
Track Merging for Effective Video Query Processing
Daren Chao

University of Toronto
Toronto, Canada

drchao@cs.toronto.edu

Yueting Chen
York University

Toronto, Canada
ytchen@eecs.yorku.ca

Nick Koudas
University of Toronto

Toronto, Canada
koudas@cs.toronto.edu

Xiaohui Yu
York University

Toronto, Canada
xhyu@yorku.ca

Abstract—Video analysis frameworks supporting declarative
queries are actively researched in recent years. A major prerequi-
site in executing such queries is the ability to accurately extract
metadata at the frame level utilizing various computer vision
algorithms, including object tracking models. Tracking models
are of profound importance as they establish unique identifiers
for the objects across frames.

Despite the maturity of tracking algorithms, they still face
challenges (such as occlusions, object glaze etc.) which diminish
their quality and accuracy. This gives rise to the track fragmenta-
tion problem in which a single track is fragmented into multiple
smaller tracks. This impacts downstream temporal querying
applications degrading query accuracy.

In this paper, we propose an algorithm, TMerge for identifying
and merging fragmented tracks that constitutes a pre-processing
step during data ingestion for video query processing. The
algorithm exploits the properties of the problem and utilizes a
sampling methodology that significantly reduces the time required
to pre-process and ingest the video sequence.

We comprehensively describe and analyze our proposals
utilizing real data sets and also present the results of a detailed
experimental evaluation varying parameters of interest. We
demonstrate performance savings of up to two orders of magnitude
without loss in accuracy.

Index Terms—video query processing, polyonymous tracks,
track merging, multi-armed bandits, Thompson sampling.

I. INTRODUCTION

Advances in Computer Vision (CV) and Deep Learning (DL)
offer highly sophisticated algorithms for video analysis, such as
classifying video frames [1], [2], detecting objects and tracking
them across video frames [3]–[5] as well as recognizing actions
and interactions among detected objects. Such algorithms form
the foundation of a new generation of data management and
query processing systems and techniques that support structured
query processing over videos [6]–[8]. Recently an array of
research prototypes and associated algorithms demonstrate
advanced functionalities encompassing these algorithms [7],
[9]. Such systems are able to answer declarative queries
involving query-specified objects [6], locate sequences of
frames involving objects interacting in certain ways [10],
[11], detect groups of objects satisfying certain query-specified
temporal patterns, possibly with additional spatial constraints
[12], [13]. They demonstrate promising results and deliver
functionalities that were not available before on streaming
videos or over large video repositories.

A major prerequisite in delivering such functionalities is the
ability to accurately extract metadata that uniquely identifies
and tracks objects across video frames. This ability is delivered

via object tracking algorithms [3]–[5], [14] that are deployed
along with other applicable algorithms from CV (e.g., object
detection algorithms [1], [2]) during metadata extraction.
Accurate object tracking is imperative for query correctness,
as object tracking establishes a unique identifier for a detected
object across frames. Typically object tracking algorithms
accept an initial set of detected objects from a video and track
the movement of these objects across video frames, representing
object locations by bounding boxes (BBoxes). Ideally, the same
physical object across frames within a pre-defined time range
should form a single track and be assigned a distinct tracking
identifier (tracking ID, TID). The ability to derive such distinct
tracking IDs is fundamental to accurate query processing.

Very often, however, well established state-of-the-art object
tracking algorithms [14], [15] exhibit reduced accuracy due
to various reasons, such as object occlusion and unfavorable
lighting conditions (e.g., glare). More specifically, depending on
the camera position it is common for an object to be occluded
by other objects in the visual range of the camera across a
number of frames. In such cases, depending on the physical
proximity of the objects the tracking algorithm may assign
two different track IDs to the same object before and after
the occlusion. A similar situation may arise due to specific
lighting conditions; object glare may confuse detection for
a number of frames and as such the tracking algorithm may
assign new tracking identifiers to objects detected after the glare
vanishes. Figure 1 illustrates a concrete example. The ground
truth (GT) track A of a red sedan is reported by the tracking
algorithm as two separate tracks, each with a distinct ID, α and
β. This is due to occlusion by an SUV between the two tracks.
Such occlusions give rise to the track fragmentation problem
reported in the literature [16]. Notice that depending on the
scene conditions (number of objects, camera positions, etc)
the track fragmentation problem can be aggravated arbitrarily.
If such a problem is not remediated, the accuracy of any
downstream query processing will suffer.

To aid accurate query processing, it is thus of critical
importance to identify and merge (assigning them the same ID)
those tracks that actually correspond to the same object. We
refer to such tracks as polyonymous tracks. Existing works [4],
[5], [14], [15] consider identifying polyonymous tracks as a part
of tracking algorithms, where the main objective is to handle
occlusions using tracking algorithms. In this paper, we consider
the problem as a post-processing step with tracking results
already obtained, which could further improve the quality of

tracking results and is orthogonal to existing approaches. A
brute-force approach to this problem would be to compute the
pairwise similarity (for a suitable definition of similarity) of all
tracks and consider the top-ranked pairs (or pairs with similarity
exceeding a certain threshold) as candidates to be merged.
Such merging can take place automatically or optionally be
subject to further human inspection for increased accuracy.
Different notions of similarity can be adopted between a pair
of tracks; for example, similarity can be computed as some
aggregate measure of frame-level pairwise distances between
pairs of frames across tracks. One possible approach to obtain
the frame-level distance could be to utilize Re-Identification
(ReID) models [17]–[20] based on features extracted from
the BBoxes containing the object(s) of interest in the pair of
frames.

However, such a brute-force approach to computing frame-
level similarities for all pairs of frames in all pairs of tracks
can be prohibitively expensive in practice. For example, each
video feed in the commonly used benchmark dataset, MOT-
17 [21], has an average of 825 frames, 11,867 BBoxes and
8,689,117 frame-level BBox pairs to compute. The brute-force
approach has to extract features from all BBoxes and calculate
the distance between all BBox pairs – more than 3 minutes to
process a half-minute video feed (system configuration detailed
in § V-B). Clearly, this approach is not scalable to handle
scenarios with large video repositories, such as the analysis of
surveillance videos or videos captured by autonomous vehicles
(capturing cars on highways or pedestrians at intersections,
etc.), where the inefficiency of the brute-force approach for
identifying polyonymous tracks necessitates the investment of
additional computing resources to achieve target processing
capabilities. To solve this problem at scale and provide a general
solution for videos of arbitrary length, more efficient solutions
are needed.

In this paper, we propose algorithms that can drastically
improve the efficiency of identifying (and subsequently merg-
ing) polyonymous tracks. Such algorithms are intended as a
data pre-processing step after tracking algorithms have been
applied but before downstream query processing takes place.
They are periodically invoked during metadata extraction, and
are general enough to support most, if not all, video query
processing systems [7], [11]–[13]. A key observation driving
the development of our algorithms is that only a small fraction
of all track pairs are truly polyonymous tracks. Therefore,
instead of spreading the computational effort evenly across all
pairs of tracks, we should invest more on those pairs that are
more promising to yield polyonymous tracks. For this purpose,
we cast the problem of identifying polyonymous tracks as one
of decision-making under uncertainty, and devise an algorithm,
named TMerge, that can quickly focus on more promising track
pairs for more extensive examination (by biasing the invocation
of ReID models towards pairs of frames from such track pairs).
In particular, we propose a variant of Thompson Sampling
[22], [23], balancing between exploration (i.e., exploring more
pairs of tracks) vs. exploitation (i.e., focusing computation on
specific pairs of tracks).

We conduct extensive experiments on benchmark datasets
to evaluate the efficiency and effectiveness of TMerge. Our
results demonstrate that TMerge achieves 10x to 100x speedup
over other applicable approaches and is able to identify 95%
of all polyonymous tracks by examining only a small number
of track pairs.

In summary, we make the following contributions.

• We initiate the study of identifying polyonymous tracks to
support structured video query processing and model our
problem as an instance of the Multi-Armed Bandit prob-
lem, with an intent to effectively allocate computational
resources for fast identification of polyonymous tracks in
large video repositories.

• We propose the TMerge algorithm based on Thompson
Sampling to solve the polyonymous track identification
problem, striking a balance between exploitation and
exploration in a principled way. We demonstrate that our
algorithm is able to yield highly accurate results with a
limited number of invocations of expensive ReID models.
TMerge is an essential first step during metadata extraction
for any video analytics system and is able to improve the
accuracy of query processing by improving the accuracy
of tracking identifiers utilized by such systems.

