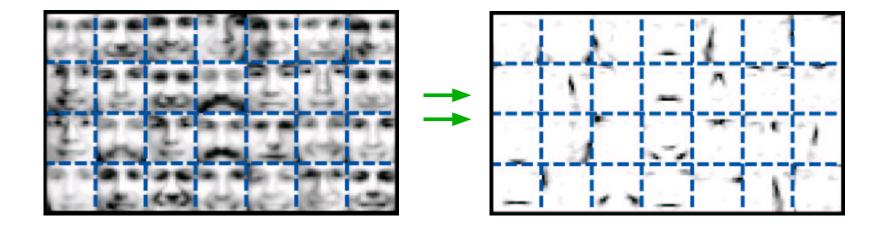
Motivation

- there are many unsupervised methods for learning parts-based representations of data
- e.g. non-negative matrix factorization (NNMF), given face images, learns the parts of which faces are composed

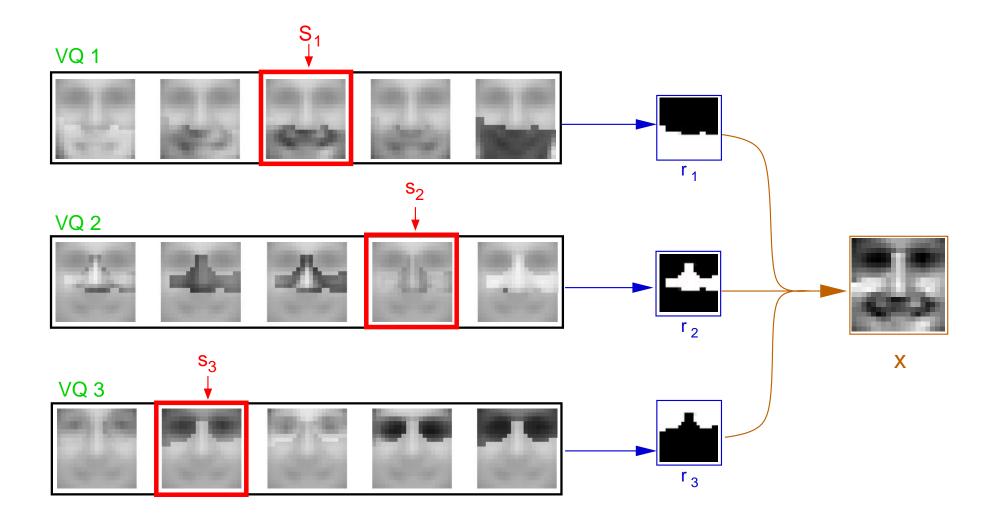


- NNMF does **not** (1) group related parts, or (2) learn how parts may be composed to create a valid whole
- we would like to learn the appearances of these parts, as well as their compositional structure

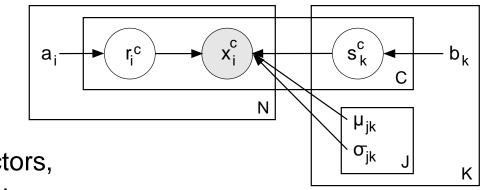
<u>Overview</u>

- Goal: learn a representation of vector data consisting of:
 - Parts: disjoint subsets of the data dimensions (multiple causes)
 - Appearances: a discrete characterization of the range of appearances for each part (vector quantization)
- Example: on face image data, parts could be *eyes*, *nose*, and *mouth* appearances could be different sizes and shapes of these parts
- Win: combinatorial power
 - VQ with N states represents N items
 - MCVQ with j states per N/j VQ's represents $j^{N/j}$ items
- formulate as a generative probabilistic graphical model, use variational EM to learn the maximum-likelihood parameters
- applications to image segmentation, text analysis, collaborative filtering

An Illustrative Example



Learning & Inference

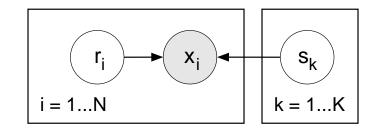


- $\mathbf{x} \in \mathbb{R}^N$ data vector
- $\mathbf{R} = {\mathbf{r}_i} K$ -dim. indicator vectors, select one VQ per data dimension
- $S = \{s_k\} J$ -dim. indicator vectors, select one state per VQ
- $\theta = \{\mu_{ijk}, \sigma_{ijk}\}$ parameters of dimension *i*, from j^{th} state of k^{th} VQ
- \mathbf{a}_i 's and \mathbf{b}_k 's prior distribution over r's and s's
- Complete Likelihood

$$P(\mathbf{x}, R, S|\theta) = P(R|\theta)P(S|\theta)P(X|R, S, \theta)$$
$$= \left(\prod_{ik} a_{ik}^{r_{ik}}\right) \left(\prod_{jk} b_{jk}^{s_{jk}}\right) \prod_{ijk} \mathcal{N}(x_i; \mu_{ijk}, \sigma_{ijk})^{r_{ik}s_{jk}}$$

