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Abstract. Humans demonstrate a remarkable ability to parse compli-
cated motion sequences into their constituent structures and motions. We
investigate this problem, attempting to learn the structure of one or more
articulated objects, given a time-series of feature positions. We model the
observed sequence in terms of “stick figure” objects, under the assump-
tion that the relative joint angles between sticks can change over time,
but their lengths and connectivities are fixed. We formulate the problem
in a single probabilistic model that includes multiple sub-components:
associating the features with particular sticks, determining the proper
number of sticks, and finding which sticks are physically joined. We test
the algorithm on challenging 2D and 3D datasets including optical hu-
man motion capture and video of walking giraffes.

1 Introduction

An important aspect of analyzing dynamical scenes involves segmenting the
scene into separate moving objects and constructing detailed models of each ob-
ject’s motion. For scenes represented by trajectories of features on the objects,
structure-from-motion methods are capable of grouping the features and infer-
ring the object poses when the features belong to multiple independently-moving
rigid objects. Recently, however, research has been increasingly devoted to more
complicated versions of this problem, when the moving objects are articulated
and non-rigid.

In this paper, we investigate this problem, attempting to learn the structure
of an articulated object while simultaneously inferring its pose at each frame of
the sequence, given a time-series of feature positions. We propose a single proba-
bilistic model for describing the observed sequence in terms of one or more “stick
figure” objects. We define a “stick figure” as a collection of line segments (bones
or sticks) joined at their endpoints. The structure of a stick figure—the number
and lengths of the component sticks, the association of each feature point with
exactly one stick, and the connectivity of the sticks—is assumed to be temporally
invariant, while the angles (at joints) between the sticks are allowed to change
over time. We begin with no information about the figures in a sequence, as the
model parameters and structure are all learned. Our same approach applies when
the observations are the three-dimensional world coordinates of the features or
their two-dimensional image coordinates. An example of a stick figure learned
by applying our model to two-dimensional feature observations from a video of
giraffe motion is shown in Figure 1.



Fig. 1. A frame from a video of a walking giraffe, augmented with a learned skeleton.
Each colored line represents a separate stick, and the white circles are joints.

Learned models of skeletal structure have many possible uses. For example,
skeletons are necessary for converting feature point positions into joint angles,
a standard way to encode motion for animation. Furthermore, knowledge of the
skeleton can be used to improve the reliability of optical motion capture, permit-
ting disambiguation of marker correspondence and occlusion [1]. Additionally,
detailed, manually-constructed skeletal models are often a key component in full-
body tracking algorithms. The ability to learn skeletal structure could help to
automate the process, potentially producing models more flexible and accurate
that those constructed manually. Finally, a learned skeleton might be used as a
rough prior on shape to help guide image segmentation [2].

In the following section we discuss other recent approaches to modelling
articulated figures from tracked feature points. In Section 3 we formulate the
problem as a probabilistic model and describe the optimization of this model,
which proceeds in a stage-wise fashion, building up the structure incrementally
to maximize the joint probability of the model variables. We generate several
hypothesized structures by sampling from this probabilistic model, and then use
validation data in which multiple features are occluded in order to determine an
optimal structure. In Section 4 we test the algorithm on a range of datasets: data
of human motion from optical motion capture devices; motion capture data of
multiple subjects; 2D human data; and features extracted from video of walking
giraffes. We show that the algorithm can also work when there are multiple
objects in the scene, and when articulated parts are non-rigid. In the final section
we describe assumptions and limitations of the approach, and discuss future
work.



2 Related Work

The task of learning stick figures from a set of feature point trajectories can be
thought of as a variant of the structure from motion (SFM) problem.1 When the
trajectories all arise from the motion of one rigid object, Tomasi and Kanade [3]
have shown that the matrix of point locations, W, is a linear product of a time-
invariant structure matrix, S, and a time-varying matrix of motion parameters,
M. M and S can be recovered by singular value decomposition.2 SFM can also
be extended to handle multiple rigid objects moving independently. Costeira
and Kanade [5] have shown that this problem, known as multibody SFM, can
be solved by grouping the point trajectories according to the object they arise
from, then solving SFM independently for each object. Grouping is accomplished
by forming a shape-shape interaction or affinity matrix, indicating the potential
for each pair of points of belonging to the same object, and using this matrix to
cluster the trajectories.

