
Marshalling Model Inference in Video Streams
Daren Chao

University of Toronto
drchao@cs.toronto.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Xiaohui Yu
York University
xhyu@yorku.ca

Abstract—Numerous cloud platforms are available to deploy
and train deep models as well as process data, such as Amazon
Rekognition and Azure custom Vision Service, which have made
it easy for companies to adopt deep learning technologies in
their operations. Commonly such services price usage per image
or frame in typical applications that consume video streams
and as a result the costs rapidly accumulate. In this paper we
introduce a model, named EventHit, that is able to marshal model
inference requests in such services by making predictions over
the video stream about events of interest. As such only relevant
video segments are sent for analysis to the cloud infrastructure
and irrelevant parts are filtered from further processing. We
introduce the architecture and fully describe its components. We
present two novel optimizations in this context that aim to provide
control over the trade-off between prediction accuracy (especially
regarding the probability of missing an event of interest) and
processing cost at the cloud infrastructure. We fully describe and
analyze our proposals in the context of real datasets. We also
present the results of a detailed experimental evaluation varying
parameters of interest and demonstrate the practical utility of
our proposals.

I. INTRODUCTION

The rapid advances in Deep Learning (DL) [1] have revolu-
tionized numerous applications of vast practical significance
such as various aspects of video analytics (including video
object detection [2], event detection [3], action recognition
[3] and classification [4] to name a few). The prevalence
of DL frameworks (such as TensorFlow and Pytorch) has
rendered access to powerful models for advanced deep learning
a commodity. Access to powerful cloud-enabled commodity
cameras [5] is now within reach for any business that wishes to
accumulate and analyze video data (in real-time or store them
for future reference effortlessly in the cloud). Applications
such as video surveillance automation, sports analytics, news
clip analysis and autonomous driving are thriving.

Although access to video data and the associated models to
analyze them are both within reach of practitioners, assembling
the technical expertise to build and maintain the required
infrastructure for analysis as well as the technical know-how
to fine tune and optimize models is still highly challenging.
Although businesses are ready to make use of the results
of analysis (e.g., adopt intelligent video surveillance in their
operations), it is challenging to build all this expertise in house.
For this reason most businesses will opt to outsource the
complexities of infrastructure and associated technology and
focus on the unique aspects of their application. Numerous such
services are offered by leading cloud providers such as Amazon
Rekognition [6], Azure custom vision service [7], Google Cloud

Vision API [8], IBM Watson Visual Recognition [9], Alibaba
Cloud intelligence Vision [10] as well as more specialized
players such as Clarifai [11] among many others. The main
functionality of such services is to offer the infrastructure
and the associated deep models as a service. That way, users
focus on their specific applications without bothering with
ownership and maintenance of the infrastructure and associated
model development/maintenance and training. Instead users
connect their data sources, i.e., video feeds in the case of video
analytics, specifying the desired functionality (e.g., detection
of specific events in the case of video surveillance) and the
suitable models produce the desired output.

Commonly, such services price usage on a per frame basis,
and in typical applications that consume video streams, the
costs rapidly accumulate. It is evident that depending on the
application, there is occasionally a "needle in a haystack"
scenario in which a great deal of service is over-utilized
(with associated costs) as only a fraction of frame sequences
would be of interest; the rest of the video stream is irrelevant.
For example, in a surveillance automation application that
focuses on specific events (e.g., trucks approaching a gate
at a construction site, triggering an automated gate opening),
only a fraction of frames would be periodically relevant (those
that contain the event). Depending on the application, events
may be identically and independently distributed (i.i.d.), such
as Poisson as in the case of truck arrivals [12]. The cloud
service has to consume frames constantly to detect the event
of interest however, resulting in excessive costs. Examples like
this abound in video surveillance automation, especially in
industrial automation (e.g., recognizing defective products in
industrial pipelines, which may be i.i.d. based on a Poisson or
geometric distribution [13], and triggering automated removal
[14]) and large commercial spaces (e.g., recognizing crowding
due to rapid arrivals and throttling them [14]).

In this paper, we propose a framework EventHit to learn
to predict when events of interest, following an underlying
but unknown distribution, occur. Such prediction guides our
decision to direct for analysis on the portion of the video stream
likely to contain events of interest (incurring the associated
monetary costs). For parts of the stream that no events are
predicted to occur we may skip the associated processing.