• We report results of thorough experimental studies on
real datasets utilizing state-of-the-art tracking algorithms
to validate the performance of the proposed approach.
Our results indicate that TMerge can dramatically reduce
90% of the overhead of applying ReID models over other
applicable approaches, without loss of accuracy.

This paper is organized as follows. We formally define the
problem in §II, and present a baseline approach in §III. We
detail the proposed approach TMerge in §IV, and present the
experimental results in §V. §VI discusses related work, and
§VII concludes this paper.

II. PROBLEM DEFINITION

A video is a sequence of frames V = {v1, v2, . . . , v|V|}, where
|V| is the number of frames (length) of a video and can be fixed
or unbounded. If |V| is unbounded we refer to V as a video
stream. From the perspective of object detection, a frame may
hold a variety of different object types and each object type may
have multiple instances in a frame. Object tracking algorithms
[3]–[5] accept an initial set of detected objects (along with
associated BBoxes) from a video and track the movement of
these objects across video frames. The sequence of the same
physical object across frames forms a single track which is
assigned a unique tracking identifier (TID). The tracking results
are crucial metadata for many automated video analysis tools,
such as video query processing systems. However, as shown
in Figure 1, due to track fragmentation a ground truth (GT)
track may be mistakenly reported as two separate tracks (i.e.,
polyonymous tracks) and assigned two distinct IDs. We aim to
identify (and then merge) the polyonymous tracks throughout
the video.

We observe that the polyonymous track problem happens

VideoGT Track A

Track 𝜶 Track 𝛽

Occlusion

img120img070img055 img105

𝜶 𝜶 𝜶

img070img055 img105 img180img160 img205

𝛽 𝛽 𝛽

img180img160 img205img120

Fig. 1. An example of track fragmentation: due to occlusion, the ground truth (GT) track A is reported as two separate tracks with distinct tracking IDs α
and β by the tracking algorithm. Each red rectangle represents a track, and a yellow rectangle represents a BBoxes. Only a portion of the track’s BBoxes is
depicted in the figure for readability.

in a short period of time (frames). Thus, a straightforward
way is to calculate the similarity between all track pairs in a
short period to determine which track pairs are more likely to
be polyonymous. However, since the number of video frames
could be large or even unbounded, processing the entire video is
not practical. We partition the video into a series of overlapping
windows, W1, W2, . . ., according to the chronological order
of the frames. Each window has a fixed length of L frames.
To avoid overlooking any possible polyonymous track pairs
or visiting any track pair more than once, we half-overlap
every two neighbor windows, as demonstrated in Fig. 2. For
example, let Wc be the c-th window: Wc and Wc−1 overlap by
L
2 frames. We commence processing each individual window
in order of succession. The tracking algorithm is applied on
Wc when it is being processed. We denote by Tc the set of
all tracks identified by the tracking algorithm in the first L

2
frames of window Wc:

Tc = {tc,1, tc,2, . . . , tc,|Tc|},
where tc,k represents the track with TID k in window Wc. For
a track tc,k, the sequence of its associated BBoxes is denoted
as Btc,k :

Btc,k = {b1c,k, b
2
c,k, ..., b

|tc,k|
c,k },

where bmc,k represents the content in the m-th BBox of track
tc,k, and |tc,k| is the number of BBoxes associated with track
tc,k.

After obtaining the tracking results for a window, we seek to
identify the polyonymous tracks. Let Pc denote the set of the
track pairs for window Wc. To avoid missing any polyonymous
track pairs, we form Pc by associating not only the track pairs
inside Wc, but also those across Wc and its previous window
Wc−1, that is,

Pc ={pi,j | ∀ti, tj∈Tc : ti ̸=tj}
∪ {pi,j | ∀ti∈Tc, ∀tj∈Tc−1 : ti ̸=tj}

={pi,j | ∀ti∈Tc, ∀tj∈Tc∪Tc−1 : ti ̸=tj}.
(1)

where pi,j represents the pair of tracks with TID ti and tj . To
prevent a GT track from spanning more than two windows, we
set L ≥ 2Lmax, where Lmax represents the maximum number
of frames that a GT track can span. By splitting windows and
extracting Pc in this manner, it can also handle the condition

 Lmax Video V

...

 Lmax Lmax

T2

 L

W1

T1 W2

Fig. 2. The original video (stream) is partitioned into windows with L =
2Lmax.

that occlusions happen very frequently (for example, the ground
truth track is split into more than two tracks inside the same
window), since Pc contains all possible pairs in the window Wc.
Figure 2 presents an example of the video that is partitioned
into windows with L = 2Lmax. L is a hyper-parameter and
can be determined either empirically by domain knowledge or
by the requirements of downstream query processing. We will
evaluate the effect of the length of L with experiments in later
sections.

Some of the pairs in Pc may be polyonymous and some
could be truly distinct tracks. Deciding whether a pair is indeed
polyonymous can be determined utilizing a manual inspection
approach. Let P ∗

c be the set of track pairs in Pc that are
polyonymous, namely

P ∗
c ={pi,j ∈ Pc}ti∼tj , (2)

where ti ∼ tj represents that ti and tj refer to the same
GT track—they are a pair of polyonymous tracks. Evidently
P ∗
c ⊂ Pc. Since the state-of-the-art tracking algorithms exhibit

good accuracy [3]–[5] we expect P ∗
c to be much smaller than

Pc.
For a given subset of track pairs P̂c ⊆ Pc, let P̂c ∩ P ∗

c be
the set of all polyonymous tracks in P̂c. A recall rate is used
to quantify the proportion of all real polyonymous track pairs
included in P̂c, defined as follows:

REC(P̂c) =
|P̂c ∩ P ∗

c |
|P ∗

c |
. (3)

If we set P̂c = Pc, then REC(P̂c) = 1. However, inspecting
all tracks in Pc for every window Wc manually would be
costly and infeasible due to their sheer volume. Thus, we seek
to minimize the size of P̂c processed in order to keep the

TABLE I
DESCRIPTION OF COMMONLY-USED NOTATIONS.

Notation Description
V the sequence of frames in the target video (stream).
Wc the c-th window that the target video is partitioned into.
L window size (in frames).
Lmax the maximum size (in frames) of a GT track.
Tc the set of tracks of window Wc.
tc,k the track with TID k in Wc.
Btc,k the sequence of BBoxes of track tc,k .
bmc,k the content in the m-th BBox of track tc,k .
Pc the set of the track pairs for window Wc.
pi,j the pair of tracks with TID ti and tj .
P ∗
c the set of track pairs in Pc that are polyonymous.

P̂ ∗
c|K the candidate subset of track pairs with size ⌈K·|Pc|⌉ that

maximizes the number of polyonymous track pairs.
K a decimal (K∈[0, 1]) that specifies the size of P̂ ∗

c|K .
f(b) the feature vector of a BBox b extracted by the ReID model.
d(b1, b2) the distance between the feature vectors of BBoxes b1&b2.
d̃(b1, b2) the normalized BBox pair distance.
si,j ; s̃i,j the score and the normalized score of a track pair pi,j .
BP ′

i,j a subset of BBox pairs extracted from Bti and Btj .
s′i,j the track pair score estimation of pi,j w.r.t. BP ′

i,j .
τmax the maximum number of desired iterations.
Si,j , Fi,j the shape parameters of Beta distribution for pi,j .
DisSi,j the spatial distance of a track pair pi,j .
Φ(b) the coordinates of the center of a BBox b.
thrS a hyper-parameter for BetaInit.

cost1 manageable while seeking to maximize REC. Let P̂c|K
denote a set with |P̂c|K | = ⌈K·|Pc|⌉, where K ∈ [0, 1]. This
problem presents an interesting trade-off : identifying P̂c|K that
minimizes K while maximizing REC.

For a given value of K, we are interested to identify a
P̂ ∗
c|K ⊆ Pc, with the maximum number of polyonymous track

pairs, namely

P̂ ∗
c|K = max

P̂c|K

REC(P̂c|K), given K ∈ [0, 1] (4)

In §IV we will present an algorithm to efficiently obtain P̂ ∗
c|K

for a specified value K.

III. A BASELINE APPROACH

In this section, we introduce a baseline approach that is capable
of identifying polyonymous track pairs in Pc. Such an approach
is based on the observation that if two tracks are polyonymous
(i.e., they correspond to the same GT track), the content of
their associated BBoxes should be similar, such as the tracks
α and β in Figure 1 that both feature a red sedan; otherwise,
we expect that the content should be less related.