Several authors have demonstrated that SFM can be interpreted as a prob-
abilistic generative model, e.g. [6–8]. This view permits the inclusion of priors
on the motion sequence, thereby leveraging temporal coherence. Furthermore,
in the multibody case, Gruber and Weiss have presented a single probabilistic
model that describes both the grouping problem and the per-object SFM prob-
lems [8]. This produces a single objective function that can be jointly optimized,
leading to more robust solutions.

Unfortunately, multibody SFM cannot reliably be used to obtain the struc-
ture and motion of an articulated figure’s parts since, as shown by Yan and
Pollefeys [9], the motions of connected parts are linearly dependent. However,
this dependence can be used to form an alternative affinity matrix for clustering
the trajectories. Yan and Pollefeys use this as the basis for a stage-wise pro-
cedure for recovering articulated SFM [10]: (1) cluster point trajectories into
body parts; (2) independently run SFM on each part; (3) determine connectiv-
ity between parts by running (a variant of) minimum spanning tree, where edge
weights are the minimum principle angle between two parts’ motion matrices
(for connected, dependent parts, this should be zero); (4) finally, solve for the
joint locations between connected parts. A disadvantage of this method is its
lack of an overall objective function that can be optimized globally, and used to
compare the quality of alternative models.

Given three-dimensional observations, if two points are attached to the same
rigid body part, the distance between them is constant. Kirk et al. [11] use
this simple fact as the basis for a stage-wise algorithm to automatically recover
articulated structure from motion capture data. First, trajectories are clustered
using, as an affinity measure, the (negative) standard deviation of the distance
1 Generally, the input for SFM is assumed to be two-dimensional observations (im-

age coordinates) of points on an inherently three-dimensional object. However most
algorithms, including the ones presented here, work equally well given 3D inputs.

2 This solution assumes an affine camera. Solutions based on the projective camera,
perhaps using the above method as an initialization, can be obtained via bundle
adjustment [4].



between each pair of points. Next, for each pair of body parts they compute a
joint cost, indicating the likelihood that the parts are connected by a rotational
joint. Noting that a joint can be interpreted as an unobserved point belonging
to both of the parts it connects, joint cost is the variance in the distance from
the putative joint location to each of the points in the two parts, and is com-
puted using nonlinear optimization. Finally, the articulated structure is obtained
by running a minimum spanning tree algorithm, using the joint costs as edge
weights. Although simple to apply in 3D, this method will not work given ob-
servations projected to 2D. Another drawback to this method is that, beyond
computing the positions of joints in each frame, it does not produce a time-
invariant model of structure or a set of motion parameters. This means that
filling in missing observations or computing joint angles would require further
processing, and that the learned model cannot be applied to novel motions of
the same object (test data).

Learning articulated figures can also be interpreted as structure learning
in probabilistic graphical models, with nodes representing the positions of parts
and edges their connectivity. Learning structure is a hard problem that is usually
solved approximately, using greedy methods or by restricting the class of possible
structures. Song et al. [12] note that the optimal structure (in terms of maximum
likelihood) of a graphical model is the one that minimizes the entropy of each
node given its parents. Restricting their attention to graphs in which nodes
each have two parents, they propose to learn the structure greedily, iteratively
connecting to the graph the node with the smallest conditional entropy given
its parents. When the space of graphical models is restricted to trees, the exact
maximum likelihood (minimum entropy) structure can be found efficiently by
solving for the minimum spanning tree [13, 12], using conditional entropy as edge
weight. In their application, Ramanan et al. [14] find that the minimum-entropy
spanning tree often produces poor solutions, joining together parts which are
not near each other. Instead, they obtain good results by replacing entropy with
the average distance between parts. Krahnstoever et al. [15] use combination of
“joint cost” and spatial proximity for edge weight. With the exception of [13]
(which is concerned only with the final stage of processing, after the motions of
individual parts have been obtained), all of these methods build two-dimensional
models directly in image coordinates. Thus, unlike SFM approaches, they are
unable to deal with out-of-plane motion; a model trained on side views of a
person walking would be inapplicable to a sequence of frontal views.

