
Motivation

• there are many unsupervised methods for learning parts-based
representations of data

• e.g. non-negative matrix factorization (NNMF), given face images,
learns the parts of which faces are composed

• NNMF does not (1) group related parts, or (2) learn how parts may be
composed to create a valid whole

• we would like to learn the appearances of these parts, as well as their
compositional structure



Overview

• Goal: learn a representation of vector data consisting of:

– Parts: disjoint subsets of the data dimensions (multiple causes)

– Appearances: a discrete characterization of the range of
appearances for each part (vector quantization)

• Example: on face image data,
parts could be eyes, nose, and mouth
appearances could be different sizes and shapes of these parts

• Win: combinatorial power

– VQ with N states represents N items

– MCVQ with j states per N/j VQ’s represents jN/j items

• formulate as a generative probabilistic graphical model, use variational
EM to learn the maximum-likelihood parameters

• applications to image segmentation, text analysis, collaborative filtering



An Illustrative Example
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Learning & Inference

ri
c

o jk

µ jk

b ka i x i
c

s k
c

C

N

J
K

• x ∈ RN data vector

• R = {ri} K-dim. indicator vectors,
select one VQ per data dimension

• S = {sk} J-dim. indicator vectors, select one state per VQ

• θ = {µijk, σijk} parameters of dimension i, from jth state of kth VQ

• ai’s and bk’s prior distribution over r’s and s’s

• Complete Likelihood

P (x, R,S|θ) = P (R|θ)P (S|θ)P (X|R, S, θ)
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Learning & Inference
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• E-Step: compute P (R, S|x, θ)
computationally intractable since all rik and sjk are mutually dependent
(distribution cannot be factorized, and there are JKKN possible
combinations of (R, S))

• Variational E-Step: approximate posterior with

Q(R, S|x, θ) =
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• Variational Free Energy:

F(Q, θ) = EQ

[

− logP (x, R, S|θ) + logQ(R, S|x, θ)
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further constraint: {gc
ik} consistent for any observation Xc → favours

distributions over {ri} that are consistent with other observed data vectors



EM Updates
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Intuition: one state per VQ, choose one VQ per pixel, that matches input



An Alternative Model

• restrict selections of VQ’s, {rik}, to be the same for each training
example

• update rule for gik becomes:
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• in practice, we obtain good results by making gik ∝ exp
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and annealing the temperature, T, during learning

⇒ gradually moving from generative model in which rik’s can vary across
examples, to one where rik’s are consistent across examples



Related Methods

Cooperative Vector Quantization (Zemel-Hinton; Ghahramani)

– xi is generated by the VQ’s cooperatively (linear combination),
rather than competitively (stochastic selection)

Non-Negative Matrix Factorization (Lee-Seung)

– x ∼ Poisson with mean Wv, where W,v ≥ 0

– non-negativity constraints result in sparse, parts-based,
basis vectors wj

– MCVQ is similar∗, with W = [µjk ∗ gk], and v = concatenation
of sk’s (* but uses Gaussian instead of Poisson noise)

– NNMF doesn’t group related parts

– models differ in what novel examples they can generate



Credibility Networks (Hinton-Ghahramani-Teh)
Dynamic Trees (Williams-et al)
Flexible Sprites in Video Layers (Jojic-Frey)

– these methods focus mainly on the unknown pose (primarily
position) of an object in an image

– they learn a single appearance for each object
infer location & occlusion ordering

– MCVQ assumes fixed locations,
learns locations & ranges of appearances of objects
infers appropriate appearances

– our focus → learning a parts-based decomposition



Experiments: Shapes

• data consists of 11x11 gray-scale images, each containing a box,
triangle, and cross - vertical positions of shapes vary independently

• model trained with 3 VQ’s, 5 appearances each

VQ 1

VQ 3

VQ 2

k = 3

k = 2

k = 1

G µ − Appearances for each part

• comparison of RMS reconstruction error, versus other methods,
on a novel shapes image:

0.502 0.2140.7158RMS Error

Original NNMFPCAVQ



Experiments: Faces

• dataset: 19x19 gray-scale images of frontal faces

• model trained on 2000 images, using 6 VQ’s, 12 appearances each

• reconstruction of two images from the test set - beside each are the
specific appearances of each part (the most probable ones) used to
generate it

