
SVQ-ACT: Querying for Actions over Videos
Daren Chao

University of Toronto
drchao@cs.toronto.edu

Kaiwen Chen
University of Toronto

kckevin.chen@mail.utoronto.ca

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Abstract—We present SVQ-ACT, a system capable of evaluating
declarative action and object queries over input videos. Our
approach is independent of the underlying object and action
detection models utilized. Users may issue queries involving action
and specific objects (e.g., a human riding a bicycle, close to a
traffic light and a car left of the bicycle) and identify video clips
that satisfy query constraints. Our system is capable of operating
in two main settings, namely online and offline. In the online
setting, the user specifies a video source (e.g., a surveillance video)
and a declarative query containing an action and object predicates.
Our system will identify and label in real-time all frame sequences
that match the query. In the offline mode, the system accepts
a video repository as input, preprocesses all the video in an
offline manner and extracts suitable metadata. Following this
step, users can execute any query they wish interactively on the
video repository (containing actions and objects supported by the
underlying detection models) to identify sequences of frames from
videos that satisfy the query. In this case, to limit the number of
results produced, we introduce novel result ranking algorithms
that can produce the k most relevant results efficiently.

We demonstrate that SVQ-ACT can correctly capture the
desired query semantics and execute queries efficiently and
correctly, delivering a high degree of accuracy.

I. INTRODUCTION

Advances in deep learning (DL) enabled the deployment
of relatively inexpensive models to process videos detecting
objects present in frames [1], [2] as well as associated actions
[3]–[7] present in frame sequences. Past work and associated
systems [8]–[15] demonstrated how it is possible to include
object detection models as first-class citizens as part of
declarative query processing over videos. The SV Q−ACT
system introduces algorithms to execute declarative queries
that contain both objects as well as actions over streaming
videos or video repositories in a unified manner.

Action detection/classification models are typically trained
end to end. As such, they require numerous data sets with
suitable types of actions for training. The ML community
over the years has developed a plethora of such data sets
containing different types of actions to train the models. A
significant challenge to utilizing action detection models as
part of query processing lies in the interaction of the action
detection model with other related query predicates. Consider,
for example, a query seeking to detect a frame sequence that
depicts a robot dancing while a car is visible in the frame
sequence as depicted in Figure 1. From an action detection
perspective, the typical models for detecting actions are trained
on the actions themselves (e.g., Robot Dancing) and are not
aware of other objects. Thus, an action detection module that is
trained to recognize a robot dancing cannot be used to answer

Fig. 1. An Example Video Stream.

such a query in an effective manner (as it necessitates a post-
processing step). One could, in principle, train a model to
recognize actions that also contain a car in the frame sequence.
Such an approach is not scalable, however, as it would require a
model for any possible combination of query predicates present
in queries, which is clearly impractical.

A different approach would be to decouple the detection of
the action from the detection of the other objects mentioned
in a query. Namely, one could detect a sequence of frames
containing the desirable action using an action detection
model, then utilize an object detection algorithm to detect
frame lists that contain the desired objects in the query and
intersect them. Such an approach, however, requires several
parameters/thresholds to be decided apriori. For example, for
how many frames the action frame sequence should overlap
the various frame lists containing objects in order to declare a
query match? Object detection algorithms are typically noisy
(yield false positives and negatives), so how would such noise
affect the thresholds? Is it possible or even feasible to choose
or decide such thresholds before a query executes or to tune
such thresholds for each different query predicate?
SV Q−ACT addresses these exact problems and produces

a solution in a principled manner. The system can process
queries both in an online setting in which query results have
to be reported as the video streams and an offline setting
in which queries are issued against a specified repository of
videos that have been suitably pre-processed. To eliminate
the burden of setting thresholds per query manually (an
impossible task) and cope with the inaccuracies inherent to
action and object detection models (which are impossible to
control), our query processing approach utilizes a theoretically



grounded methodology based on scan statistics [16]–[18]. This
approach first estimates the distribution of predictions made by
each individual model involved in the query when the query
predicates are not satisfied. Then, for each query predicate,
it computes what constitutes a significantly large number (a
critical value, kcrit) of positive predictions (the query predicate
is satisfied) conducted by each individual model in a sequence
of frames. These are utilized to synthesize an answer and
determine whether a query is satisfied in a sequence of frames.
Intuitively, if the number of positive predictions across the
models utilized in the query exceeds kcrit in a sequence of
frames, then this frame sequence has a higher probability
of satisfying the query. An additional innovation the system
introduces is the adaptive computation of kcrit for each query,
so this threshold is not treated as a constant that has to be
specified apriori.

We next outline the main architecture of our system and
present the demonstration experience.