3 Model Formulation

Here we formulate a probabilistic graphical model for sequences generated from
articulated skeletons. By fitting it to a set of feature point trajectories (the
observed locations of a set of features across time), we are able to parse the
sequence into one or more articulated skeletons and recover the corresponding
motion parameters for each frame. The observations can be 3D (from motion
capture) or 2D (from video), but in either case the goal is always to learn skele-



tons that capture the full 3D structure. Fitting the model is performed entirely
via unsupervised learning; the only inputs are the observed trajectories, with
manually-tuned parameters restricted to a small set of Gaussian variances.

The observations for this model are the locations wf
p of feature points p in

frames f . A discrete latent variable R assigns each point to one of S sticks.
Each stick s consists of a set of time-invariant local coordinates Ls, describing
the relative positions of all points belonging to the stick. Ls is mapped to the
observed world coordinate system by a different motion matrix Mf

s at every
frame (see Figure 2, Left).

If all of the sticks are unconnected and move independently, then this model
essentially describes multibody SFM [8]. However, when sticks are connected at
joints, their motion variables are no longer independent [9]. We will use latent
variable G to denote this connectivity of sticks. Specifically, gs,e = gs′,e′ indi-
cates that endpoint e of stick s (e ∈ {1, 2}) connects to endpoint e′ of stick s′.
The value of G defines a Bayesian network over the motion variables.
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Fig. 2. (Left) The generative process for the observed feature positions, and the im-
puted positions of the joints. Auxiliary variables specify the local and world loca-
tions of the joints. (Right) The graphical model. The motion and geometry variables
(Mf

s ,vf
j ,Ls,Ks) are optimized during parameter learning (see Section 3.1); the struc-

ture variables (S = (R,G)) are optimized during structure learning (see Section 3.2)

In allowing connectivity between sticks (possibly even including cycles), the
problems of describing the constraints between motions and inferring motions
from the observations are made considerably more difficult. To deal with this
complexity, we propose the introduction of auxiliary variables called vertices,
pseudo-observations indicating the locations of the joints and free endpoints in
each frame. Every stick has two endpoints, each of which is assigned to exactly
one vertex. Each vertex can correspond to one or more stick endpoints (vertices



assigned two or more endpoints are joints). We will let vf
j represent the world

coordinate location of vertex j in frame f , and Ks specify the coordinates of
stick s’s endpoints relative to its local coordinate system Ls. Vertices are used
to enforce a key constraint: for all the sticks that share a given vertex, the
vertex world coordinate locations obtained by applying the respective motion
matrices to the local endpoint locations must be consistent. This restricts the
range of possible motions to only those resulting in appropriately connected
figures. Intuitively, in Figure 2(Left) endpoint 2 of stick 1, k1,2, is connected to
endpoint 2 of stick 2, k2,2. Thus in frame f both endpoints must map to exactly
the same world coordinate, the location of the knee joint given by vertex vf

j2,
i.e. Mf

1k1,2 = Mf
2k2,2 = vf

j2.
The utility of introducing these auxiliary variables is that, given the vertices

V and endpoints K, the problem of estimating the motions and local geometries
(M and L) factorizes into S independent structure-from-motion problems, one
for each stick. The assumed generative process for the feature observations and
the vertex pseudo-observations is shown in Figure 2 (Left), and the corresponding
probabilistic model is shown in Figure 2 (Right).

The components of the model that comprise the model structure—the feature-
stick assignments R and the articulated graph structure G—are summarized in
a single variable S = {R,G}. The complete joint probability of the model can
be decomposed into two factors.

P(W,M,L,S) = P(W,M,L|S) P(S) (1)

The first factor, containing the continuous motion and geometry variables, is
optimized during parameter learning, while the second, containing discrete as-
signments and connectivities, is optimized during structure learning. We first
consider the parameter learning problem.