ReID models [17]–[19] are trained to classify whether two
input images2 contain the same object. Specifically, ReID
models map two images of the same object to nearby vectors
(i.e., feature vectors) in the feature space; if the images are of
different objects, their feature vectors are further apart [19]. Let

1"Cost" here refers to the time and/or labor expense to manually inspect
which track pairs are polyonymous; elsewhere in this paper, cost has a consistent
meaning for computing (or estimating) similarities for all track pairs, i.e.,
finding P̂ ∗

c|K .
2For some ReID models [24], two fixed-length image sequences may be

accepted as input. Our entire discussion and techniques equally apply to this
case as well.

Algorithm 1: Baseline
Input: Track Pairs Pc and BBoxes Information of

each track included in Pc; K;
Output: Top-⌈K·|Pc|⌉ Polyonymous Track Pair

Candidates: P̂ ∗
c|K ;

1 for each track pair pi,j ∈ Pc do
2 for each BBox pair (bα, bβ) ∈ Bti ×Btj do
3 Extract feature vectors f(bα) and f(bβ) through

the ReID model.
4 d(bα, bβ) = Euclidean(f(bα), f(bβ)).

5 si,j = avg∀(bα,bβ)∈Bti
×Btj

{d (bα, bβ)}.

6 Rc = {pik,jk : pik,jk ∈ Pc}∀α<β, siα,jα≤siβ,jβ
.

7 P̂ ∗
c|K = {pik,jk : pik,jk ∈ Rc}k=1,2,...,⌈K·|Pc|⌉.

f(b) be the feature vector of a BBox b extracted by a ReID
model; the feature vectors of BBoxes with similar-looking
objects have a smaller Euclidean distance. The distance between
two BBoxes b1 and b2, d(b1, b2), is the Euclidean distance of
their feature vectors f(b1) and f(b2) obtained through a ReID
model.

We now define the track pair score when measuring the
distance between two tracks. Let si,j be the score of a track
pair pi,j , which is determined by aggregating the pairwise
BBox distances of the corresponding object BBoxes across
the two tracks. The lower the score, the more likely it is a
polyonymous track pair. Let Bti ×Btj represent the set of all
the BBox pairs across tracks ti and tj .

Definition 3.1 (Track Pair Score): The track pair score
between a pair of two tracks ti and tj , denoted as si,j , is
the mean value of the pairwise BBox distances across the two
tracks,

si,j = avg∀(bα,bβ)∈Bti
×Btj

{d (bα, bβ)} . (5)

After calculating the scores of all track pairs in Pc through
Equation (5), the following ranking is derived:

Rc = {pik,jk : pik,jk ∈ Pc}∀α≤β, siα,jα≤siβ,jβ
, (6)

where k=1, ..., |Pc|. Then, the track pairs with top-⌈K·|Pc|⌉
lowest scores are considered as the polyonymous track pair
candidates, denoted as P̂ ∗

c|K ,

P̂ ∗
c|K = {pik,jk : pik,jk ∈ Rc}k=1,2,...,⌈K·|Pc|⌉. (7)

The baseline approach is presented in Algorithm 1. The input
consists of Pc, the BBoxes of the tracks involved in Pc, and
K. The algorithm iterates over all BBox pairs to calculate the
score for each track pair (Lines 1 to 5) and considers track
pairs with the top-⌈K·|Pc|⌉ lowest scores as the polyonymous
track pair candidates (Lines 6 to 7).
REC(P̂ ∗

c|K) represents the recall of the baseline algorithm
for a specific K on the window Wc. By averaging the recall
over all windows of all videos in a dataset, we can get the
overall recall (REC) of the algorithm on that dataset. Setting
window length L=2000, by varying the value of input K, one
obtains the REC-K curves of Figure 3. The chance of missing
polyonymous tracks can be computed as 1−REC. The figure

0.00 0.05 0.10 0.15 0.20
K

0.5

0.6

0.7

0.8

0.9

1.0

RE
C

MOT-17
PathTrack
KITTI

Fig. 3. REC-K curves on the videos of three datasets.

0 5000 10000 15000 20000
| | (Frames)

0

700

1400

2100

2800

3500

Ru
nt

im
e

(S
ec

on
ds

)

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f T
ra

ck
 P

ai
rs

Runtime
Track Pairs

Fig. 4. Runtime for processing videos of varying lengths and the number of
track pairs accumulated. The window size is set to be 2000 frames.

illustrates the trade-off: higher REC requires increasing K,
i.e. requiring more overhead to process P̂ ∗

c|K via a manual
inspection procedure. For the tracking results of Tracktor [5]
on the MOT-17 dataset [21], in which each window has an
average of 400 track pairs, with 8 polyonymous tracks (that
is of 2% polyonymous rate) on average, the REC surpasses
0.95 when K is greater than 0.05. For the tracking results
of Tracktor [5] on the PathTrack dataset, [25], in which each
window has an average of 470 track pairs, the REC exceeds
0.95 when K is greater than 0.085. It is evident that in these
experiments a small value of K, with P̂ ∗

c|K less than 10% of
Pc, is sufficient to achieve a high REC value. In unknown
environments, a sample of representative videos can be adopted
to calibrate the value of K. In all of our experiments (reported
later in §V) utilizing diverse datasets, a value of K less than
0.05 consistently achieved accuracy over 0.9.

However such an approach is not able to scale when dealing
with large video repositories or video streams. Fig. 4 presents
the time required and the number of track pairs accumulated to
process videos from the dataset PathTrack using Algorithm 1,
as the length of the video increases. Each window has an
average of 145 tracks and each track contains an average of
105 BBoxes. As seen in the figure, the time and the number
of track pairs both increase dramatically and synchronously
as the video length grows. The reason is that Algorithm 1
extracts the feature vectors of all BBoxes involved in all track
pairs and calculates the BBox distances for all the BBox pairs
(Lines 1 to 5 of Algorithm 1). It is evident that this style of
processing is not feasible for realistic video lengths. In the next
section we propose a more efficient algorithm for estimating
P̂ ∗
c|K for set values of K exhibiting REC comparable to that

of Algorithm 1.

IV. TMERGE

In this section, we propose an efficient algorithm, called
TMerge, for obtaining top-⌈K·|Pc|⌉ polyonymous track pair
candidates P̂ ∗

c|K in Pc.

A. Basic Idea

Unlike the baseline algorithm that ranks all the track pairs by
computing their scores, TMerge estimates the ranking utilizing
a sampling methodology. Generally, TMerge randomly extracts
a subset of BBox pairs, namely BP ′

i,j ⊆ Bti ×Btj , for each
track pair pi,j∈Pc, and calculates the distances of the extracted
BBox pairs rather than the whole set of BBox pairs in each
track pair. Then, TMerge uses the mean of the distances of the
extracted BBox pairs BP ′

i,j to estimate the track pair score of
pi,j , namely s′i,j ,

s′i,j = avg∀(b′α,b′β)∈BP ′
i,j

{
d
(
b′α, b

′
β

)}
, (8)

where obviously E[s′i,j] = si,j .
The extraction of the subset BP ′

i,j for each track pair pi,j∈Pc

is an iterative sampling process: at each iteration, we first
sample a track pair from Pc, and then randomly choose a BBox
pair from all BBox pairs in this track pair. After τ iterations,
TMerge obtains the subset BP ′

i,j for each track pair pi,j , where∑
pi,j∈Pc

|BP ′
i,j |≤τ . However, we do not want to sample track

pairs uniformly from Pc throughout iterations. We observe that
track pairs corresponding to the same object (i.e., polyonymous
track pairs), which we are aiming to identify, account for a
small proportion (<1%) of Pc. As a result, we intend to bias
the sampling toward track pairs with lower scores 3, which
have a higher probability of being polyonymous track pairs.
TMerge maintains a prior distribution on the score si,j for each
track pair pi,j , which determines the chance of each track pair
being sampled at each iteration. This prior is updated after
each iteration by considering the newly computed distances,
and is applied to bias the sampling in the next iteration.

B. The Algorithm

We first discuss how to choose an appropriate prior distribution,
and then provide a detailed description of the proposed
sampling method. We first normalize all BBox pair distances
(defined in §III) into the range [0, 1]. Let d̃(bα, bβ) denote the
normalized BBox pair distance of bα, bβ . Consequently, the
track pair score (defined in Equation (5)) is also normalized
into the range [0, 1]. Let s̃i,j represent the normalized track
pair score for pi,j .