Figure 1 presents an overview of the proposed architecture.
An array of smart cameras records video, relaying the feeds
to EventHit. A prediction is conducted for a temporal event
horizon, namely a temporal window of frames, up to some
adjustable maximum time into the future, given the current

point in time (current set of frames). The prediction consists of
a range of frames into the future that is most likely to contain
an event of interest. The suitable range of frames is relayed to
the cloud service and the associated infrastructure of choice
(CI) for further processing (to conclusively, based on deep
models, assess if the event is present) and the final results are
routed to the application. EventHit can reside on premise or in
the cloud. Training EventHit takes place before its deployment
and is conducted once by routing the video stream to CI and
collecting the output of the cloud-based service models for the
events of interest. This constitutes the training data for any
set of events of interest. After training, the video streams are
routed to EventHit first; a prediction is conducted for the range
of frames of the next event occurrence. The range of frames in
the prediction are relayed to the CI for subsequent processing
(as detailed in § III).

To instantiate EventHit we propose a deep neural model
that utilizes features from the video frames as well features
extracted from the temporal dynamics of the video along with
a family of event-specific sub-networks to handle predictions
for each event of interest. Predictions occur in an adjustable
temporal event horizon. We fully describe the architecture of
our network which is trained end-to-end for the specific events.

We further present two novel optimizations in the context
of this problem, namely C-CLASSIFY and C-REGRESS, to
provide control over the trade-off between prediction accuracy
(especially regarding the probability of missing an event of
interest) and processing cost by the CI. Both optimizations are
grounded on the theory of conformal predictions [15], [16].
The basic idea of C-CLASSIFY is to calibrate the predictions
of EventHit using a set of predictions and associated ground
truth as a reference. Based on this reference set, it builds a
probabilistic framework around how similar a new prediction
is with respect to the reference set. That way C-CLASSIFY
builds a quantifiable and adjustable trade-off between precision
and recall in predicting the existence of an event in the
temporal event horizon. The desired recall can be adjusted in a
probabilistic manner to a desired level (effectively controlling
accuracy of the predictions) incurring an associated adjustment
in the precision.

If an event of interest is predicted to take place in the next
temporal horizon by C-CLASSIFY, EventHit will predict an
interval of frames that such an event is predicted to occur.
To tune the accuracy of such a prediction in a quantifiable
manner, C-REGRESS builds temporal ranges around the
start and end frames in this predicted interval respectively,
with specific probabilistic accuracy guarantees. Such temporal
ranges essentially correspond to a range of frames around
the predicted start and end frames. Taking these frame ranges
into account, we adjust the prediction of EventHit effectively
establishing probabilistic trade-offs between recall and excess
frames processed.

In this paper we make the following contributions: 1) we
introduce the novel problem of marshalling model inferences in
video streams; 2) we propose a novel deep architecture, called
EventHit, inspired by survival analysis [17], [18] to conduct

EventHit

Cloud Service and Associated Infrastructure of Choice

VIDEO STREAM

Tcurrent

Collection Window

Tmax

 True Occurrence Interval

 Time Horizon

Frames Skipped Frames Skipped

Estimated Occurrence Interval

Fig. 1: Overview of the proposed architecture.

predictions for multiple events of interest; 3) we establish
trade-offs between the accuracy of event detection and the cost
of detection when cloud ML infrastructures are utilized; 4)
we present a thorough experimental evaluation utilizing real
videos, that validate the results of our analysis and demonstrate
the efficacy of our proposals in a practical setting.

II. PROBLEM DEFINITION

A video stream is a sequence of frames V = ⟨f1, . . . , fN ⟩,
where fi is a frame at timestamp Ti, and N is the length of
the video stream. The number of frames (length) of a video
N can be fixed or unbounded. Let E = {E1, . . . , Ek} be a set
of k independent event types of interest in the video stream
where an event is a complex activity that is localized in time
and space. An event is expected to be observable in the video,
involving interactions among people and/or objects [19]–[21].
Such event types are typically application-dependent. In our
video surveillance automation example, an event type of interest
can be a truck approaching the gate in an industrial setting.
Note that multiple instances of an event type can take place
in the stream (i.e., multiple events corresponding to trucks
approaching a gate taking place at different points in time).

