples

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54

original HR image

(b) () (h) )

Figure 5: Reference HR image (left: a,b) with corresponding SRResNet (middle left: c,d), SRGAN-MSE (middle: e.f),
SRGAN-VGG2.2 (middle right: g,h) and SRGAN-VGG54 (right: i,j) reconstruction results.
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SRGAN - Examples

SRGAN-VGG54

SRResNet

original HR image
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Deep Generative Image Models using a
Laplacian Pyramid of Adversarial Networks

Work by Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus
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Short Background



Conditional Generative Adversarial Nets (CGAN)

Discriminator \
Mirza and Osindero (2014) (o D) .‘

\X[‘ (OQOOO]D

(o 0 @ OOOO®

\2{1 (QOOOO\)

GAN mc%n mgx V(Da G) . Ea:wpdma(m) [log D(.’B)] i ]Eszz (z) Dog(l - D(G(z)))]

CGAN minmax V(D,G) = Egepy, () 108 D(@|y)] + Eany, () l08(1 — D(G(2]y)))]



Laplacian pyramid

Ry
. i

by, = Li(I) = Gr(I) = w(Grr1 (1)) = T — u(li41)

Iy = u(lg+1) + hi

Burt and Adelson (1983)
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acian pyramid

l L 1.)

hi = L3, (I)

Burt and Adelson (1983)

Iﬂ

= Ge(l) — w(Gr+1(1))

= U(Ik_|_1) B hk

o
- ORCY

= Ik — U(Ik+1)
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Laplacian Pyramid Generative
Adversarial Network (LAPGAN)



Image Generation
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Training

Real/
Generated?

Real/Generated?

Real/Generated?
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Generation:

Coarse to fine
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Different draws, starting from the same initial 4x4 image
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Some thoughts on the method

e The Laplacian Pyramid Framework is independent of the Generative Model

Possible to use a completely
different model like Pixel RNN
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Some thoughts on the method

e The Generative Models at each step can be totally different!

These can also be
different models!
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Some thoughts on the method

e The Generative Models at each step can be totally different!

High resolution architecture Low resolution architecture
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Generative Adversarial
Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee

Author’s code available at: https://github.com/reedscot/icml|201627



Motivation

Current deep learning models enable us to...

> Learn feature representations of images & text
> Generate realistic images & text

pull out images based on captions

Jlgenerate descriptions based on
v images

¥| answer questions about image
content
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Problem - Multimodal distribution

* Many plausible image can be associated with one
single text description

* Previous attempt uses Variational Recurrent
Autoencoders to generate image from text caption
but the images were not realistic enough.
(Mansimov et al. 2016)



What GANs can do

* CGAN: Use side information (eg. classes) to guide
the learning process

* Minimax game: Adaptive loss function

> Multi-modality is a very well suited property for
GANs to learn.



The Model - Basic CGAN

Accumulate

aichigscore Learns a compatibility
523 function of images and
text -> joint embedding

Pre-trained char-CNN-RNN

0.03

\ 3 The beak is yellow and pointe

This flower has small, round violet
petals with a dark purple center

7L —
I

This flower has small, round violet
petals with a dark purple center

L ey
3 2

Discriminator Network

min max V(D,G) = Eynp,.,. ()08 D(2)]+ Bgnp, (2 llog(l — D(G(2)))]
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The Model - Variations

GAN-CLS

In order to distinguish
different error sources:

Present to the
discriminator network 3
different types of input.
(instead of 2)

Algorithm

1: Input: minibatch images x, matching text ¢, mis-

matching £, number of training batch steps S

2: forn=1to S do

3:  h < ¢(t) {Encode matching text description}

4 h < ¢(f) {Encode mis-matching text description}
5: 2z~ N(0,1)% {Draw sample of random noise}

6: T < G(z,h) {Forward through generator}

7: s, < D(x, h) {real image, right text}

8: Sy < D(x,h) {real image, wrong text}

9: sy < D(&,h) {fake image, right text}

10: Lp « log(sy) + (log(l — sy) + log(1 — s¢))/2
1l: D+ D—adLp/OD {Update discriminator }
122 Lg < log(sy)

13: G+ G —adLlq/0G {Update generator }

14: end for
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The Model - Variations cont.

GAN-INT Updated Equation
In order to generalize mén mgx V(D,G) =

the output of G:
= Einpgara(z) 108 D(z)]
Interpolate between

training set embeddings + Egnp.(z)[log(l — D(G(2)))] +
to generate new text o low(1 — D(C(x. Bt oy
and hence fill the gaps t1.tz~paota 108 (G2, pt1 + (1 - B)t2)))
on the image data {fake image, fake text}

manifold.

GAN-INT-CLS: Combination of both previous variations




Disenta ngllng % Style is background,
position & orientation of
the object, etc.

¢ Content is shape, size &
colour of the object, etc.

e Introduce S(x), a style encoder with a squared loss
function: ,
£8t'yle — Et*sz(U,l)Hz - S(G(Z, 99(”))”2

e Useful in generalization: encoding style and content
separately allows for different new combinations
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Training - Data (separated into class-disjoint
train and test sets)

Caltech-UCSD Birds

‘Caption Ima; ge

beak

Caption Image

ithis bird is yellowish orange with black
wings

a pitcher is about to throw the ball to the batter

the bright blue bird has a white colored
belly

a group of people on skis stand in the snow

Oxford Flowers

‘Capﬁo n |Image

a man in a wet suit riding a surfboard on a wave

this flower has white petals and a yellow stamen

petals

this flower has lots of small round pink petals
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Training — Results: Flower & Bird

GT

GAN

GAN - CLS

GAN - INT

GAN - INT
-CLS

these flowers have a tiny bird, with a

petals that start off tiny beak, tarsus and
white in color and feet, a blue crown,
end in a dark purple blue coverts, and

tOWHIdS the tlpS bla,ck cheek pat-::h s f i i
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Training — Results: MS COCO

a large blue
octopus kite
flies above
the people
having fun at
the beach.

a toiletin a small
room with a =B
window and
unfinished walls.

a manin a wet
suit riding a
surfboard on a
wave.

Mansimov et al.

A herd of elephants fly-
ing in the blue skies.

pEOD
oong

A toilet seat sits open in
the grass field.

A person skiing on sand
clad vast desert.



Training — Results Style disentangling

T ey @yte) -M
(content) (style)
AL

-

The bird has a yellow hreast with grey
features and a small beak.

This is a large white bird with black
wings and a red head.

s+ S(x)
T G(s, (1))

A small bird with a black head and
wings and features grey wings.

This bird has a white breast, brown
and white coloring on its head and
wings, and a thin pointy beak.

A small bird with white base and black
stripes throughout its belly, head, and ¥
feathers.

A small sized bird that has a cream belly
and a short pointed bill.

This bird is completely red.

This bird is completely white.

This is a yellow bird. The wings are
bright blue.
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Thoughts on the paper
* |Image quality
* Generalization

e Future work