We show that the iterative computation of BBox pair
distances through repeated sampling can be modeled as a
sequence of Bernoulli trials. For each track pair pi,j , we assume
that the normalized distances of all BBox pairs come from the
same but unknown distribution, with the normalized track pair
score s̃i,j as the mean,

E
[
d̃(bα, bβ)

]
= s̃i,j . ∀(bα, bβ) ∈ Bti ×Btj (9)

3Note that two BBoxes containing the same object will have lower Euclidean
distance than two BBoxes containing different objects.

For a BBox pair randomly selected from any track pair pi,j with
normalized distance d̃, we conduct a Bernoulli trial utilizing
d̃ as the success probability, obtaining the output r ∈ {0, 1}.
The Bernoulli trials on BBox pairs containing similar objects
(i.e., those with lower scores) will have a higher probability
to have output r = 0. The expectation of the Bernoulli output
(i.e., the probability of observing r = 1) is equal to the mean
of the unknown distribution (i.e., the normalized track pair
score s̃i,j),

E[r] = Pr(r = 1) =

∫ 1

0

Pr
(
r = 1 | d̃

)
fi,j

(
d̃
)

dd̃

=

∫ 1

0

d̃ fi,j
(
d̃
)

dd̃

= E[d̃] = ˜si,j ,

where fi,j denotes the (unknown) probability density function
of the unknown distribution for the normalized distances in
track pair pi,j . Thus, we have transformed the sequence of
BBox pair distances (for a single track pair) computed across
iterations into a sequence of Bernoulli trials with the same
expectation.

A natural choice for the prior distribution is the Beta
distribution [22], which is a conjugate prior to the Bernoulli
distribution. Thus, after observing a new Bernoulli output r, the
posterior distribution is simply Be(S+1, F) or Be(S, F +1),
depending on whether the output r equals to 1 or 0. In other
words, when obtaining a BBox pair distance d̃ in a new iteration,
Beta distribution enables the newly observed Bernoulli trial r
to easily update the prior. The mean of the Beta distribution
is S

S+F , indicating that after some iterations, the sequence of
Bernoulli trials corresponding to BBox pair distances between
track pairs with more r=0 outputs have Beta distributions with
a lower mean. Thus, track pairs whose BBox pairs contain the
same (or similar) objects have corresponding Beta distributions
with a lower mean, and the corresponding BBox pair distances
are smaller. As a result, using the Beta distribution as a prior
can assist our sampling process, guiding (biasing) the sampling
process towards track pairs with lower scores.

Algorithm 2 presents TMerge. The input consists of Pc, the
BBoxes of the tracks involved in Pc, the value of K, and
the maximum number of desired iterations τmax. At the start,
TMerge initializes a Beta distribution for each track pair pi,j
(Line 1), namely Be(Si,j , Fi,j). One way to initialize it is to
set Si,j = Fi,j = 1. An improved initialization method for
Beta distributions will be introduced as Algorithm 3 in the
sequel. Then, TMerge repeats the steps in Lines 4-14 for τmax
iterations. At the τ -th iteration, it samples a value θτi,j from the
Beta distribution Be(Si,j , Fi,j) of each track pair pi,j (Lines
4-5), and chooses the track pair with the smallest value, namely
piτ ,jτ , (Line 6)

piτ ,jτ = argmin
pi,j

θτi,j .

Then, it randomly samples a BBox pair (bατ
, bβτ

) ∈ Btiτ
×

Btjτ
without replacement from the track pair piτ ,jτ , extracts the

feature vectors f(bατ) and f(bβτ) with the ReID model, and

Algorithm 2: TMerge
Input: Track Pairs Pc and BBoxes Information of

each track included in Pc; K; τmax;
Output: Estimated Top-⌈K·|Pc|⌉ Polyonymous Track

Pair Candidates: P̂ ∗
c|K ;

1 Initialize a Beta Distribution Be(Si,j , Fi,j) for each
track pair pi,j ∈ Pc through Algorithm 3.

2 Pskip = ϕ. # pruned track pairs
3 for τ = 1, ..., τmax do
4 for each track pair pi,j ∈ Pc\Pskip do
5 Sample a value θτi,j from Be(Si,j , Fi,j).

6 piτ ,jτ = argminpi,j
θτi,j .

7 Randomly select a BBox pair
(bατ

, bβτ
) ∈ Btiτ

×Btjτ
from track pair piτ ,jτ

without replacement.
8 d̃τ = d̃(bατ

, bβτ
).

9 Perform a Bernoulli trial with success probability
d̃τ and observe output rτ .

10 if rτ = 1 then
11 Siτ ,jτ = Siτ ,jτ + 1.
12 else if rτ = 0 then
13 Fiτ ,jτ = Fiτ ,jτ + 1.

14 Update Pskip through Algorithm 4.

15 P̂ ∗
c|K = {pi,j ∈ Pc with ⌈K·|Pc|⌉ lowest Si,j

Si,j+Fi,j
}.

calculates the normalized distance d̃τ = d̃(bατ
, bβτ

) (Lines 7-
8). As an optimization, if either of the BBoxes’ feature vectors
has been extracted in previous iterations it can be reused in
this iteration. The distance is then normalized to be in the
interval [0, 1], denoted as d̃τ . After that, TMerge performs a
Bernoulli trial using the normalized distance d̃τ as the success
probability and obtains the binary output rτ (Line 9). It then
updates the Beta distribution based on the Bernoulli output
rτ (Lines 10-13): if rτ=1, increase Siτ ,jτ by 1; otherwise, if
rτ=0, increase Fiτ ,jτ by 1.

Moreover, at the end of each iteration (Line 14), we update
Pskip (initialized in Line 2), which stores the pruned track
pairs that cannot be part of P̂ ∗

c|K in the following iterations,
and will be used in Algorithm 4 to further improve the
algorithm efficiency. After the loop, TMerge returns the track
pairs with the top-⌈K·|Pc|⌉ lowest mean values of their Beta
distributions as the estimated top-⌈K·|Pc|⌉ polyonymous track
pair candidates P̂ ∗

c|K (Line 15),

P̂ ∗
c|K = {pi,j ∈ Pc with ⌈K·|Pc|⌉ lowest

Si,j

Si,j + Fi,j
}.

C. Initializing Beta Distributions

Next, we introduce a method, BetaInit, for initializing Beta
distributions utilising our inherent knowledge of track pairs. In
particular, BetaInit exploits correlations between the score of
a track pair and the distance between bounding boxes in the
frame sequence. Recall that pi,j represents the pair of tracks
ti, tj . We define the spatial distance of a track pair pi,j ∈ Pc,

Algorithm 3: BetaInit
Input: Pc; thrS
Output: ∀pi,j ∈ Pc : Be(Si,j , Fi,j)

1 for each track pair pi,j ∈ Pc do
2 Calculate the spatial distance of pi,j : DisSi,j .
3 Si,j , Fi,j = 1, 1.
4 if DisSi,j < thrS then
5 Fi,j = Fi,j + 1.

6 Initialize a Beta Distribution Be(Si,j , Fi,j) for pi,j .

namely DisSi,j , as the Euclidean distance between the center
points of the last BBox of track ti and the first BBox of track
tj . For example, for the pair of tracks (ti, tj),

DisSi,j =
∥∥∥Φ(b|ti|i)− Φ(b1j)

∥∥∥
2
,

where Φ(b) represents the coordinates of the center of b; b|ti|i
and b1j represent the last BBox of track ti and the first BBox of
tj respectively. We conducted experiments on several datasets
which showed that the Pearson correlation coefficient [26]
between the scores and the spatial distances of track pairs is
at least 0.3. 4 Thus, empirically we observe that polyonymous
track pairs pi,j ∈ P ∗

c are more likely to have lower spatial
distance DisSi,j . We can utilize this observation to design a
more effective initialization strategy for the Beta distributions.
For track pairs that are spatially closer, BetaInit reduces the
mean of their Beta distributions to increase the probability
of them being sampled. For each track pair pi,j , its Beta
distribution is first set to Be(1, 1), i.e., Si,j = Fi,j = 1.
Then, if its spatial distance DisSi,j is below a set threshold
thrS , BetaInit reduces the mean of the corresponding Beta
distribution, i.e., Fi,j = Fi,j + 1. Although some track pairs
that are not polyonymous are also initialized with a lower
mean Beta distribution, this will be alleviated after a number
of sampling iterations. Algorithm 3 presents this procedure.
The thresholds thrS is a hyper-parameter for TMerge and its
impact will be evaluated in the experiments.