One basic assumption is that for each of the event types
Ei ∈ E , a CI of choice provides access to a model of high
accuracy to detect them. An occurrence interval (OI) of an
event instance in a stream is a time interval (T s, . . . , T e) in
which the event instance occurs, with T s and T e being the
start and end timestamps respectively.

Our goal is to build a lightweight and general model (i.e., a
model with structure applicable to different event prediction
challenges) such that at any time Ti we can predict the
occurrence interval of an event instance belonging to event
type Ei ∈ E using information collected on the frames up to
fi, referred to as covariates. We constrain our event occurrence
predictions up to and including an (adjustable) finite number
of frames in the future that we refer to as the time horizon (H).
To ease notation, we assume that event instances of Ei ∈ E
can appear at most once in the time horizon for estimation
purposes. We emphasize however that our entire framework
and solution can address the case of multiple event instances
of the same event type taking place in the time horizon1. For
this reason, in the sequel we will refer to an event type Ei ∈ E
and its instances as events interchangeably.

Covariates are part of feature selection and are application-
dependent. We will extract features from each frame and
combine them to form a feature vector. The features can be
extracted from a single frame (e.g., presence or absence of

1This involves modifying the structure of EventHit outlined in § III so that
each sub-network corresponding to an event type makes multiple predictions
as opposed to one.

E1

E3
Covariates

To-M+1 To To+H

Censored

Fig. 2: An illustration demonstrating the task of predicting the
next occurrence interval of events.

certain objects in a frame) or multiple frames (e.g., relative
object positions in the frame sequence, estimates of object
speed and relative object distance). Without loss of generality,
we assume that there are D feature types and thus the
dimensionality of each feature vector is D. To construct the
covariates Xi at time Ti, we utilize feature vectors collected
from a sequence of consecutive frames, a collection window
W of length M = |W |. Then the covariates Xi ∈ RM×D can
be written as:

Xi = [Xi−M+1, . . . , Xi] ,

where Xm is a feature vector extracted from frame fm. At
any frame fi, we extract the covariates Xi and observe the
events that will occur in the next time horizon, H , along with
their associated occurrence intervals. Let Li be a set of events
that occur in the time horizon starting from frame fi, Li ⊆ E .
More than one event may occur within a time horizon H . Let
Ti represent the occurrence intervals of the events in set Li,

Ti =
{[

T
s(i)
k , T

e(i)
k

]
: ∀ Ek ∈ Li

}
,

where T
s(i)
k , T

e(i)
k ∈ [1, H] represent timestamp offsets of the

start and end frames of the occurrence interval of event Ek

relative to Ti. Thus, the absolute start and end timestamps of
frames for event k at Ti are T

s(i)
k = Ti + T

s(i)
k and T

e(i)
k =

Ti + T
e(i)
k , respectively.

The triplets (Xi,Li, Ti) can be generated for any frame fi
(except the first M frames in V) in the video stream. Figure
2 presents an example. For a given timestamp To, covariates
are extracted from a collection window of size M with frames
corresponding to timestamps from To−M+1 to To. We observe
that some events (such as Event E1) start within the time
horizon and end before To+H; while others (Event E3) end
after the end of the time horizon. We call such events censored
events. Let δk be an indicator variable representing whether
an event Ek is censored (δk = 1 if Ek is censored; δk = 0
otherwise), and Γi be the set of corresponding indicators for
events in Li. For the example shown in Figure 2,

Lo = {E1, E3},
Γo = {δ1, δ3} = {0, 1},

To = {[T s(o)
1 , T

e(o)
1], [T

s(o)
3 , T

e(o)
3]},

where T
s(o)
k ∈ [1, H] and T

e(o)
k ∈ [1, H] represent the start

and end time of the occurrence interval of event Ek. When
considering events within the time horizon of a frame fi at
Ti, for an event Ek that is censored, we set the end of the
occurrence interval for this event as the end time of the time
horizon for Ti. In our example for To, since δ3 = 1, we have
T

e(o)
k = H .
We build a training dataset by sampling frames from the

beginning of the video stream (frames f1 to fP) and extracting
triplets (namely records). Let Dtrain represent the set of records

for training and Ptrain be the set of frames selected from frames
f1 to fP ,

Dtrain : {(Xn,Ln, Tn)}n∈Ptrain
. (1)

Given the training data collected from a video stream, the
problem of interest in this paper is to build a prediction model
to predict, at any Tj > TP , whether and when the events in E
will occur in the time horizon, Tj to Tj+H . In comparison to
the services offered by the CI, the model built to predict whether
and when events will occur is intended to be lightweight,
general and easy to deploy locally.