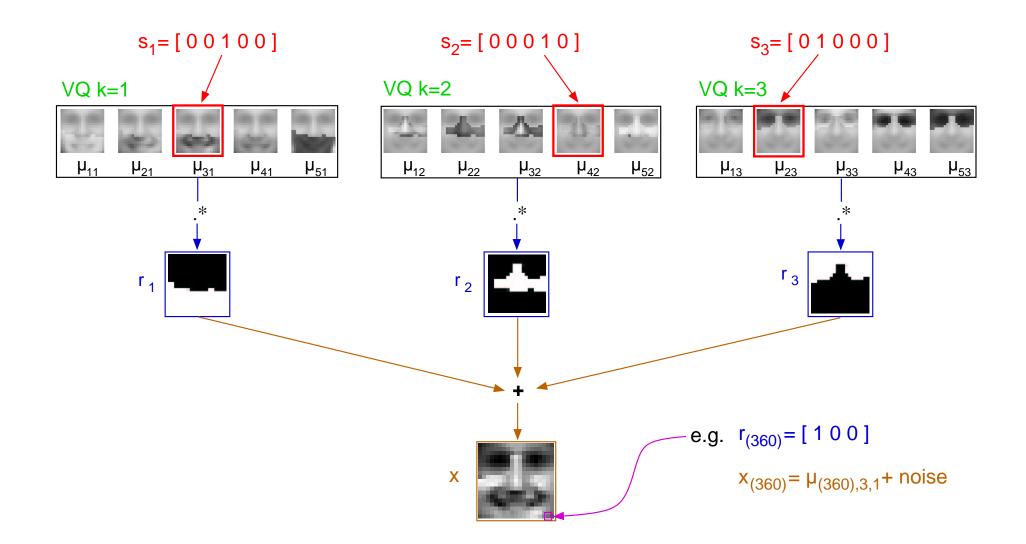
Learning & Inference

- $\mathbf{x} \in \mathbb{R}^N$ data vector
- $\mathbf{R} = {\mathbf{r}_i} K$ -dim. indicator vectors, select one VQ per data dimension



- $S = {s_k} J$ -dim. indicator vectors, select one state per VQ
- $\theta = \{\mu_{ijk}, \sigma_{ijk}\}$ parameters of dimension *i*, from *j*th state of *k*th VQ
- \mathbf{a}_i 's and \mathbf{b}_k 's prior distribution over r's and s's
- Complete Likelihood

$$P(\mathbf{x}, R, S|\theta) = P(R|\theta)P(S|\theta)P(X|R, S, \theta)$$
$$= \left(\prod_{ik} a_{ik}^{r_{ik}}\right) \left(\prod_{jk} b_{jk}^{s_{jk}}\right) \prod_{ijk} \mathcal{N}(x_i; \mu_{ijk}, \sigma_{ijk})^{r_{ik}s_{jk}}$$



- E-Step: compute $P(R, S | \mathbf{x}, \theta)$ computationally intractable since all r_{ik} and s_{jk} are mutually dependent (distribution cannot be factorized, and there are $J^K K^N$ possible combinations of (R, S))
- Variational E-Step: approximate posterior with

$$Q(R, S | \mathbf{x}, \theta) = \left(\prod_{i,k} g_{ik}^{r_{ik}}\right) \left(\prod_{j,k} m_{jk}^{s_{jk}}\right)$$

• Variational Free Energy:

$$\begin{aligned} \mathcal{F}(Q,\theta) &= E_Q \Big[-\log P(\mathbf{x}, R, S|\theta) + \log Q(R, S|\mathbf{x}, \theta) \Big] \\ &= \sum_{k,j \in k} m_{jk} \log m_{jk} + \sum_{i,k} g_{ik} \log g_{ik} + \sum_{i,k,j} g_{ik} m_{jk} d_{ijk} \\ \end{aligned}$$
where $d_{ijk} = \log \sigma_{ijk} + \frac{(x_i - \mu_{ijk})^2}{2\sigma_{ijk}^2}$

further constraint: $\{g_{ik}^c\}$ consistent for any observation $X^c \rightarrow$ favours distributions over $\{\mathbf{r}_i\}$ that are consistent with other observed data vectors

EM Updates

E Step

$$m_{jk}^{c} = \exp\left(-\sum_{i} g_{ik} d_{ijk}^{c}\right) / \sum_{\alpha=1}^{J} \exp\left(-\sum_{i} g_{ik} d_{i\alpha k}^{c}\right)$$