D. Pruning Track Pairs

We further improve the efficiency of TMerge by an approach,
namely ULB, that prunes certain track pairs for further
processing if specific conditions are met. After each sampling
iteration, we calculate s′i,j , the average distance of BBox pairs
that have been extracted from each track pair pi,j ∈ Pc through
Equation (8), and s̃′i,j , the normalized average distance for
pi,j . Let ni,j denote the number of times that a track pair
pi,j has been sampled until the current iteration. After the
τ -th iteration, for each track pair pi,j ∈ Pc, according to the
Hoeffding inequality [22], [27], we have
Pr

(∣∣s̃′i,j − E[s̃′i,j]
∣∣ ≤ Ui,j

)
≥ 1− exp(−2U2

i,jni,j), (10)

4We empirically evaluated other sources of information such as the temporal
distance DisTi,j which is the time difference (in frames) between the frame in
which ti’s last BBox appears and the frame in which tj ’s first BBox appears.
It turns out that the temporal distance is not significantly correlated to the
track pair score (Pearson coefficient < 0.1) and is thus not considered in
BetaInit.

Algorithm 4: ULB
Input: Pc; Pskip; τ ;
Output: Update Pskip;

1 for each track pair pi,j ∈ Pc do
2 ni,j = |{∀λ = 1, ..., τ : piλ,jλ = pi,j}|.
3 Ui,j =

√
2 log τ
ni,j

.

4 s̃′i,j =
∑

∀λ=1,...,τ :piλ,jλ
=pi,j

d̃τ .

5 for each track pair pi,j ∈ Pc\Pskip do
6 if |{∀pi′,j′ ∈ Pc : s̃

′
i,j + Ui,j > s̃′i′,j′ − Ui′,j′}| ≤

K−1 or
|{∀pi′,j′ ∈ Pc : s̃

′
i,j − Ui,j > s̃′i′,j′ + Ui′,j′}| ≥ K

then
7 Add pi,j into Pskip.

where E[s̃′i,j] = s̃i,j and Ui,j can be any positive real number.

Let Ui,j =
√

2 log τ
ni,j

, Inequality (10) becomes

Pr
(∣∣s̃′i,j − s̃i,j

∣∣ ≤ Ui,j

)
≥ 1− 2

τ4
.

This indicates that the probability of the real track pair score
s̃i,j falling outside of [s̃′i,j −Ui,j , s̃

′
i,j +Ui,j] is lower than 2

τ4 ,
which becomes very small after a few iterations. Thus, for each
track pair pi,j ∈ Pc, after the τ -th iteration, the upper and lower
bounds of its normalized score are s̃′i,j + Ui,j and s̃′i,j − Ui,j

respectively. For a chosen τ that makes the probability bound
of the inequality large enough, for each track pair pi,j ∈ Pc, if
the upper bound of its score is larger than at most K−1 lower
bounds of scores of other track pairs, i.e.,∣∣{∀pi′,j′ ∈ Pc : s̃

′
i,j + Ui,j > s̃′i′,j′ − Ui′,j′

}∣∣ ≤ K − 1,

then we are confident that it is in P̂ ∗
c|K and can be pruned

from further processing in subsequent iterations, i.e., this track
pair will no longer be sampled. Similarly, if the lower bound
of its score is larger than at least ⌈K·|Pc|⌉ upper bounds of
other track pairs’ scores, i.e.,∣∣{∀pi′,j′ ∈ Pc : s̃

′
i,j − Ui,j > s̃′i′,j′ + Ui′,j′

}∣∣ ≥ ⌈K·|Pc|⌉,

we are confident that it is not in P̂ ∗
c|K and can be pruned from

subsequent iterations. Algorithm 4 presents the procedure of
ULB for calculating the upper and lower bounds for every track
pair score and determining the track pairs that are pruned.

E. Efficiency Analysis

TMerge seeks to bias the sampling towards track pairs with
smaller scores. To evaluate its efficiency in achieving this goal,
we define the regret R, which quantifies the deviation of the
normalized distances of BBox pairs computed at each iteration
from s̃min, where s̃min denotes the normalized score of the track
pair with the smallest score, i.e., s̃min = min{s̃i,j | ∀pi,j ∈ Pc}.
Let R(τmax) denote the average regret produced by conducting
τmax iterations,

R(τmax) =
1

τmax

τmax∑
τ=1

(
d̃τ − s̃min

)
,

where d̃τ is the normalized distances computed at the τ -th
iteration (Line 8 of Algorithm 2). Utilizing the regret guarantee
for general stochastic bandits [28] (with no prior), we can derive
a bound on the expectation of the average regret,

E

[
τmax∑
τ=1

d̃τ − τmaxs̃min

]
≤ O

(√
|Pc|τmax log τmax

)

E[R(τmax)] ≤ O

√
|Pc| log τmax

τmax

 .

(11)

This demonstrates that as τmax increases, the average regret of
TMerge decreases, and the sampling is biased towards track
pairs with lower scores.

For the baseline algorithm, as is evident in Figure 4, its
complexity is proportional to the number of track pairs. In
contrast, TMerge, given the hyper-parameter τmax, performs a
fixed amount of work. TMerge can be three orders of magnitude
faster than the baseline, while achieving a comparable REC
level, which will be detailed in our experiments.

F. GPU Acceleration

The algorithm as presented lends itself to native acceleration
by a GPU. Instead of processing each track pair at a time,
utilizing a GPU to assess the distance of two chosen BBoxes,
a batch of track pairs can be processed jointly for the same
purpose. Typically the size of the batch is constrained by the
size of the GPU memory. That way the process can proceed
very efficiently. We refer to this version of the algorithm as
TMerge-B (Batch GPU Acceleration).

V. EXPERIMENTS

A. Datasets

Numerous datasets were used for our evaluation. We report the
results on the following three which are highly representative
of all of our experiments.
1. Mot-17 [21] is a well-known dataset for multiple object

tracking. It contains 7 different indoor and outdoor scenes
of public places and 14 videos with pedestrians as the
objects of interest. For the videos in the training dataset,
we make use of its annotations of tracking to determine
the ground truth polyonymous tracks; for the test dataset
without annotations, we manually labeled the ground truth.

2. KITTI [29] is a real-world object tracking benchmark. We
attempt to identify the polyonymous tracks of pedestrians
created by the tracking algorithm and select 8 videos with
enough instances of pedestrians from the test dataset5 and
manually label the ground truth.

3. PathTrack [25] is a large multiple object tracking dataset,
which features thousands of person trajectories in hundreds
of sequences. The sequences are trimmed from the source
videos that are crawled from YouTube. We select 9 of the
source YouTube videos, which are about two minutes in
length on average, and manually labeled the ground truth.

5We observe that none of the videos in the training set has enough pedestrians
to facilitate the evaluation of our proposal.

Using [30], by comparing the GT tracks to the tracks gener-
ated by the tracking algorithm, we can locate all polyonymous
tracks. We evaluated different tracking algorithms, namely the
algorithms SORT [3], DeepSORT [4], Tracktor [5], UMA [31]
and CenterTrack [32] respectively on the three datasets. Overall,
Tracktor has the best performance. In particular, it scored the
best in terms of evaluation metrics (such as IDF1 [33] and
MOTA [30]) and produced the least number of polyonymous
tracks. Therefore, without specification, we use the tracking
results produced by Tracktor in our experiments. Note that the
tracking results produced by Tracktor serve as the input of
our algorithm TMerge. The objective of TMerge is to identify
the polyonymous tracks inside the tracking results produced
by Tracktor. We will compare these tracking algorithms and
explore the performance gains of TMerge on other tracking
algorithms in §V-G.

We adopt diverse windowing strategies in our evaluation.
For each video in MOT-17 and KITTI, we treat the entire
video as a window, and apply Tracktor onto the entire video
to produce tracking results. Then, we create Pc as the set of
all the track pairs in the entire video, and identify the ground
truth polyonymous tracks P ∗

c produced by Tracktor in each
video using [30]. For each video in PathTrack, we partition the
entire video into overlapping windows following the procedure
described in §II. The default window size is L = 2000; we will
evaluate the impact of varying Ls in our experiments. Then,
for each window Wc of each video in PathTrack, we create
Pc and P ∗

c . According to §III, we set K = 5%.