III. EVENTHIT

We propose a framework called EventHit to make predictions
on upcoming occurrences of events in E . To realize things
concrete, given a collection of |P| training records, we develop
a particular instantiation of the framework that utilizes a Neural
Network model to yield the predictions. Our goal would be to
use the network as a proxy to estimate the following unknown
probabilities for each event Ek:

• The probability that an event Ek will occur within the
next time horizon given observed covariates Xn,

P (Ek ∈ Ln | X = Xn) . (2)
• The probability that event Ek occurs at Tj ∈ [0, H],

P
(
Tj ∈ [T s

k
(n), T e

k
(n)] | X = Xn, Ek ∈ Ln

)
, (3)

where [T s
k
(n), T e

k
(n)] ∈ Tn.

To the best of our knowledge, this is the first time a neural
network model has been proposed to achieve both Boolean
predictions of if the event will occur and range predictions of
when the event will occur.

The proposed DNN model is depicted in Figure 3. EventHit
consists of a shared sub-network and K event-specific sub-
networks, one for each event in E . The shared sub-network
accepts covariates Xn ∈ RM×D as input and produces a vector
z that captures the latent representation as output. It first utilizes
a Long Short Term Memory (LSTM) [22] encoder that is
suitable for modeling temporal relationships in the video stream
across frames. The LSTM encoder processes the feature vectors
(Xm∈Xn, n−M<m≤n) in sequence, updating corresponding
hidden states at each time-step: hm=LSTM(hm−1, Xm). The
last hidden state output from the LSTM, hn, is directed to
the fully connected and dropout layer(s). Then the hidden
vector z is concatenated with Xn, i.e., the last feature vector
in covariates Xn.

Each event-specific sub-network consists of the fully con-
nected layer(s) with independent weights and is activated by a
sigmoid function2. Each sub-network accepts the concatenated
hidden state z ⊕ Xn as input, and produces an output
vector consisting of coordinates with values as proxies for
the probabilities in Equations (2) and (3). Specifically, for
event Ek, the corresponding sub-network outputs a vector
Θ

(n)
k =

[
b
(n)
k , θ

(n)
k,1 , θ

(n)
k,2 , ..., θ

(n)
k,H

]
, where b

(n)
k ∈[0, 1] represents

a score to quantify the occurrence of event Ek in the time
horizon, and θ

(n)
k,v ∈ [0, 1] represents a score to quantify the

2We choose the sigmoid layer since the event existence prediction for each
event can be seen as a binary classification problem.

Event Specific Subnet 1 Event Specific Subnet K

Output (Event E1) Output (Event I)...

Sigmoid Sigmoid

FC
...

FC

Output (Event EK)

Concatenate

... ...

...

Shared Subnet

...

FC+Dropout

LSTM Layer

Fig. 3: The architecture of EventHit.

occurrence of event Ek in the frame with offset v from Tn,
i.e., fv+n.

The network is trained end-to-end utilizing the vectors Θ
(n)
k .

In particular, the loss functions are a) the average cross-entropy
loss between the estimated binary class score and the ground
truth class (where the two classes for an event Ek correspond
to whether Ek happens or not)

L1 =
−1

|P|
∑
n∈P

K∑
k=1

βk

(
1[Ek∈Ln] log b

(n)
k +1[Ek /∈Ln] log(1−b

(n)
k)

)
;

where 1 is an indicator function and βk represents the weight
of classification loss of the event Ek; and b) the average cross-
entropy loss between the estimated score for the occurrence of
event Ek and the ground truth label for each frame in the time
horizon representing whether Ek does occur in that frame,

L2 =
−1

|P|
∑
n∈P

K∑
k=1

γk1[Ek∈Ln]

 ∑
Tv∈[Ts

k
(n),Te

k
(n)]

log θ
(n)
k,v

T e
k
(n)−T s

k
(n)

+

∑
Tv∈[1,H]\[Ts

k
(n),Te

k
(n)]

log(1−θ
(n)
k,v)

H−(T e
k
(n)−T s

k
(n))

 ,

where γk represents the weight of occurrence prediction loss of
the event Ek. The hyper-parameters βk and γk, for all Ek ∈ E ,
can be tuned by grid search [23], [24]. To train EventHit, we
minimize a total loss function LTotal that is the sum of the two
losses, LTotal=L1+L2.