M Step

$$g_{ik} = \exp\left(-\frac{1}{C}\sum_{c,j}m_{jk}^c d_{ijk}^c\right) / \sum_{\beta=1}^K \exp\left(-\frac{1}{C}\sum_{c,j}m_{j\beta}^c d_{ij\beta}^c\right)$$

$$\mu_{ijk} = \sum_{c} m_{jk}^{c} x_{i}^{c} / \sum_{c} m_{jk}^{c} \sigma_{ijk}^{2} = \sum_{c} m_{jk}^{c} (x_{i}^{c} - \mu_{ijk})^{2} / \sum_{c} m_{jk}^{c}$$

Intuition: one state per VQ, choose one VQ per pixel, that matches input

An Alternative Model

- restrict selections of VQ's, $\{r_{ik}\}$, to be the same for each training example
- update rule for g_{ik} becomes:

$$g_{ik} \propto \exp\left(-\sum_{c,j} m^c_{jk} \ d^c_{ijk}
ight)$$

- in practice, we obtain good results by making $g_{ik} \propto \exp\left(-\frac{1}{T}\sum ...\right)$, and annealing the temperature, T, during learning
- \Rightarrow gradually moving from generative model in which r_{ik} 's can vary across examples, to one where r_{ik} 's are consistent across examples

Related Methods

Cooperative Vector Quantization (Zemel-Hinton; Ghahramani)

- x_i is generated by the VQ's cooperatively (linear combination), rather than competitively (stochastic selection)

Non-Negative Matrix Factorization (Lee-Seung)

- $\mathbf{x} \sim \text{Poisson}$ with mean $\mathbf{W}\mathbf{v},$ where $\mathbf{W}, \mathbf{v} \geq \mathbf{0}$
- non-negativity constraints result in sparse, parts-based, basis vectors \mathbf{w}_i
- MCVQ is similar^{*}, with $W = [\mu_{jk} * g_k]$, and v = concatenation of s_k 's (* but uses Gaussian instead of Poisson noise)
- NNMF doesn't group related parts
- models differ in what novel examples they can generate

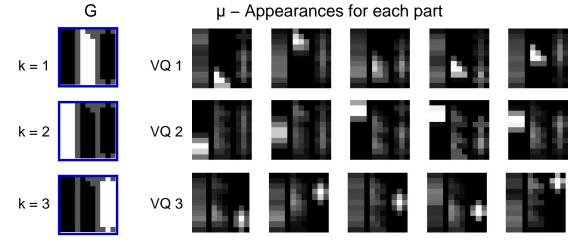
Credibility Networks (Hinton-Ghahramani-Teh) Dynamic Trees (Williams-et al) Flexible Sprites in Video Layers (Jojic-Frey)

- these methods focus mainly on the unknown pose (primarily position) of an object in an image
- they learn a single appearance for each object infer location & occlusion ordering
- MCVQ assumes fixed locations, learns locations & ranges of appearances of objects infers appropriate appearances
- our focus \rightarrow learning a parts-based decomposition

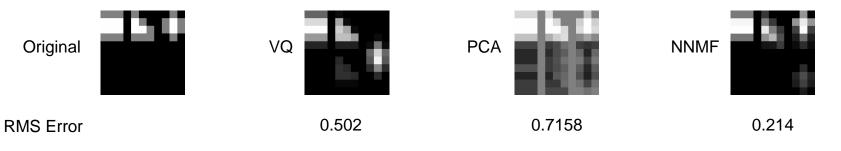
Experiments: Shapes

 data consists of 11x11 gray-scale images, each containing a box, triangle, and cross - vertical positions of shapes vary independently

• model trained with 3 VQ's, 5 appearances each

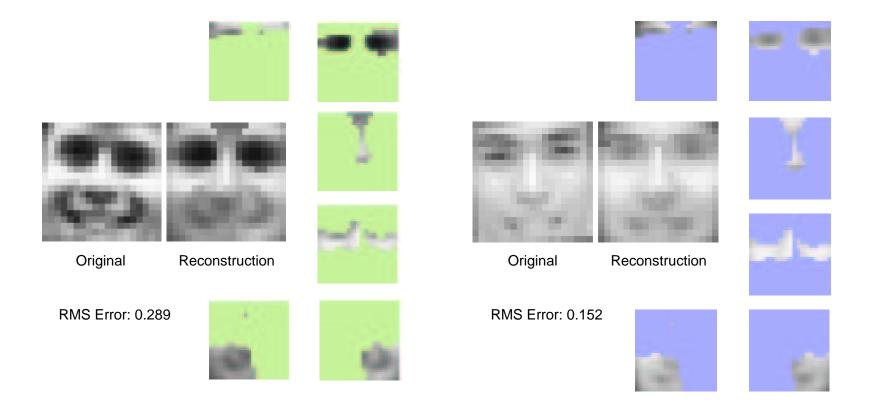


 comparison of RMS reconstruction error, versus other methods, on a novel shapes image:



Experiments: Faces

- dataset: 19x19 gray-scale images of frontal faces
- model trained on 2000 images, using 6 VQ's, 12 appearances each
- reconstruction of two images from the test set beside each are the specific appearances of each part (the most probable ones) used to generate it



Experiments: Text

- Bag of Words represent document as a word count vector (one element per vocabulary word)
- each VQ state predicts a document word count
- learned parts provide a segmentation of the vocabulary into subsets of words with correlated frequencies
- within a particular subset, words can be
 - related tend to appear in the same documents
 - contrasting seldom appear together
- a particular appearance is characterized by the words whose predicted count differs most from average
- experiments on NIPS Proceedings 0-12 Data (1740 documents, 14,265 word vocabulary) using a model of 8 VQ's, 8 appearances each

Predictive Sequence Learning in Recurrent Neocortical Circuits R. P. N. Rao & T. J. Sejnowski							
afferent	ekf	latent	Itp				
Ign	niranjan	som	gerstner				
interneurons	freitas	detection	zador				
excitatory	kalman	search	soma				
membrane	wp	data	depression				
query	critic	mdp	spline				
documents	stack	pomdps	tresp				
chess	suffix	prioritized	saddle				
portfolio	nuclei	singh	hyperplanes				
players	knudsen	elevator	tensor				

- each column is an appearance selected as most most likely for this document
- **bold** (plain) words have **highest** (lowest) predicted frequencies, relative to their averages

	The Relevance Vector Machine Michael E. Tipping				
svms	hme	similarity	extraction		
svm	svr	classify	net		
margin	svs	classes	weights		
kernel	hyperparameters	classification	functions		
risk	kopf	class	units		
jutten	chip	barn	mdp		
pes	ocular	correlogram	pomdps		
cpg	retinal	interaural	littman		
axon	surround	epsp	prioritized		
behavioura	I cmos	bregman	pomdp		

Missing Data

- model naturally handles case of unobserved data
- all data dimensions are leaves in the graphical model, so unobserved values play no role in learning or inference
- the probability of each appearance can be inferred from the available observations for each part
- collaborative filtering model can be learned on incomplete data, missing values for test vectors can be inferred
- strong ties between data dimensions and parts allow an active approach to inference → VQ responsibilities indicate relationships between data elements

Experiments: EachMovie

- EachMovie data consists of ratings on a scale from 1 to 6 on \sim 1600 movies, by \sim 74 000 users
- data very sparse most users rated only a few movies
- we restricted the data to movies rated by > 125 users, and users rating ≥ 75 movies (still very sparse)
- trained an MCVQ model with 8 VQ's, 6 appearances each
- test set contained ratings vectors with some ratings "hidden", and the model was used to infer the hidden ratings
- preliminary results comparable with PLSA

~	The Fugitive 5.8 (6)	Pulp Fiction 5.5 (4)	Cinema Paradiso 5.6 (6)
	Terminator 2 5.7 (5)	The Godfather: Part II 5.3 (5)	Touch of Evil 5.4 (-)
	Robocop 5.4 (5)	The Silence of the Lambs 5.2 (4)	Rear Window 5.2 (6)
User	Kazaam 1.9 (-)	The Brady Bunch Movie 1.4 (1)	Jean de Florette 2.1 (3)
	Rent-a-Kid 1.9 (-)	Ready to Wear 1.3 (-)	Lawrence of Arabia 2.0 (3)
	Amazing Panda Adventure 1.7 (-)	A Goofy Movie 0.8 (1)	Sense & Sensibility 1.6 (-)

User 2	Best of Wallace & Gromit 5.6 (-) The Wrong Trousers 5.4 (6) A Close Shave 5.3 (5)	Tank Girl 5.5 (6) Showgirls 5.3 (4) Heidi Fleiss: Hollywood Madam 5.2 (5)	Mediterraneo 5.3 (6) Three Colors: Blue 4.9 (5) Jean de Florette 4.9 (6)
	Robocop 2.6 (2) Dangerous Ground 2.5 (2) Street Fighter 2.0 (-)	Talking About Sex 2.4 (5) Barbarella 2.0 (4) The Big Green 1.8 (2)	Jaws 3-D 2.2 (-) Richie Rich 1.9 (-) Getting Even With Dad 1.5 (-)

- each column is an appearance selected as most most likely for this user
- **bold** (plain) movies have the **highest** lowest predicted ratings, relative to their average ratings

Current Directions

- Bayesian model selection to determine number of parts, and number of appearances per part
- hierarchical learning, e.g. condition appearance selection on an observed variable
 - Faces condition on expression (happy, sad, angry, ...)
 - Text condition on author
- $\rightarrow\,$ ideally, treat these higher-level attributes as hidden variables and learn them in an unsupervised fashion