B. Algorithms Compared

We present a comparison of the following algorithms:

1. BL: The baseline approach presented in Algorithm 1. This
algorithm also can be accelerated utilizing GPUs in the
same way as outlined in §IV-F. We refer to the accelerated
version of this algorithm as BL-B.

2. PS: This algorithm conducts uniform (stratified) random
sampling [34] on each track pair (i.e., a stratum) assessing
distances over a fixed proportion (namely η) of BBox pairs.
A small η will include fewer BBox pairs, resulting in
reduced time overhead but lower REC; whereas on the
contrary, a large η leads to higher REC but increased runtime
overheads. PS can be accelerated by GPUs, giving rise to
PS-B.

3. LCB: We adapt the Upper Confidence Bounds (UCB) [22]
algorithm, an alternative sampling strategy for the Multi-
Armed Bandits problem, to identify polyonymous track
pairs by replacing UCB with Lower Confidence Bounds
(LCB). Unlike TMerge, in each iteration, it calculates the
LCB of the scores of all track pairs, selects the track pair
with the smallest bound, randomly assesses a BBox pair
distance from the selected track pair, and finally updates the
lower confidence bounds of all track pairs. We refer to it as
LCB and its GPU accelerated version as LCB-B. Since each
iteration is dependent on the result of the previous iteration,
LCB-B cannot benefit much from GPU acceleration.

100 101 102

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0
RE

C

101

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

10 1 100 101

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

BL PS LCB TMerge

Fig. 5. REC-FPS curves on datasets MOT-17 (left), KITTI (middle) and PathTrack (right).

101 102 103

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

102

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

100 101 102

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

BL-B (B=10)
BL-B (B=100)

PS-B (B=10)
PS-B (B=100)

LCB-B (B=10)
LCB-B (B=100)

TMerge-B (B=10)
TMerge-B (B=100)

Fig. 6. REC-FPS curves of batched algorithms (with different batch sizes B) on datasets MOT-17 (left), KITTI (middle) and PathTrack (right).

4. TMerge and its accelerated version TMerge-B. We set the
default value of τmax to 10,000 and default thrS = 200.
τmax determines how many BBox pairs extracted and will
be varied in the experiments. We will also evaluate the
performance varying thrS .
All algorithms utilise a ReID model to calculate the BBox

pair distance. We utilize the state-of-the-art ReID model, OSNet
[20] in our evaluation. 6 For algorithms that are accelerated by
GPUs, we denote B the batch size, namely the number of track
pairs that are jointly evaluated. Each experiment reports the
average of the results of 10 independent trials for each algorithm
compared. All algorithms were implemented in Python and run
on a Linux server with Intel Xeon Gold 6244 3.60GHz CPU,
with 64GB memory having an NVIDIA TITAN Xp GPU.

C. Metrics

We use REC to measure the end-to-end accuracy of the
algorithms, where REC = REC(P̂ ∗

c|K) (defined in §II
Equation (3)). We use Runtime and FPS to evaluate the
performance of the algorithms, where Runtime is in seconds
and FPS expresses the average number of frames processed
per second by the algorithms.

D. Track Merging Performance

By varying η in algorithm PS and varying τmax in algorithms
LCB and TMerge, we plot Figure 5, the REC-FPS curves on

6We retrain the ReID model by a loss function that combines triplet and
softmax loss [35] to enable it to extract feature vectors from BBoxes, where
the BBoxes with smaller Euclidean distance between their feature vectors are
more likely to refer to the same object.

0 10000 20000 30000
max

0

20

40

60

80

100

Ru
nt

im
e

(s
ec

on
ds

)

0.5

0.6

0.7

0.8

0.9

1.0

RE
C

Runtime
REC

Fig. 7. Runtime and REC of TMerge-B varying τmax.

101 102

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

TMerge w/o BetaInit
TMerge w/o ULB
TMerge

Fig. 8. REC-FPS curves of TMerge and TMerge without
BetaInit or ULB.

the algorithms compared. Points closer to the top right corner
represent better performance. From Figure 5, it can be observed
that, at the same REC, TMerge provides 10x to 100x higher
FPS than PS and BL. We choose two REC values and present
the FPS of the algorithms under the REC values on MOT-17
in Table II. At REC=0.80, the speed of TMerge is 16 times
faster than that of PS; at REC=0.93, the speed of TMerge is 19
times faster than that of PS and 23 times than BL. From Figure
5, we observe that the performance improvement of TMerge

TABLE II
THE FPS OF METHODS BL-B, PS-B, LCB-B AND TMERGE-B ON MOT-17 UNDER REC=0.80 AND REC=0.93.

Methods REC=0.80 REC=0.93 Methods B=10 B=100
REC=0.80 REC=0.93 REC=0.80 REC=0.93

BL - 0.27 BL-B - 2.50 - 4.85
PS 1.16 0.32 PS-B 13.47 2.98 19.42 5.58
LCB 5.68 4.45 LCB-B 53.74 34.79 52.74 39.20
TMerge 19.26 6.10 TMerge-B 108.84 70.40 254.77 106.20

1000 2000 3000 4000 6000
L

0.5

0.6

0.7

0.8

0.9

1.0

RE
C

BL
TMerge (max = 10, 000)

Fig. 9. REC of TMerge and BL varying L.

101 102

FPS (in log-scale)
0.5

0.6

0.7

0.8

0.9

1.0

RE
C

w/o BetaInit
thrS = 50
thrS = 100

thrS = 150
thrS = 200
thrS = 300

Fig. 10. REC-FPS curves of TMerge varying thrS .

over LCB, which is also an efficient sampling approach, is less
pronounced. However, LCB cannot benefit much from GPU
acceleration, as demonstrated in Figure 6.

Figure 6 presents the REC-FPS curves on all algorithms
amenable to acceleration varying the batch size B. We also
present in Table II the FPS of the algorithms with GPU
acceleration under the REC values 0.80 and 0.93 on MOT-17.
It is evident that TMerge-B is still 10x to 100x faster than PS-B
and BL-B. Besides, it can be observed that GPU acceleration
significantly improves TMerge-B, and at the same REC value,
the FPS with B=100 (denoted as TMerge-B100) is significantly
faster than that with B=10 (denoted as TMerge-B10), as
expected. For example, at REC=0.80, TMerge-B100 is 2.3 times
faster than TMerge-B10 and 13.2 times faster than TMerge; at
REC=0.93, TMerge-B100 is 1.5 times faster than TMerge-B10

and 17.4 times faster than TMerge. For LCB-B, however, since
each iteration is dependent on the result of the previous iteration,
increasing B has little benefit for LCB-B. For example, at
REC=0.80, the FPS of TMerge-B100 is 4.8 times the FPS of
LCB-B with B=100; at REC=0.93, the FPS of TMerge-B100

is 2.7 times the FPS of LCB-B with B=100.
Figure 7 presents Runtime (in seconds) and REC of TMerge-

B (B = 10) as the number of iterations increases on all the
videos in dataset MOT-17. For a small number of iterations,
both REC and Runtime increase fairly fast. After that, improve-
ment of REC exhibits diminishing returns, approaching the
REC achieved by the Baseline algorithm. The reason is that, the

bulk of the polyonymous track pairs have lower scores than the
rest and the algorithm is highly successful in identifying them.
Harder pairs, which scores not as low, require more iterations
to identify. The Runtime exhibits a similar behaviour. As τmax
grows, more feature vectors can be reused thus requiring less
inferences using the ReID model. As a result, Runtime grows
slowly in later iterations. As a comparison, algorithm BL-B
takes 2,762 seconds to process all the videos in dataset MOT-17,
which is 2 orders of magnitude slower than TMerge-B.

E. Ablation Study

To investigate how each of TMerge’s components (BetaInit and
ULB) contributes to its improved performance, we conduct
an ablation study in which we start with TMerge and remove
each component individually. We show the REC-FPS curves on
MOT-17 dataset in Figure 8; similar trends were observed on
other datasets. The blue curve (for TMerge without BetaInit)
is at the lower left of the other two, which indicates that
BetaInit has great impact on the efficiency of the algorithm.
For example, under REC=0.89, BetaInit can improve TMerge’s
speed about 1.7 times. The orange curve (for TMerge without
ULB) is also at lower left to the green curve (for TMerge),
suggesting that ULB also contributes to the efficiency of the
algorithm. Overall, BetaInit appears to have greater impact on
the performance of the proposed approach.