For training, we utilize D: {(Xn,Ln, Tn)}n∈P in order to
compute the loss corresponding to input covariates and train
the network end-to-end. The choice of covariates Xn ∈ RM×D

is application-dependent. Like any other application of ML,
this is a task that requires feature engineering. We select
features through standard correlation analysis methods [25].
Other feature engineering approaches can be utilized in this
stage, such as dimensionality reduction [26] via auto-encoders
[27]. In § VI we will detail the covariates utilized for our target
applications.

At inference time, the vector Θ
(n)
k produced by the event-

specific sub-network is utilized for predictions. We choose a
threshold τ1 (e.g., 0.5) to predict the existence of event Ek∈E

in the time horizon. With a b
(n)
k no less than τ1, event Ek is

predicted to occur in the time horizon from Tn,
b
(n)
k ≥ τ1 ⇒ 1[Ek ∈ L̂n] = 1, (4)

where L̂n represents the estimated set3 of events that will occur
in the time horizon from Tn. Upon determining that event Ek

is predicted to occur, we derive an estimate of its occurrence
interval

[
T̂ s
k
(n), T̂ e

k
(n)

]
in the time horizon. We choose a

threshold τ2 (e.g., 0.5), where frames with probabilities no less
than τ2 belong to the occurrence interval of Ek

θ
(n)
k,v ≥ τ2 ⇒ 1

[
Tv ∈

[
T̂ s
k
(n), T̂ e

k
(n)

]]
= 1, (5)

where T̂ s
k
(n) and T̂ e

k
(n) represent the start and end offsets of

frames in the estimated occurrence interval for event Ek in the
time horizon from Tn. Since the events occur in continuous
frames, the output frames with θ

(n)
k,v ≥ τ2, which may be

discontinuous, have to be converted to a continuous frame
sequence. The final predicted occurrence interval for Event Ek

is[
T̂ s
k
(n), T̂ e

k
(n)

]
=

[
min

Tv∈[1,H]
{Tv |θ(n)

k,v≥τ2}, max
Tv∈[1,H]

{Tv |θ(n)
k,v≥τ2}

]
.

(6)
The predicted occurrence interval may be affected by false
positives. We will report the prediction accuracy in § VI.

As is typical with deep neural architectures, the quality of
our resulting estimation can be evaluated experimentally using
test datasets. We are interested to move beyond experimental
validation of our deep neural architecture and investigate formal
quality guarantees for the output of the network. Conformal
inference [17] has been successful in providing certain types of
probabilistic guarantees, under statistical assumptions, for the
output of prediction models. In Sections IV and V, we introduce
novel approaches to offer marginal probabilistic guarantees for
the predictions of EventHit utilizing a conformal inference
approach.

IV. CONFORMAL EVENT EXISTENCE PREDICTIONS

In this section, we focus on the classification problem of event
existence and propose a method C-CLASSIFY for this problem.
We first introduce a well-studied approach called conformal
prediction [28], [29], which forms the basis of C-CLASSIFY,
and then discuss C-CLASSIFY in detail.

A. Conformal Prediction
Conformal prediction [15] has been widely known in statistics
but recently has attained novel interest given its applicability
in machine learning for point prediction in classification
or regression [16], [30]. The basic principle in conformal
predictions is to utilize a reference dataset (calibration set) to
determine precise levels of confidence in new predictions. In
particular, under the assumptions that the calibration set and the
new data we wish to make predictions on are exchangeable4,
one can obtain probabilistic guarantees for the new predictions.

3More than one event may occur in the time horizon together.
4The examples observed from a dataset are exchangeable if for any

permutation of the dataset, the joint probability distribution of the permuted
dataset is the same as the distribution of the original one. The exchangeability
assumption is weaker than the assumption that the random events are
independent and identically distributed (i.i.d.), in that all i.i.d. events are
exchangeable but not vice versa.

For a given binary classification model, let ∆c be a
calibration set, ∆c : {(x1, y1), . . . , (x|∆c|, y|∆c|)}, where each
xi is an input feature vector and yi ∈ {0, 1} is its binary class
label. Conformal prediction first constructs a non-conformity
measure ai which measures the dissimilarity between a data
example xi and all the data examples in ∆c with respect to
the positive label (yi = 1), with higher scores corresponding
to higher dissimilarity. Then, for a new data example, the
algorithm computes the p-value po for this example (xo, yo),
which is the fraction of data examples in ∆c with higher
dissimilarity than xo,

po =
|{i = 1, . . . , |∆c| : ao ≤ ai}|

|∆c|+ 1
.