3.1 Learning geometry and motion parameters

The aim of parameter learning in the model is to determine a set of motion
parameters M and local point coordinates L that optimally fit the observed
data W, given the model structure S. This distribution can be factored into a
likelihood, a motion prior, and a locality prior: P(W,M,L|S) = P(W|M,L,S)
P(M|S) P(L|S). For this work, it is convenient to assume a non-informative
uniform prior for P(L|S). The details of the other factors follow.

Likelihood of observed feature positions Assuming isotropic Gaussian
noise with variance σ2

w, the likelihood function is

P(W|M,L,S) =
∏
f,p,s

N (wf
p |Mf

s ls,p, σ
2
wI)rp,s (2)

where rp,s is a binary variable equal to 1 if and only if point p has been assigned
to stick s. This distribution captures the constraint that for feature point p, its



predicted world location, based on the motion matrix and its location in the local
coordinate system for the stick to which it belongs (rp,s = 1), should match its
observed world location. Note that dealing with missing observations is simply
a matter of removing the corresponding factors from this likelihood expression.
This likelihood is applicable if the observations wf

p are 2D or 3D. In the 2D case,
we assume an affine camera projection. However, it would be possible to extend
this to a projective camera by making the mean depend non-linearly on Mf

s ls,p.
The distribution over motion matrices, upon introduction of the auxiliary

variables, can be written as P(M|S) =
∫

P(M,V,K|S)d(V,K). The joint dis-
tribution inside the integral is composed of three factors capturing constraints
on the imputed vertex locations and motion matrices in each frame, and the
local vertex locations:

P(M,V,K|S) = P(V|M,K,S) P(M|S) P(K|S) (3)

Consistent vertex location predictions Since the articulated graph struc-
ture G induces dependencies between the motions of connected parts, the distri-
bution P(Mf |G) of the motion matrix components in frame f does not factorize
across sticks s. However, given the auxiliary variables Vf and K that specify
the world and local positions of the vertices respectively, the prior probability
over the per-frame motions, P(Mf |Vf ,K,G), does factorize across s. In essence,
given the auxiliary variables, the articulated SFM problem factorizes into S in-
dependent SFM problems.

The important constraint on (Mf ,Vf ) is that the endpoints should coincide,
as closely as possible, with the vertices (joints) to which they belong. This can
be expressed in the following Gaussian potential function:

P(V|M,K,S) ∝
∏
f,s,e

N (vf
j |M

f
sks,e, σ

2
vI)

gs,e,j (4)

Note that because this constraint is probabilistic, it only needs to be approxi-
mately satisfied. This allows the model to capture a degree of non-rigidity in the
skeletal structure (c.f. [16]), as is illustrated in Figure 3(d).

Motion coherence A final constraint is that the motions be smooth through
time:

P(M|S) =
∏
f,s

N (Mf
s |Mf−1

s , σ2
m1) (5)

As with P(L|S), the locality prior P(K|S) will also be assumed uniform.
This phase of learning in our model solves for the per-frame motion matrix

parameters and vertex locations, and the local coordinates of the points and
vertices, by optimizing P(W,M,L,V,K|S), which is the product of the three
terms specified in Equations (2), (4), and (5). The optimization alternates two
steps for a fixed number of iterations or until convergence: vertex locations Vf

are imputed for each frame based on Equation (4), and then these locations are
treated as additional observations and a standard EM algorithm for SFM with
temporal smoothing [8] is applied to solve for M,K,L:



Algorithm 1 Algorithm for optimizing the model parameters given a particular
structure.

(1). impute Vj

V f
j =

D
V f

j |V
f

s ,G
E

=
P

s,e Mf
sk

gs,e,j
s,e /||gj ||

(2). optimize (M,K,L)
SFM with temporal smoothness → {Mf

s ,Ks,Ls}

3.2 Learning and validating the model structure

Structure learning in this model entails estimating the assignments of feature
points to sticks (including the number of sticks), and the connectivity of sticks,
expressed via the assignments of stick endpoints to vertices. The space of possi-
ble structures is enormous. We therefore adopt an approach in which we use a
training set of feature point trajectories to construct a number of hypothesized
structures and optimize each structure’s parameters, then employ a validation
set to evaluate the hypothesized structures. In this section we describe how we
use the same probabilistic model to construct hypothesized skeletal structures.

