Structured Inference Networks for Nonlinear State Space Models

Rahul G. Krishnan, Uri Shalit, David Sontag

New York University

30 Sep 2016

Chris Cremer CSC2541 Nov 4 2016

Overview

- VAE
- Gaussian State Space Models
- Inference Network
- Results

Recap - VAE

Generative Model

 $p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \Sigma_{\theta}(z))$ $p_{\theta}(z) = \mathcal{N}(0, I)$

Recognition Network

 $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$

Use MLP to model the mean and covariance

Learning and Inference -> Maximize Lower Bound $\log p_{\theta}(x) \geq \mathbb{E}_{\substack{q_{\phi}(z|x)}} [\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\phi}(z|x)||p_{\theta}(z))]$ Reconstruction
Loss
Divergence
from Prior
Calculated by sampling $q_{\phi}(z|x)$ with
Analytic
equation

Gaussian State Space Models

Generative Model

 $z_t \sim \mathcal{N}(G_{\alpha}(z_{t-1}, \Delta_t), S_{\beta}(z_{t-1}, \Delta_t))$ (Transition) $x_t \sim \Pi(F_{\kappa}(z_t))$ (Emission)

- HMM with continuous hidden state
- If transition and emission are linear Gaussian, then we can do inference analytically (Kalman Filter)
- Deep Markov Model:
 - Transition and emissions distributions are parametrized by MLPs
 - Inference: VAE

Inference – Factorized Lower Bound

$$\begin{split} \log p_{\theta}(x) \geq & \underset{q_{\phi}(z|x)}{\mathbb{E}} \left[\log p_{\theta}(x|z) \right] - \mathrm{KL}(q_{\phi}(z|x)) | p_{\theta}(z)). \\ & \underset{Loss}{\operatorname{Reconstruction}} & \underset{from \ Prior}{\operatorname{Divergence}} \\ & \underset{q_{\phi}(z|x) \ with}{\operatorname{Calculated}} & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Analytic}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Calculated}} \\ & \underset{p_{\phi}(z|x) \ with}{\operatorname{Cal$$

$$\log p_{\theta}(\vec{x}) \geq \underset{q_{\phi}(\vec{z}|\vec{x})}{\mathbb{E}} \left[\log p_{\theta}(\vec{x}|\vec{z})\right] - \operatorname{KL}(q_{\phi}(\vec{z}|\vec{x}))|p_{\theta}(\vec{z}))$$

$$= \sum_{t=1}^{T} \underset{q_{\phi}(z_{t}|\vec{x})}{\mathbb{E}} \left[\log p_{\theta}(x_{t}|z_{t})\right] - \operatorname{KL}(q_{\phi}(z_{1}|\vec{x}))|p_{\theta}(z_{1})) - \sum_{t=2}^{T} \underset{q_{\phi}(z_{t-1}|\vec{x})}{\mathbb{E}} \left[\operatorname{KL}(q_{\phi}(z_{t}|z_{t-1},\vec{x}))|p_{\theta}(z_{t}|z_{t-1}))\right]$$

$$\xrightarrow{\operatorname{Reconstruction}}_{\operatorname{Loss}} \underbrace{\operatorname{Divergence}}_{\operatorname{from Prior}} \xrightarrow{\operatorname{Divergence}}_{\operatorname{from Prior}} \xrightarrow{\operatorname{Divergence}}_{\operatorname{from Prior}}$$

$$\xrightarrow{\operatorname{Calculated by sampling}}_{\operatorname{q_{\phi}}(z_{t}|\vec{x}) \text{ with}} \xrightarrow{\operatorname{Analytic}}_{\operatorname{equation}} \operatorname{equation}} \xrightarrow{\operatorname{equation}}$$

Inference Networks

- Evaluate possibilities for the inference networks
 - Mean-Field Model (MF) vs Structured Model (ST)
 - Observations from past (L), future (R), or both (LR)
- Combiner Function: MLP that combines the previous state with the RNN output

$$\log p_{\theta}(\vec{x}) \geq \sum_{t=1}^{T} \mathop{\mathbb{E}}_{q_{\phi}(z_{t} \mid \vec{x})} [\log p_{\theta}(x_{t} \mid z_{t})] - \mathrm{KL}(q_{\phi}(z_{1} \mid \vec{x}) \mid | p_{\theta}(z_{1})) - \sum_{t=2}^{T} \mathop{\mathbb{E}}_{q_{\phi}(z_{t-1} \mid \vec{x})} [\mathrm{KL}(q_{\phi}(z_{t} \mid z_{t-1}, \vec{x}) \mid | p_{\theta}(z_{t} \mid z_{t-1}))]$$