If po is small, then yo = 1 is very nonconforming with
respect to the past experience. A parameter c is defined as
the confidence level, reflecting the required reliability of the
prediction. The greater c, the higher the reliability is in our
prediction. The quantity 1− c is usually called the significance
level. Depending on the confidence level c, a new prediction
ŷo is made,

ŷo =

{
1 po ≥ 1− c
0 po < 1− c

. (7)

Theorem 4.1: [15] Assuming that ∆c ∪ {(xo, yo)} are
exchangeable (their distribution is invariant under permutations),
the probability of missing the correct positive label when
predicting ŷo as per Equation (7) is guaranteed to be not
greater than 1− c. In other words, for a data example (xo, yo)
the following guarantee is valid,

P (ŷo = 0; yo = 1) ≤ 1− c,

or P (ŷo = 1; yo = 1) ≥ c.
This guarantee holds for data sampled in the same way as the
conformal dataset, irrespective of the chosen non-conformity
measure. The probability is taken over ∆c ∪ (xo, yo) points
instead of for a specific data example; namely the guarantee
is marginally valid as opposed to conditional. The estimated
labels for different c have the following property:
c1 > c2 ⇒ P (ŷ1 = 1; y1 = 1, c = c1) > P (ŷ1 = 1; y1 = 1, c = c2).

We will utilize principles of conformal predictions to derive
probabilistic guarantees utilizing the output scores of EventHit.
Moreover, unlike Bayesian approaches for quantifying model
output confidence [31], utilizing a conformal framework, there
is no need for assumptions on the form of the underlying
probability distribution.

B. C-CLASSIFY
EventHit accepts as input covariates Xn and outputs estimated
occurrence scores b

(n)
k for each event Ek. Let Ck be the

classification model in EventHit for the prediction of the event
occurrence in the sub-network corresponding to event Ek,

Ck(Xn) = b
(n)
k , k = 1, ...,K,

Let Dc-calib be a calibration set that is independently sampled
in the same way as the training dataset. We denote Pc-calib the
set of frames utilized to assemble it,

Dc-calib : {(Xn,Ln, Tn)}n∈Pc-calib
. (8)

Dc-calib can be a subset of the training dataset D or have partial
overlap with D.

We utilize principles of conformal predictions and propose
C-CLASSIFY, an algorithm that calibrates the event prediction

Algorithm 1: C-CLASSIFY
Input: Input Covariates Xo; Conformal Set Dc-calib; Confidence

Level c;
Output: Estimated Set of Positive Events L̂o;

1 for k = 1, ...,K do
2 Get the score b

(o)
k for Xo through EventHit.

3 ako = 1− b
(o)
k .

4 for n ∈ Pc-calib do
5 Get b(n)

k for Xn through EventHit.
6 akn = 1− b

(n)
k .

7 pko =

∣∣∣{n∈Pc-calib:Ek∈Ln & ak
o≤ak

n

}∣∣∣
|{n∈Pc-calib:Ek∈Ln}|+1

.

8 L̂o =
{
Ek : 1 ≤ k ≤ K | pko ≥ 1− c

}
.

scores of EventHit with probabilistic guarantees, effectively
eliminating the need to threshold the event prediction output
scores. Such estimation takes place for each event indepen-
dently.

C-CLASSIFY is shown in Algorithm 1. Let aki be a non-
conformity measure, which is a function returning a real-valued
score quantifying the non-feasibility of event Ek occurring in
the time horizon given covariates Xi according to the classifier
Ck, with higher scores corresponding to higher non-feasibility.
We utilize a simple but commonly employed non-conformity
measure5 [15], [30] namely quantifying the score that signifies
that an event does not occur in time horizon, aki=1−b

(i)
k . We

calculate the non-conformity of each event for all data in the
calibration dataset Dc-calib (Lines 4-6 in Algorithm 1).