Stick Assignments The first step of structure learning involves hypothesizing
an assignment of each observed feature point to a stick. This segmentation step
also entails determining the number of sticks. We obtain a segmentation by first
creating an empirical prior P(R) based on the observations W, then sampling
from this distribution. The prior is constructed by computing a feature-point by
feature-point affinity matrix, where each pairwise affinity is based on a combina-
tion of the consistency in the relationship between the points over frames, and
their spatial proximity. We use different affinities for 2D and 3D observations.
As in earlier methods [8, 9], we could then obtain a segmentation by applying a
clustering algorithm to construct the feature-stick assignments from the affinity
matrix.

In our model, we instead compute a distribution over feature-stick assign-
ments, and use this to hypothesize several alternative segmentations. Details on
the exact affinity terms and the construction of this distribution over segmenta-
tions are discussed in Section 4.1 below.

Articulated Graph Structure The second part of model structure learning
involves determining which stick endpoints are joined together. We formulate
this in our model as a stick-endpoint by vertex matrix G. Each stick-endpoint
is assigned to exactly one vertex. The total number of vertices in the model is
at most equal to twice the number of sticks. Valid configurations of this matrix
only include cases in which endpoints of a given stick are assigned to different
vertices.

We employ an incremental, greedy scheme for hypothesizing a series of graph
structures G given a particular segmentation R. We begin with a fully discon-
nected graph, so that each vertex corresponds to a single stick endpoint. This



is the first hypothesized graph structure, which corresponds to the multibody
factorized SFM problem [5]. At each step, we consider each merge that is valid.
A given merge specifies a particular graph structure, a simple modification on
an existing structure. For example, two stick endpoints that were previously as-
signed to their own vertices can be assigned to a common vertex. Or a stick
endpoint assigned to its own vertex can be added to a multi-endpoint vertex (a
joint). Lastly, two multi-endpoint vertices may be merged into a single, larger
multi-endpoint vertex.

The cost of each merge is evaluated by running parameter learning (as de-
scribed in the previous section) given this structure. The merge cost is the neg-
ative log-probability of the full joint probability of the model given S. Since at
each step the potential merges all share the same segmentation, the merge cost
reduces to − log P(W,M,V,K|S); all three of the required terms (Equations
(2), (4), (5)) are computed during the optimization in Algorithm 1. We greedily
select the least costly merge, and then evaluate merge costs beginning with this
new structure.

Each merge produces a new graph connectivity matrix G. Considered in con-
junction with the proposed segmentations, this learning procedure constructs a
set of hypotheses about the skeletal structure and geometry of the articulated
objects. These various hypotheses are then evaluated against a novel set of val-
idation data. The inference algorithm outlined in Algorithm 1 is run for each
structure on the validation data, holding stick and vertex locations fixed. The
score of a model is the log probability: log P(W,M,V,K|S).

4 Experimental Results

We evaluate our approach on real data sets of both 2D and 3D point trajectories.
Qualitatively, we show that our approach is able to find articulated skeletons that
match our intuitive knowledge of a moving object’s skeleton. Quantitatively,
we are able to show that when used to predict held-out feature locations from
previously unseen data, our approach is able to provide a significant improvement
in accuracy over single and multibody SFM.

4.1 Experiment details

Stick assignments For 3D trajectory segmentation, pairwise affinities were
determined by the variance in the feature locations across frames, combined
with a weak spatial prior representing the general belief that points near each
other will move together:

d(i, j) = V ar(‖wi −wj‖)−
γ

F

F∑
f=1

‖wf
i −wf

j ‖
2 (6)

where parameter γ weights the relative contribution of the two terms. For 2D
trajectory segmentation, rather than using the pairwise variance between point
distances, we use the principal angles between locally estimated subspaces [9].