	Inf. Network	Variational Approximation	Implementation	
	MF-LR	$q(z_t x_1,\ldots x_T)$	BRNN	
	MF-L	$q(z_t x_1,\ldots x_t)$	RNN	
	ST-L	$q(z_t z_{t-1},x_1,\ldots x_t)$	RNN & comb.fxn	
Deep Kalman Smoothing	(ST-R) DKS	$q(z_t z_{t-1},x_t,\ldots x_T)$	RNN & comb.fxn	
	ST-LR	$q(z_t z_{t-1},x_1,\ldots x_T)$	BRNN & comb.fxn	

Inference Networks Results

Inf. Network	Variational Approximation	Implementation		
MF-LR	$q(z_t x_1,\ldots x_T)$	BRNN		
MF-L	$q(z_t x_1,\ldots x_t)$	RNN		
ST-L	$q(z_t z_{t-1},x_1,\ldots x_t)$	RNN & comb.fxn		
DKS	$q(z_t z_{t-1},x_t,\ldots x_T)$	RNN & comb.fxn		
ST-LR	$q(z_t z_{t-1},x_1,\ldots x_T)$	BRNN & comb.fxn		

Polyphonic music data (Boulanger-Lewandowski et al., 2012)

- Sequence of 88-dimensional binary vectors corresponding to the notes of a piano
- Report held-out negative log-likelihood (NLL)

Inference Network	JSB	Nottingham	Piano	Musedata	
DKS (i.e., ST-R)	6.605 (7.033)	3.136 (3.327)	8.471 (8.584)	7.280 (7.136)	
ST-L	7.020 (7.519)	3.446 (3.657)	9.375 (9.498)	8.301 (8.495)	
ST-LR	6.632 (7.078)	3.251 (3.449)	8.406 (8.529)	7.127 (7.268)	
MF-LR	6.701 (7.101)	3.273 (3.441)	9.188 (9.297)	8.760 (8.877)	

Results:

- ST-LR and DKS substantially outperform MF-LR and ST-L

- Due to previous state (z_{t-1}) and future observations(x_t , ..., x_T)

- z_{t-1} summarizes past observations (x_1 , ..., x_t)

- DKS network has half the parameters of the ST-LR

Model Comparison

Held-out negative log-likelihood (NLL)

			Methods	JSB	Nottingham	Piano	Musedata
$z_1 \rightarrow z_2 \rightarrow z_3$ $\downarrow \qquad \qquad$	z_1 z_2	(z_3) (z_1) (z_2) (z_3) (x_3) (x_1) (x_2) (x_3)	DMM	6.388 (6.926) {6.856}	2.770 (2.964) {2.954}	7.835 (7.980) {8.246}	6.831 (6.989) {6.203}
DMM (DKS)	STORN	DMM-Aug (DKS) TSBN	DMM-Aug.	6.288 (6.773) {6.692}	2.679 (2.856) {2.872}	7.591 (7.721) {8.025}	6.356 (6.476) {5.766}
			HMSBN	(8.0473) {7.9970}	(5.2354) {5.1231}	(9.563) {9.786}	(9.741) {8.9012}
	C)		STORN	6.91	2.85	7.13	6.16
			RNN	8.71	4.46	8.37	8.13
			TSBN	{7.48}	{3.67}	{7.98}	{6.81}
			LV-RNN	3.99	2.72	7.61	6.89

Results:

- Increasing the complexity of the generative model improves the likelihood (DMM vs DMM-Aug)
- DMM-Aug (DKS) obtains better results on all datasets (except LV-RNN on JSB)
- Demonstrates the inference network's ability to learn powerful generative models

EHR Patient Data

• What would happen if the patient received diabetic medication or not?

Conclusion

• Structured Inference Networks for Nonlinear State Space Models

$$egin{split} \mathcal{L}(ec{x};(heta,\phi)) &= \sum_{t=1}^T \mathop{\mathbb{E}}_{q_\phi(z_t|ec{x})} \left[\log p_ heta(x_t|z_t)
ight] - \mathrm{KL}(q_\phi(z_1|ec{x})||p_ heta(z_1)) \ &- \sum_{t=2}^T \mathop{\mathbb{E}}_{q_\phi(z_{t-1}|ec{x})} \left[\mathrm{KL}(q_\phi(z_t|z_{t-1},ec{x})||p_ heta(z_t|z_{t-1}))
ight]. \end{split}$$

VAE for sequential data

Questions?