II. SVQ-ACT ARCHITECTURE

A video is defined by a sequence of frames V = {v1, . . . vn}.
The length of a video (number of frames) n can be finite or
infinite. If n is unbounded, we refer to V as a video stream. The
video repository is a collection of videos where each of them
has a finite length. A shot is defined by a group of continuous
frames of fixed length. Action classification models will accept
a shot as input and yield their predictions for the action the shot
includes. Typically the length of shots is defined by the action
detection algorithms (e.g., 10 frames). A continuous collection
of shots of a set length is called a clip. There might be multiple
actions and object predictions in a clip as it contains several
shots. These are depicted in Figure 1. The clip length is a
parameter in our setting. Smaller clip lengths may fragment a
long result sequence into multiple sequences, while a larger
clip length may not. SV Q−ACT enables visualization of the
effects of the length of clips, and this is part of the demo
experience.

Generally, a query specification encompasses several pred-
icates, which can be specific actions (e.g., robot dancing
from Kinetics-700 [19]), presence of objects in frames (e.g.,
human, car), or relationships between objects in frames
(e.g., human left of the car). SV Q−ACT considers queries
consisting of conjunctions of query predicates. A query q is:
{p1; ...; pI ; a ∈ A}, where I is the number of query predicates
pi involving object types, a represents the query action, and A
is the set of all actions the action detection model is trained
on. Predicates pi may request the presence of a specific object
type oi on frames or evaluate the existence of a constraint (e.g.,
spatial relationship) among object types on frames [10]. In
either case, the evaluation of each pi on a frame has a binary
output (true/false). The techniques used to evaluate each pi
on a frame are orthogonal to our approach. For example, the
existence of an object type can be conducted by any object
detection model [2]. The evaluation of spatial relationships
among objects can be conducted by evaluating spatial predicates
on the detected objects [10].

Results reported in SV Q−ACT are presented as sequences

of frames, which is a continuous collection of clips. It is
represented as a pair of start and end clip identifiers and can be
of any length as determined by our algorithms. Our system can
adapt any model for action detection and any model for object
detection, and both are treated as black boxes. The system
operates in two modes that we detail below.
A. Online Mode
In the online mode, a user can select a video source that
provides frames in real-time (e.g., a surveillance video) and
provide a query in an SQL-like language at the UI that encom-
passes the action and the objects that should be present for the
query to be true. The system will process each object predicate
and the action predicate independently, producing sequences of
frames (for object predicates) and sequences of shots (for the
action predicate) that satisfy the corresponding predicate. These
sequences are produced by our query processing methodology
that is grounded on scan statistics requiring no additional
parameter settings other than the query provided. Any parameter
required is estimated adaptively (as the video streams), relieving
the user from the burden of setting and/or adjusting parameters.
This mode encompasses algorithms we propose that operate in
real-time to identify the start and end frames that the query is
satisfied. The proposed algorithms deploy models inspired by
Scan Statistics in an online query processing framework.
B. Offline Mode
In the offline mode, our system accepts any video repository as
input. This is typically a collection (of any size) of videos of
varying lengths. The idea is to first preprocess these videos in a
manner, making them available for interactive query processing.
The queries supported are exactly the same as in the online
case. However, since the number of results could be large
across numerous videos, we enhance the query syntax that
limits the result size to a user-specified number k. Since we
would like to produce the k results that are most relevant to the
query, we introduce a generic monotone ranking mechanism to
quantify result relevance. SV Q−ACT can accept any ranking
mechanism as long as it satisfies some generic monotonicity
criteria.

The ingestion phase is executed only once when videos are
added to the repository. We will process each video utilizing
object detection and action classification models. Since the
queries are not known in advance, we extract metadata for
all possible object types recognized by the deployed object
detection model (assuming that is maybe part of some query
in the future) and for all possible actions (similarly assuming
it could be part of some query in the future), supported by the
action classification model utilized. For each possible action
and object, we can adopt a similar methodology as the online
case to generate tables containing sequences of frames (for
objects) and shots (for actions) that independently satisfy the
corresponding object and action predicates.

During the query phase, we are given the query and the
specified number of results required, K, as the input. By
utilizing the metadata extracted during the ingestion phase,
our algorithms first identify all results that satisfy each query
predicate independently and then merge them in an efficient



Fig. 2. A sample front end for the offline case.

way to identify the K most relevant (highest ranking) results
in an effective manner. This is doable via novel top-K query
processing algorithms that we propose. Our techniques utilize
a very different evaluation strategy than popular top-k query
processing algorithms, like TA [20], [21] and are tailored to
the specifics of video sequences.

III. DEMONSTRATION EXPERIENCE

The emphasis of the demonstration is on usability and demon-
strating the accuracy and usefulness of the system for specific
tasks. Details on the underlying algorithms can be provided
as well if requested but are not part of the demonstration.
Interested users will have the capability to choose video sources,
define the queries in a declarative style interface, observe the
query results interactively, view their execution progress, and
observe the accuracy of the system compared to annotated
ground truth for select queries.