Given this matrix, we used the affinity propagation (AP) algorithm [17] to
generate the feature-stick assignments, and to determine the number of sticks.
AP contains a self-affinity parameter n, a percentile of the observed affinity
values, that determines the degree of over-segmentation. Each run sampled n
uniformly from the range [.5, .95]. To generate alternative segmentations of the
trajectories, we used the Best Max-Marginal First algorithm [18] to pick from
amongst the top clusterings determined by AP.

Structure learning When working in 2D, it becomes important to ensure
that parts connected by a joint are nearby in 3D (particularly in depth: the axis
perpendicular to the camera plane). This can be achieved by the addition of a
regularizing constraint on the local coordinates of each stick endpoint, specifying
that it should be in the vicinity of the local coordinates of the feature points
on that stick. To this end we use the following empirical prior on the endpoint
locations ks,e:

P(K) =
∏
s,e

N (ks,e|L̄s, σ
2
k1) (7)

where L̄s =
∑

p L
rs,p
s,p /||rs||.

Datasets and evaluation metrics We split each dataset into three blocks: the
first 60% of the frames used for learning the structure and parameters; the next
20% for validation, to select the single optimal structure; and the last 20% used
as a test set to evaluate the selected structure, and compare its performance to
other structures. In the validation and test frames, we remove all features from
one randomly chosen stick and 10% of the rest of the features, also randomly
chosen. This procedure aims to simulate occlusion and feature drop-out. This
random selection of missing features is repeated 20 times, and we average the
prediction results across the repetitions for both validation and test. We can then
compare the predictive performance of the chosen and some other not-selected
structures on the held-out feature locations.

Ideally we would compare our algorithm against others on the prediction of
held-out data. However, the other algorithms, e.g. [11], do not produce detailed
enough models to make such predictions on novel frames.

Instead, we use two alternatives as baseline predictors: single-body structure
from motion, and multibody SFM (which is equivalent to a fully-disconnected
skeleton). In both cases the visible points are used to estimate the motions, then
the motions, together with the structures, are used to estimate the locations of
the held-out points. This comparison elucidates the quantitative utility of the
joints.

Finally, it is important to note that while there are several parameters in
the algorithm, only a very small number of them are adjusted for the different
datasets. The number of EM iterations in SFM is generally set to 10, but for
efficiency is reduced to 1 on the much larger 3D datasets. The segmentation
method contains parameters such as γ in (6), which was set to 1/100 in 3D



and 1/1500 in 2D. When constructing the 2D affinity matrix of [9], we used
a neighborhood size of 4 and an effective rank parameter of 10−6. The other
parameters are not varied for the different data sets; α, the ratio of the feature
point variance σ2

w to the vertex variance σ2
v , is set to 4; β, the ratio of the

observation variance to the temporal smoothness variance σ2
m, was set to 0.25.

Finally, the marker coordinates for each dataset were rescaled to lie roughly in
[−10, 10].

4.2 3D Data: Human Motion Capture

We use 3D point trajectories from the CMU Motion Capture database. The first
sequence contains a single person interacting with a box on the floor and has
174 trajectories across 2195 frames. The second sequence contains two people
playing catch with a football. There are 327 trajectories across 1285 frames. We
selected these sequences due to the marker densities and extensive articulation of
the figures, which allows our algorithm to form a detailed, complicated skeleton.

Three optimal skeletons, as selected by validation, are shown in Figure 3(a).
These were obtained by running our greedy structure learning algorithm on three
different segmentations, and for each selecting the structure with the lowest
validation error. From left to right respectively, these structures contain 12, 11
and 23 sticks, and were constructed using 15, 15, and 38 steps of greedy structure
learning. These structures obtained test error 39%, 43%, and 59% less error than
single-body structure from motion. In comparison, due to its inherent difficulty
with fully-occluded sticks, the test error of multibody factorization, over a range
of different segmentations, was 7.6 times larger than the largest test error of
the three skeletons shown. Although the structure on the left appears to more
closely match an intuitive abstraction of a human skeleton, its validation error is
slightly higher than that of the other two. This can be attributed to the difficulty
of comparing structures with different numbers of sticks.