Then, given covariates Xo, a p-value of each event Ek (k =
1, ...,K) is calculated with respect to Ck and the calibration
dataset Dc-calib in the following way (Line 7 in Algorithm 1):

pko =

∣∣{n ∈ Pc-calib : Ek ∈ Ln & ako ≤ akn
}∣∣

|{n ∈ Pc-calib : Ek ∈ Ln}|+ 1

=

∣∣∣{n ∈ Pc-calib : Ek ∈ Ln & (1− b
(o)
k) ≤ (1− b

(n)
k)

}∣∣∣
|{n ∈ Pc-calib : Ek ∈ Ln}|+ 1

,

where b
(n)
k is the estimated score of event Ek for covariates

Xn given by EventHit.
Given a confidence level c, the new estimated set of events

that are predicted to occur in time horizon L̂o for covariates
Xo is the set of events for which the corresponding p-values
are no less than 1− c, i.e.,

L̂o =
{
Ek : pko ≥ 1− c, 1 ≤ k ≤ K

}
(9)

Following Theorem 4.1, the following theorem holds.
Theorem 4.2: For each event Ek ∈ E , let ∆c = {(Xn, Ek ∈

Ln), n ∈ Pc-calib} be the records (i.e., triplets) in the calibration
dataset, assuming that ∆c ∪ (Xo, Ek ∈ Lo) are exchangeable6;
then the following guarantee is valid,

P
(
Ek /∈ L̂o

)
≤ 1− c. ∀ Ek ∈ Lo.

For each event Ek ∈ E , since ∆c ∪ (Xo, Ek ∈ Lo) are
exchangeable, according to Theorem 4.1, we have P (Ek /∈

5We stress that Theorem 4.1 holds irrespective of the non-conformity measure
utilized. As such any choice of non-conformity measure can be applied to
the model proposed in this work. Our entire proposal and ensuing discussion
holds verbatim for different choices of non conformity measures.

6Since ∆c reflects the distribution of the results of the classifier Ck across
all frames in the video stream, the test data (Xo, Ek ∈ Lo) that is sampled
in the same way as ∆c has no effect on the overall distribution of ∆c ∪
(Xo, Ek ∈ Lo), implying that they are exchangeable.

L̂o;Ek ∈ Lo) ≤ 1 − c. Thus, for any Ek ∈ Lo,
P
(
Ek /∈ L̂o

)
≤ 1− c.

For two confidence levels c1 > c2, the set L̂o,c1 estimated
under c1 will include the set L̂o,c2 estimated under c2,

c1 > c2 ⇒ L̂o,c1 ⊃ L̂o,c2 . (10)

The confidence level c is a user-tunable knob. According to
Theorem 4.2, by having the ability to set the confidence level c
we can affect the precision and recall of the estimation process.
According to Equation (10), for event Ek ∈ E , setting a higher
c is expected to increase the number of Ek that are predicted
to occur, leading to a higher recall but a lower precision. To
see this, as per Equation (9), a higher value of c decreases
the threshold that the corresponding p-value has to surpass for
event Ek to be predicted to occur.

Moreover, compared to the approach that determines event
occurrence by manipulating thresholds τ1 as per Equation
(4) on the classifier output, C-CLASSIFY disposes of such
threshold and manipulates the output via probability semantics.
Thus, C-CLASSIFY assists in scaling precision and recall in a
tunable manner.

V. CONFORMAL OCCURRENCE INTERVAL PREDICTIONS

Equations (5) and (6) in § III enable us to estimate the
occurrence intervals

[
T̂ s
k , T̂

e
k

]
for event Ek as produced by

EventHit. Once an event is predicted to occur in the time
horizon by C-CLASSIFY (i.e., Ek ∈ L̂), we forward the frames
in

[
T̂ s
k , T̂

e
k

]
to the CI to detect the actual event. The accuracy

of the estimation of T̂ s
k and T̂ e

k is crucial. Evidently if the two
points are not closely aligned with the actual start and end of
the event, it may result in missing the event and/or conducting
excessive work (processing more frames in the CI than we
need to). For this reason, we propose C-REGRESS, which
calculates a bound for T̂ s

k and T̂ e
k with specific probabilistic

guarantees that can be tuned.

A. Conformal Regression
The principles of conformal predictions apply to regression
problems as well. Let ∆r : {(x1, y1), . . . , (x|∆r|, y|∆r|)} be
exchangeable pairs of random variables, with xi being a multi-
dimensional vector (d-dimensional feature vectors or covariates)
and yi a response variable. Let µ(x) = E[Y |X = x], x ∈ Rd

be a regression function. We are interested in predicting yo for
a new vector xo with no assumptions on µ and the form of
the underlying data distribution of ∆r.