F. Sensitivity Analysis

We investigated whether TMerge is sensitive to the hyperparam-
eters by varying the BetaInit threshold thrS and window length
L. The study of parameter K is addressed in §III, and since
its effect on TMerge follows the pattern depicted in Figure 3,
it will not be elaborated further in this section.
(1) Influence of L. Figure 9 presents the REC achieved by

algorithms BL and TMerge for varying values of the
hyper-parameter window size L on PathTrack. According
to the annotation made by the authors, for this dataset,
the maximum length of tracks is around 1000 frames,
i.e., Lmax=1000. Therefore, for L=1000 < 2Lmax, some
polyonymous tracks may span more than two windows,
making them hard to discover, impacting overall accuracy
of both TMerge and BL. For other values of Ls such that
≥ 2Lmax, the values of REC achieved by both BL and
TMerge are close, which indicates that the algorithms are
not sensitive to L.

(2) Influence of thrS . Figure 10 presents the REC-FPS curves
of TMerge on MOT-17, varying the hyper-parameter
threshold thrS for BetaInit (Algorithm 3). First, it can

TracktorDeepSORT UMA
Tracking Models

0.00

0.01

0.02

0.03

0.04

0.05

Po
ly

on
ym

ou
s R

at
e w/o TMerge

w/ TMerge

Fig. 11. Polyonymous Rates of Tracktor, Deep-
SORT and UMA on MOT-17 with and without
TMerge. The lower the better.

IDF1 IDP IDR
Metrics

0.4

0.6

0.8

1.0
w/o TMerge
w/ TMerge

Fig. 12. MOT Metrics IDF1, IDP, and IDR of
Tracktor on dataset MOT-17 with and without
TMerge. The higher the better.

Count
Co-occurred Obj

Query Types

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

w/o TMerge
w/ TMerge

Fig. 13. Recall of the results on queries Count and
Co-occurred Objects with and without TMerge
on MOT-17. The higher the better.

be observed that the blue curve is lower than the others,
indicating that TMerge without BetaInit performs worse
than all others with BetaInit. Besides, BetaInit is sensitive
to the values of thrS . For example, in order to achieve
the same REC=0.89, the FPS of TMerge with thrS=200
is approximately 40% faster than that of thrS=300. The
optimal values of both L and thrS can be both obtained
by grid search on a period of labelled frame sequences.

G. Performance Gains on Different Tracking Algorithms

In this section, we compare three state-of-the-art tracking
algorithms and explore the performance gains made by TMerge
on them. Since the number of tracks found by each tracking al-
gorithm varies, in order to depict the effect of the polyonymous
track pairs on the tracking results, we define Polyonymous Rate,
which is the ratio of the number of polyonymous track pairs
to all track pairs. For the tracking algorithms without TMerge,

Polyonymous Rate =
|P ∗

c |
|Pc|

,

where P ∗
c is the set of track pairs in Pc that are polyonymous

(Equation (2)); for the tracking results corrected by TMerge,

Polyonymous Rate|TMerge =
|P ∗

c \ P̂ ∗
c|K |

|Pc|
,

where P̂ ∗
c|K is the set of track pairs estimated by Algorithm 2.

Figure 11 demonstrates the Polyonymous Rates of Tracktor,
DeepSORT and UMA on MOT-17 with and without TMerge;
other datasets have similar behaviors. It can be observed that
TMerge reduces the Polyonymous Rates of the tracking results
by more than 10x. While existing tracking algorithms, such
as [4], may alleviate track fragmentation caused by occlusion,
it is evident that they are unable to eliminate polyonymous
tracks without TMerge.

To directly evaluate the impact of the deployment of
TMerge on the performance of tracking results, we plot Figure
12, which illustrates the performance gains of TMerge on
Tracktor over multi-object tracking evaluation metrics [33].
The figure indicates that IDF1 [33], which evaluates the
overall performance of the tracking results, has improved by 5
percentage points. In particular, both IDP and IDR have been
improved. This indicates that TMerge corrects the polyonymous

tracks generated by Tracktor that cannot be matched to any GT
tracks, converting them from false negatives to true positives.

H. Benefits to Query Processing

This section discusses use cases that TMerge directly influences,
namely processing queries that utilize tracking information
over video feeds. TMerge is intended as a data pre-processing
step after tracking algorithms have been applied but before
downstream query processing takes place. We apply the
framework for query processing proposed in [13], utilizing
Mask R-CNN [36] and Tracktor for video pre-processing, and
consider the following two types of video queries:

• Count: Count the number of objects (i.e., individual tracks)
across more than a certain number (e.g., 200) of frames;
Such queries are used to provide statistical information
of objects in a certain time period for a given video;
alternatively they are utilized to retrieve scenes that are
related to the number of objects that remain visible in
the scene for a certain time period (e.g., to find traffic
congestion video clips from a long traffic video, or to
identify cars/persons that are visible longer than a certain
time period in a given video) [13].

• Co-occurring Objects: Identify video clips that are longer
than a number of frames (e.g., 50 frames) and contain
the same three objects appearing jointly. Such queries are
used to retrieve video clips with certain co-occurrence
patterns, possibly combined with other query conditions,
e.g., to identify video clips where the same two persons
and one vehicle with a coca-cola brand advertisement on
the vehicle appear jointly [13].

We compare the results on the two queries with and without
TMerge on MOT-17 and compute the Recall, demonstrated
in Figure 13; other datasets have similar behaviors. It can be
observed that, for the query Count, due to the polyonymous
tracks, some tracks that meet the query condition are not
detected, resulting in a low Recall (<75%). TMerge merges
these polyonymous tracks, thereby enhancing Recall to more
than 95%. Similarly, for the query Co-occurring Objects,
TMerge increases the Recall from 88% to 95%. The Recall
of such queries relies heavily on the accuracy of tracking
results, which can be improved by reducing the number of
polyonymous tracks. These are just two query scenarios where

TMerge can be applied; TMerge will benefit any query that
relies on tracking results and thus have wide applicability.

VI. RELATED WORK

Automated video analytics utilizing deep learning models as
primitives is an area of increasing research interest in the
community [8]–[11], [37]–[40]. Numerous recent works present
query processing frameworks that include both frame content
(object types, positions in frames, etc.) and temporal constraints
(object tracking outputs, etc.) as query primitives. Kang et al.
[6], [7] present video query processing techniques for specific
types of aggregates. Chen et al. [12], [13] present a framework
for processing temporal queries involving objects and their co-
occurrences. Bastani et al. [41] utilize object tracking to answer
count and spatial-constrained queries. Bastani and Madden [42]
develop a method to obtain and apply tracking results more
efficiently. A prerequisite for implementing these frameworks
accurately is that deep learning algorithms (i.e., object tracking
models) can correctly extract metadata that uniquely identify
and track objects across video frames. In this work, we propose
a general approach to improving the accuracy of tracking
results by merging polyonymous tracks, leveraging many of
the downstream query processing techniques used in previous
work.

Multiple object tracking is an active research area featuring
several proposals [31], [32], [43]. Occlusions (either object-to-
object or object-to-scene occlusions) remain a significant chal-
lenge for object tracking [14]. Luo et al. [15] summarize various
typical strategies to address occlusions. For example, the part-
to-whole strategy, which is the most commonly used strategy in
various scenarios (and which Tracktor [5] employs), assumes
that a part of the object is still visible when an occlusion
happens. Besides, some tracking methods handle occlusions
by modeling the object’s appearance and motion [44]. SORT
[3] uses the location and size of bounding boxes to detect
occlusions. Deep SORT [4] utilizes appearance information
integrated based on a deep appearance descriptor to re-identify
occluded targets. Some other approaches, such as [45] and
[46], take motion prediction into account for tracking, deriving
models that will be used to continuously predict the object
location when a tracked object is occluded until the object
reappears. However, the evaluation of the tracking results of
the state-of-the-art tracking methods presented in [14], [15]
(especially evaluations on metrics IDS and Frag) demonstrates
that the occlusion handling tactics offered by these methods in
the CV community do not fully eliminate polyonymous tracks.

Re-identification (ReID), aiming to determine whether a
specific person or object exists in a target repository of data
captured at different times or by other cameras, has been an
active research area in computer vision in recent years [47],
[48]. Research on ReID usually focuses either on constructing
robust and discriminative features or identifying an improved
similarity metric for comparing features [18], [49]. Some
research (e.g., [17], [19]) applies a training framework with
triplet loss functions to the person re-identification problems,
utilizing deep convolution neural network (DCNN) models. In

addition to person ReID, vehicle re-identification (V-ReID)
has also become significantly popular due to its practical
significance [50]. After the development of the early sensor
based methods and hand feature based methods, certain V-ReID
models based on DCNN have achieved great results [51], [52].