As an additional comparison, we ran the algorithm of Kirk et al. [11] on the
same training sequence, and include a representative structure learned by it in
Figure 3(b). As can be seen, the segmentation performance is similar to our own,
but it has difficulty determining the connectivity of parts and the locations of
the joints. These problems may be attributed to the fact that this data does
not include a “calibration phase”, in which the human fully exercises each joint
through its full range of motion.

The optimal skeleton for the two-person video is shown in Figure 3(c). Note
that, in contrast with methods based on spanning trees, the algorithm has no
trouble finding separate skeletons for each of the two players.

4.3 2D Data: Human and Giraffe

Next, we explored our algorithm’s ability to model a 3D scene when given only
a 2D view of the feature points. We constructed a set of 2D feature trajectories
by taking the single human motion capture sequence and projecting it to a 2D
image plane that retained a reasonable amount of information about the motion.



To ensure that quantitative evaluation was fair, we chose the training, validation
and test sequences to ensure that they captured roughly the same distribution
over the person’s range of motions and orientation. Otherwise, we followed the
same methodology as in the 3D case.

Optimal skeletons for two different segmentations are shown in Figure 3(e).
For the segmentation shown on the left, the validation error was the lowest on
the shown structure, with a score of 67.4. Test error was also lowest with a score
of 68.8, whereas the test error on the fully disconnected skeleton (multi-body
SFM) was 233. For the segmentation on the right, the validation error was the
lowest on the shown structure, with a score of 77.3. Test error was also lowest
with a score of 80.2, while the fully disconnected skeleton gave a test error of
158. For both of these, the single body SFM test error was much higher at 902.

As an additional experiment, we apply our model to a video of giraffe walking
across a plain. We obtain 2D point trajectories by tracking feature points in the
video, producing a sequence of 60 trajectories across 130 frames. (Unlike the
2D human motion, in this video the motion of the giraffe is mostly planar. As
a result, when solving for SFM there is an inherent degeneracy that, if not
handled carefully, will break standard SFM algorithms.) Figure 3(f) shows two
representative skeletons learned by our algorithm for the giraffe video, and one
of the best skeletons learned appears in Figure 1.

5 Discussion

We have demonstrated a single coherent model that can describe the structures
and motion of articulated skeletons. This model can be applied to a variety
of structures (including 2D and 3D), requiring no input beyond the observed
feature trajectories, and a minimum of manually-adjusted parameters.

To obtain good results, our model requires a certain density of features, in
particular because the 2D affinity matrix [9] requires at least 4 points per stick.
However in 3D it can work if a few sticks have only a single marker. In addition,
the flexibility of learned models are limited to the degrees of freedom visible in
the training data; if a joint is not exercised, then the body parts it connects
cannot be distinguished. Finally, our model requires that the observations arise
from a scene containing roughly-articulated figures; it would be a poor model of
an octopus, for example. It is important to note that the noise in our generative
model plays an important role, allowing a degree of non-rigidity in the motion
with respect to the learned skeleton. This not only allows a feature point to move
in relation to its associated stick, but also permits complexity in the joints, as
the stick endpoints joined at a vertex need not coincide exactly.

An important extension to our algorithm would involve iterating between
updates of the stick assignments and the connectivity structure, allowing infor-
mation obtained from one stage to assist learning in the other. Currently we
consider multiple hypothesized segmentations, and several structures for each,
but there is no provision for reestimating the stick assignments based on an
estimated connectivity structure. We also plan to study the ability of learned



models to generalize: applying them to new motions not seen during training,
and to related sequences, such as using a model trained on one football player
to parse the motion of another.
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Fig. 3. Experimental Results: (a) The best three skeletons learned for a single human,
given trajectories from 3D motion capture. (b) For comparison, the results of the Kirk
et al. algorithm [11] on the same data. (c) Skeletons learned on data of two humans
playing football. (d) Soft joint constraints allow more flexibility in modeling non-rigid
deformations, as illustrated here in the knees. (e) The two best validating skeletons
learned by our algorithm when given 2D inputs of the single human data. (f) Two
skeletons learned by our algorithm on feature trajectories from a video of a walking
giraffe. Further illustration of the experiments can be seen in the accompanying videos,
available at http://www.cs.toronto.edu/∼dross/articulated/.