ReconstructionOriginal ReconstructionOriginal

RMS Error: 0.289 RMS Error: 0.152



Experiments: Text

• Bag of Words - represent document as a word count vector (one
element per vocabulary word)

• each VQ state predicts a document word count

• learned parts provide a segmentation of the vocabulary into subsets of
words with correlated frequencies

• within a particular subset, words can be

– related - tend to appear in the same documents

– contrasting - seldom appear together

• a particular appearance is characterized by the words whose predicted
count differs most from average

• experiments on NIPS Proceedings 0-12 Data (1740 documents, 14,265
word vocabulary) using a model of 8 VQ’s, 8 appearances each



Predictive Sequence Learning in Recurrent Neocortical Circuits
R. P. N. Rao & T. J. Sejnowski

afferent ekf latent ltp
lgn niranjan som gerstner
interneurons freitas detection zador
excitatory kalman search soma
membrane wp data depression

query critic mdp spline
documents stack pomdps tresp
chess suffix prioritized saddle
portfolio nuclei singh hyperplanes
players knudsen elevator tensor

• each column is an appearance selected as most most likely for this document

• bold (plain) words have highest (lowest) predicted frequencies, relative to their
averages



The Relevance Vector Machine
Michael E. Tipping

svms hme similarity extraction
svm svr classify net
margin svs classes weights
kernel hyperparameters classification functions
risk kopf class units

jutten chip barn mdp
pes ocular correlogram pomdps
cpg retinal interaural littman
axon surround epsp prioritized
behavioural cmos bregman pomdp



Missing Data

• model naturally handles case of unobserved data

• all data dimensions are leaves in the graphical model, so unobserved
values play no role in learning or inference

• the probability of each appearance can be inferred from the available
observations for each part

• collaborative filtering - model can be learned on incomplete data,
missing values for test vectors can be inferred

• strong ties between data dimensions and parts allow an active approach
to inference → VQ responsibilities indicate relationships between data
elements



Experiments: EachMovie

• EachMovie data consists of ratings on a scale from 1 to 6
on ∼1600 movies, by ∼74 000 users

• data very sparse - most users rated only a few movies

• we restricted the data to movies rated by > 125 users, and users rating
≥ 75 movies (still very sparse)

• trained an MCVQ model with 8 VQ’s, 6 appearances each

• test set contained ratings vectors with some ratings “hidden”,
and the model was used to infer the hidden ratings

• preliminary results comparable with PLSA
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The Fugitive 5.8 (6) Pulp Fiction 5.5 (4) Cinema Paradiso 5.6 (6)
Terminator 2 5.7 (5) The Godfather: Part II 5.3 (5) Touch of Evil 5.4 (-)
Robocop 5.4 (5) The Silence of the Lambs 5.2 (4) Rear Window 5.2 (6)

Kazaam 1.9 (-) The Brady Bunch Movie 1.4 (1) Jean de Florette 2.1 (3)
Rent-a-Kid 1.9 (-) Ready to Wear 1.3 (-) Lawrence of Arabia 2.0 (3)
Amazing Panda Adventure 1.7 (-) A Goofy Movie 0.8 (1) Sense & Sensibility 1.6 (-)

Best of Wallace & Gromit 5.6 (-) Tank Girl 5.5 (6) Mediterraneo 5.3 (6)
The Wrong Trousers 5.4 (6) Showgirls 5.3 (4) Three Colors: Blue 4.9 (5)
A Close Shave 5.3 (5) Heidi Fleiss: Hollywood Madam 5.2 (5) Jean de Florette 4.9 (6)

Robocop 2.6 (2) Talking About Sex 2.4 (5) Jaws 3-D 2.2 (-)
Dangerous Ground 2.5 (2) Barbarella 2.0 (4) Richie Rich 1.9 (-)
Street Fighter 2.0 (-) The Big Green 1.8 (2) Getting Even With Dad 1.5 (-)

• each column is an appearance selected as most most likely for this user

• bold (plain) movies have the highest lowest predicted ratings, relative to their average
ratings



Current Directions

• Bayesian model selection to determine number of parts, and number of
appearances per part

• hierarchical learning, e.g. condition appearance selection on an
observed variable

– Faces - condition on expression (happy, sad, angry, ...)

– Text - condition on author

→ ideally, treat these higher-level attributes as hidden variables and learn
them in an unsupervised fashion