VII. CONCLUSIONS

Object tracking algorithms facilitate video query frameworks
involving temporal-spatial constraints; however errors incurred
by the tracking algorithm, such as track fragmentation, diminish
their utility for video query processing.

In this paper, we propose the TMerge algorithm that utilizes
sampling, to effectively identify polyonymous tracks. The
algorithm constitutes a pre-processing step that can be adapted
by video analytics systems to yield more accurate metadata
extraction. Extensive experiments conducted on real datasets
demonstrate that TMerge can provide a upto 100x speedup
over other applicable approaches and is able to identify 95%
of all polyonymous tracks by examining only a small number
of track pairs. We believe that the area of quality driven data
ingestion on the output of deep learning models is an important
research direction.

REFERENCES

[1] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
779–788.

[3] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and
realtime tracking,” in Proceedings of the IEEE International Conference
on Image Processing, 2016, pp. 3464–3468.

[4] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in Proceedings of the IEEE International
Conference on Image Processing, 2017, pp. 3645–3649.

[5] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019, pp. 941–951.

[6] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
Optimizing deep cnn-based queries over video streams at scale.” Pro-
ceedings of the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597,
2017.

[7] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Optimizing declarative
aggregation and limit queries for neural network-based video analytics,”
Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 533–546, 2019.

[8] I. Xarchakos and N. Koudas, “Svq: Streaming video queries,” in
Proceedings of the International Conference on Management of Data,
2019, pp. 2013–2016.

[9] N. Koudas, R. Li, and I. Xarchakos, “Video monitoring queries,” in IEEE
International Conference on Data Engineering, 2020, pp. 1285–1296.

[10] D. Chao, N. Koudas, and I. Xarchakos, “Svq++: Querying for object
interactions in video streams,” in Proceedings of the International
Conference on Management of Data, 2020, pp. 2769–2772.

[11] Y. Xarchakos and N. Koudas, “Querying for interactions,” in IEEE
International Conference on Data Engineering, 2021, pp. 2153–2158.

[12] Y. Chen, X. Yu, and N. Koudas, “Tqvs: Temporal queries over video
streams in action,” in Proceedings of the International Conference on
Management of Data, 2020, pp. 2737–2740.

[13] Y. Chen, X. Yu, N. Koudas, and Z. Yu, “Evaluating temporal queries
over video feeds,” in Proceedings of the International Conference on
Management of Data, 2021, pp. 287–299.

[14] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera, “Deep learning in video multi-object tracking: A survey,”
Neurocomputing, vol. 381, pp. 61–88, 2020.

[15] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple
object tracking: A literature review,” Artificial Intelligence, vol. 293, p.
103448, 2021.

[16] C. Zhao, P. Mei, S. Xu, Y. Li, and Y. Feng, “Performance evaluation
of visual object detection and tracking algorithms used in remote
photoplethysmography,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2019, pp. 0–0.

[17] S. Ding, L. Lin, G. Wang, and H. Chao, “Deep feature learning
with relative distance comparison for person re-identification,” Pattern
Recognition, vol. 48, no. 10, pp. 2993–3003, 2015.

[18] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-
identification with k-reciprocal encoding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1318–1327.

[19] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep learning
for person re-identification: A survey and outlook,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 6, pp. 2872–2893,
2021.

[20] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature
learning for person re-identification,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 3702–3712.

[21] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A
benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831,
2016.

[22] A. Slivkins et al., “Introduction to multi-armed bandits,” Foundations
and Trends® in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[23] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
in Annual Conference on Neural Information Processing Systems, 2011,
pp. 2249–2257.

[24] M. Zamprogno, M. Passon, N. Martinel, G. Serra, G. Lancioni, C. Miche-
loni, C. Tasso, and G. L. Foresti, “Video-based convolutional attention for
person re-identification,” in International Conference on Image Analysis
and Processing, 2019, pp. 3–14.

[25] S. Manen, M. Gygli, D. Dai, and L. Van Gool, “Pathtrack: Fast
trajectory annotation with path supervision,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 290–299.

[26] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise Reduction in Speech Processing, 2009, pp. 1–4.

[27] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding, 1994, pp. 409–
426.

[28] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-
armed bandit problem,” in Conference on Learning Theory, 2012, pp.
39–1.

[29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[30] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[31] J. Yin, W. Wang, Q. Meng, R. Yang, and J. Shen, “A unified object motion
and affinity model for online multi-object tracking,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 6768–6777.

[32] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in
European Conference on Computer Vision, 2020, pp. 474–490.

[33] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance
measures and a data set for multi-target, multi-camera tracking,” in
European Conference on Computer Vision, 2016, pp. 17–35.

[34] W. Madow, “Elementary sampling theory,” Technometrics, vol. 10, pp.
621–622, 08 1968.

[35] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[36] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969.

[37] D. Kang, J. Guibas, P. D. Bailis, T. Hashimoto, and M. Zaharia, “Tasti:
Semantic indexes for machine learning-based queries over unstructured
data,” in Proceedings of the International Conference on Management
of Data, 2022, pp. 1934–1947.

[38] P. Chunduri, J. Bang, Y. Lu, and J. Arulraj, “Zeus: Efficiently localizing
actions in videos using reinforcement learning,” in Proceedings of the
International Conference on Management of Data, 2022, pp. 545–558.

[39] J. Cao, K. Sarkar, R. Hadidi, J. Arulraj, and H. Kim, “Figo: Fine-grained
query optimization in video analytics,” in Proceedings of the International
Conference on Management of Data, 2022, pp. 559–572.

[40] D. Chao, N. Koudas, and X. Yu, “Marshalling model inference in
video streams,” in 2023 IEEE 39th International Conference on Data
Engineering, 2023.

[41] F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh,
H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden, “Miris:
Fast object track queries in video,” in Proceedings of the International
Conference on Management of Data, 2020, pp. 1907–1921.

[42] F. Bastani and S. Madden, “OTIF: efficient tracker pre-processing over
large video datasets,” in Proceedings of the International Conference on
Management of Data, 2022, pp. 2091–2104.

[43] Y. Yuan, J. Chu, L. Leng, J. Miao, and B.-G. Kim, “A scale-adaptive
object-tracking algorithm with occlusion detection,” EURASIP Journal
on Image and Video Processing, vol. 2020, no. 1, pp. 1–15, 2020.

[44] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, pp. 13–es, 2006.

[45] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 300–311.

[46] Y. Liu, R. Li, Y. Cheng, R. T. Tan, and X. Sui, “Object tracking using
spatio-temporal networks for future prediction location,” in European
Conference on Computer Vision, 2020, pp. 1–17.

[47] S. D. Khan and H. Ullah, “A survey of advances in vision-based vehicle
re-identification,” Computer Vision and Image Understanding, vol. 182,
pp. 50–63, 2019.

[48] M. Liu, J. Zhao, Y. Zhou, H. Zhu, R. Yao, and Y. Chen, “Survey for person
re-identification based on coarse-to-fine feature learning,” Multimedia
Tools and Applications, pp. 1–35, 2022.

[49] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based cnn with improved triplet loss
function,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 1335–1344.

[50] S. D. Khan and H. Ullah, “A survey of advances in vision-based vehicle
re-identification,” Computer Vision and Image Understanding, vol. 182,
pp. 50–63, 2019.

[51] Y. Zhang, D. Liu, and Z.-J. Zha, “Improving triplet-wise training of
convolutional neural network for vehicle re-identification,” in IEEE
International Conference on Multimedia and Expo, 2017, pp. 1386–1391.

[52] X. Liu, W. Liu, T. Mei, and H. Ma, “Provid: Progressive and multi-
modal vehicle reidentification for large-scale urban surveillance,” IEEE
Transactions on Multimedia, vol. 20, no. 3, pp. 645–658, 2017.

	Introduction
	Problem Definition
	A Baseline Approach
	TMerge
	Basic Idea
	The Algorithm
	Initializing Beta Distributions
	Pruning Track Pairs
	Efficiency Analysis
	GPU Acceleration

	Experiments
	Datasets
	Algorithms Compared
	Metrics
	Track Merging Performance
	Ablation Study
	Sensitivity Analysis
	Performance Gains on Different Tracking Algorithms
	Benefits to Query Processing

	Related Work
	Conclusions
	References

