Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

S.M. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, K.Kavukcuoglu, G. E. Hinton

Nicolas Brandt

nbrandt@cs.toronto.edu

Origins

Deep generative methods :

- + : Impressive samples and likelihood score
- : Lack of interpretable meaning

Structured generative methods :

- + : More easily interpretable
- : Inference hard and slow

How can we combine deep networks and structured probabilistic models in order to obtain interpretable data while being time efficient ?

Principle

Many real-world scenes can be decomposed into objects.

Thus, given an image \mathbf{x} , we can make the modeling assumption that the underlying scene description \mathbf{z} is structured into groups of variable \mathbf{z}^{i} .

Each **z**ⁱ will represent the attributes of one object in the scene (type, appearance, position...)

Principle

Given **x** and a model $p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})$ parameterized by θ , we wish to recover **z** by computing $p_{\theta}(\mathbf{z}|\mathbf{x}) = p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})/p_{\theta}(\mathbf{x})$.

$$p_{\theta}(\mathbf{x}) = \sum_{n=1}^{N} p_{N}(n) \int p_{\theta}(\mathbf{z}|n) p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z} \quad [1]$$

As the number of objects present in the image will most likely vary from a picture to another, $p_N(n)$ will be our prior on the number of objects.

<u>NB:</u> We have to define N which will be the maximum possible number of objects present in an image.

Principle

The inference network will attend to one object at a time and train it jointly with its model.

Inference Network

Most of the time, the equation [1] is intractable \rightarrow Necessity to approximate the true posterior.

Learning a distribution $q_{\phi}(\mathbf{z},n|\mathbf{x})$ parametrized by Φ that minimizes $KL[q_{\phi}(\mathbf{z},n|\mathbf{x})||p_{\theta}(\mathbf{z},n|\mathbf{x})]$ (amortized variational approximation ~ VAE)

Nevertheless, in order to use this approximation we have to resolve 2 others problems.

Inference Network

<u>Trans-dimensionality</u>: Amortized variational approximation is normally used with a fixed size of the latent space, here it is a random variable. \rightarrow We have to evaluate $p_N(n|\mathbf{x}) = \int p_{\theta}(\mathbf{z}, n|\mathbf{x}) d\mathbf{z}$ for n=1,...,N

<u>Symmetry</u>: As the index for each object is arbitrary, we can see alternative assignments of objects appearing in an image \mathbf{x} to latent variable \mathbf{z}^{i} .

In order to resolve these issues, we will use an iterative process implemented as a recurrent neural network. This network is run for N steps and will infer at each step the attributes of one object given the image and its previous knowledge of other objects on the image.

Inference Network

If we consider a vector \mathbf{z}_{pres} composed of n ones followed by a zero we can consider $q_{\Phi}(\mathbf{z}, \mathbf{z}_{pres} | \mathbf{x})$ instead of $q_{\Phi}(\mathbf{z}, n | \mathbf{x})$.

This new representation will simplify the sequential reasoning : z_{pres} can be considered as a counter stop. While the neural network q_{ϕ} outputs z_{pres} =1, it means that the networks should describe at least one more object, if z_{pres} =0, all objects have been described.

Learning process

The parameters θ (model) and Φ (inference network) can be jointly optimized by using gradient descent in order to maximize :

$$L(\theta, \phi) = E_{q_{\phi}} [\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z}, n)}{q_{\phi}(\mathbf{z}, n | \mathbf{x})}] \quad (\text{negative free energy})$$

If p_{θ} is differentiable in θ , it is possible to compute a Monte Carlo Estimate of $\frac{\delta}{\delta \theta}L$.

Computing $\frac{\delta}{\delta \phi} L$ is a bit more complex.

Learning process

For a step i, we consider $w^i = (z^i_{pres}, z^i)$. Thus, by using chain rule, we have :

$$\frac{\delta}{\delta\phi}L = \sum_{i=1}^{N} \frac{\delta L}{\delta w_i} * \frac{\delta w_i}{\delta\phi}$$

Now, if we consider an arbitrary element z^i from (z^i_{pres}, z^i) , we will be able to compute the result with different methods depending on whether z^i is continuous (position) or discrete (z^i_{prez}) .

Continuous: we use the 're-parametrization trick' in order to 'back-propagate' through zⁱ

Discrete: we use the likelihood ratio estimator.

<u>Objective:</u> Learn to detect and generate the constituents digits from scratch.

In this experiment, we will consider N=3.

In practice, each image will only contain 0,1 or 2 numbers.

Here, $\mathbf{z}^{i} = (z_{what}^{i}, z_{where}^{i})$ where z_{what}^{i} is an integer (value of the digit) and z_{where}^{i} is a 3-dimensional vector (scale and position of the digit)

Generative Model:

Inference Network:

Interaction between Inference and Generation networks:

Result:

Early in training: shapes and counts fluctuate

Generalization

When the model is trained only using images composed of 0, 1 or 2 digits, it will not be able to infer the correct count when given an image with 3 digits.

The model learnt during the training to not expect more than 2 digits

How can we improve the generalization ?

Differential AIR

Conclusion

This model structure managed to keep interpretable representation while allowing fast inference (5.6 ms for MNIST).

Nevertheless, there are still some challenges :

• Dealing with the reconstruction loss

• Not limiting the maximum number of objects

Thank you for your attention !