During the demo, users will have the ability to observe two
different workflows. The first corresponds to the offline query
experience. Figure 2 presents an overview of the demo layout
for the offline case. In area A, a user is presented with a choice
of video sources to query. Once a video repository is selected,
a number of applicable predicates are presented representing
objects and actions present in the repository. Once these are
selected, the user specifies the number of top results required.
Then the system is presenting an auto-generated SQL query
that will dynamically update when the query predicates change.
A user can edit the query manually if required. For example, in
figure 2, the user is interested in identifying the top 5 sequence
results that contain a person climbing the cliff in the repository
Free Solo.

Once the query is submitted, it will be processed against
all metadata applicable to the repository. The top k sequence
results, as well as their corresponding rank generated by our

algorithm, will be presented in area C. Users can view each
sequence results with a specific rank using the slider bar. Area
B displays the actual score of each result as calculated for each
sequence and highlights the score for the currently selected
sequence. The example in figure 2 shows that the score for
the current sequence is 48.72, and it ranks second among all
k results. Users can move the slider bar, change results and
observe them and judge for themselves whether the ranking
makes sense. Area D will compare the processing time of our
approach with baseline approaches. In the above example, our
algorithm is at least twice as fast as the baseline.

The second workflow corresponds to the online case. Figure
3 presents the layout of the demo for this case. Similarly,
in area A, users can select the video source to issue queries
against. Once the source is selected, all applicable predicates are
revealed, and the user can make suitable choices. Subsequently,
the query is generated dynamically (Section C). One of the
main innovations in our system is the ability to conduct query
processing utilizing a statistical approach that eliminates the
need to set thresholds 1. In order to demonstrate the benefits
of our parameter-free approach, in this case, users have the
option to set thresholds manually and compare them with our
automated way to generate applicable thresholds per query.
This is available in Section B, where users can experiment
with parameters of baseline approaches and set thresholds.
Once the query executes, the results will be displayed in
real-time, along with the accuracy of our approach compared
with manually annotated results (ground truth) for select
queries. The results can be reviewed in section D as they
are produced along with associated accuracy (versus ground

1See Section I. Such thresholds correspond to a critical value kcrit utilized
by our models to quantify what constitutes a sufficiently high number of
detections for a specific predicate.



Fig. 3. A sample front end for the online case.

truth for manually annotated data) (Section E) and visualize
the adaptive parameters computation our algorithms conduct
(Section F).

IV. CONCLUSION

We presented SV Q−ACT , a system capable of processing
declarative style queries involving objects and actions in an
online and offline setting. We demonstrate that our algorithms
for the online case produce more robust and accurate results
compared to other applicable methods. In the offline case,
our techniques significantly improve query time performance.
We believe that research in this area is very fruitful and
pressing given the prevalence of videos and the rapid advances
in DL algorithms, offering unique opportunities for the data
management community.

REFERENCES

[1] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[4] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[5] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2018, pp. 6450–6459.

[6] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7794–7803.

[7] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for
video recognition,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 6202–6211.

[8] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[9] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: optimizing declarative
aggregation and limit queries for neural network-based video analytics,”
arXiv preprint arXiv:1805.01046, 2018.

[10] N. Koudas, R. Li, and I. Xarchakos, “Video monitoring queries,” in
2020 IEEE 36th International Conference on Data Engineering, 2020,
pp. 1285–1296.

[11] I. Xarchakos and N. Koudas, “Svq: Streaming video queries,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 2013–2016.

[12] D. Chao, N. Koudas, and I. Xarchakos, “Svq++: Querying for object
interactions in video streams,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 2769–2772.

[13] Y. Chen, X. Yu, N. Koudas, and Z. Yu, “Evaluating temporal queries
over video feeds,” in Proceedings of the 2021 International Conference
on Management of Data, 2021, pp. 287–299.

[14] D. Chao, N. Koudas, and X. Yu, “Marshalling model inference in
video streams,” in 2023 IEEE 39th International Conference on Data
Engineering, 2023.

[15] D. Chao, Y. Chen, N. Koudas, and X. Yu, “Track merging for effective
video query processing,” in 2023 IEEE 39th International Conference
on Data Engineering, 2023.

[16] J. I. Naus, “Approximations for distributions of scan statistics,” Journal
of the American Statistical Association, vol. 77, no. 377, pp. 177–183,
1982.

[17] J. Glaz, J. Naus, and S. Wallenstein, Scan Statistics, 1st ed. Springer,
2001.

[18] R. Turner, Z. Ghahramani, and S. Bottone, “Fast online anomaly detection
using scan statistics,” in 2010 IEEE International Workshop on Machine
Learning for Signal Processing, 2010, pp. 385–390.

[19] J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A short note on
the kinetics-700 human action dataset,” arXiv preprint arXiv:1907.06987,
2019.

[20] R. Fagin, “Combining fuzzy information: an overview,” ACM SIGMOD
Record, vol. 31, no. 2, pp. 109–118, 2002.

[21] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of computer and system sciences, vol. 66, no. 4,
pp. 614–656, 2003.


	Introduction
	SVQ-ACT Architecture
	Online Mode
	Offline Mode

	Demonstration Experience
	Conclusion
	References