Conformal regression constructs an interval C (a prediction
band) based on ∆r with the property that for a new point
(xo, yo),

P (yo ∈ C(xo)) ≥ α

for a user-defined coverage level α.
There are multiple ways to construct the prediction band C.

We outline below one called split conformal regression [16]
which is computationally efficient. We randomly split ∆r into
two equal-sized subsets I1, I2. Let µ̂ be a regression function
trained on I1, and

ri = |yi − µ̂(xi)|, i ∈ I2,

Algorithm 2: C-REGRESS
Input: Input Covariates Xo; Calibration Set Dr-calib; Coverage Level

α;
Output: Estimated Occurrence Interval T̂o

1 Get output vector
[
Θ

(o)
1 , ...,Θ

(o)
k

]
for Xo through EventHit.

2 Get L̂o for Xo through C-CLASSIFY.
3 for k = 1, ...,K do
4 Get

(
T̂ s
k
(o), T̂ e

k
(o)

)
for Xo according to

[
Θ

(o)
1 , ...,Θ

(o)
k

]
.

5 Initialize Rs
k and Re

k as empty sets.
6 for n ∈ Pr-calib do
7 Get

(
T̂ s
k
(n), T̂ e

k
(n)

)
through EventHit w.r.t. Xn.

8 if Ek ∈ Ln then
9 rs,kn =

∣∣∣T̂ s
k
(n) − T s

k
(n)

∣∣∣.
10 add rs,kn into Rs

k .
11 re,kn =

∣∣∣T̂ e
k
(n) − T e

k
(n)

∣∣∣.
12 add re,kn into Re

k .

13 Sort and denote the residuals in Rs
k: rs,k

(1)
≤ ... ≤ rs,k

(|Rk|)
.

14 Sort and denote the residuals in Re
k: re,k

(1)
≤ ... ≤ re,k

(|Rk|)
.

15 q̂sk = rs,k
(⌈α(|Rk|)⌉)

.

16 q̂ek = re,k
(⌈α(|Rk|)⌉)

.

17 T̂
s (o)
k,new = max{1, T̂ s

k
(o)−q̂sk}.

18 T̂
e (o)
k,new = min

{
H, T̂ e

k
(o)+q̂ek

}
.

19 T̂o =
{(

T̂
s (o)
k,new , T̂

e (o)
k,new

)
, ∀ k : Ek ∈ L̂o

}
.

be the fitted residuals for the members of I2. Let q̂ be the
⌈|∆r|·α⌉th smallest value in {ri : (xi, yi) ∈ I2}, namely the
α-quantile of the fitted residuals. For a feature vector xo, split
conformal regression outputs the prediction band [µ̂(xo) −
q̂, µ̂(xo) + q̂], with the following guarantee:

Theorem 5.1: [16] Assuming that ∆r ∪ {(xo, yo)} are
exchangeable (their distribution is invariant under permutations),
for a user-defined coverage α, we have

P (yo ∈ [µ̂(xo)− q̂, µ̂(xo) + q̂]) ≥ α.

The probability is taken over ∆r ∪ (xo, yo) and the guarantee
is marginally but not conditionally valid, as in the case of
conformal classification [16]. The width of this prediction
band can be tuned by varying α: larger values of α lead to
larger prediction intervals. The prediction bands for different
α have the following property:

α1 < α2 ⇒ [µ̂(xo)− q̂α1 , µ̂(xo) + q̂α1] ⊂
[µ̂(xo)− q̂α2 , µ̂(xo) + q̂α2].

where q̂α1
/q̂α2

are the α1/α2-quantiles of the fitted residuals.

B. C-REGRESS
We now detail C-REGRESS which is based on the principles
of conformal regression. Let Dr-calib be a calibration set that is
independently sampled in the same way as the training dataset,
and Pr-calib be the set of frames utilized to assemble it:

Dr-calib : {(Xn,Ln, Tn)}n∈Pr-calib
.

Similar to Dc-calib in Equation (8), Dr-calib can be a subset of
the training dataset D or have joint records with D.

For an instance Xo, EventHit estimates the occurrence
interval (OI) of the events in the time horizon as per Equation
(6),

[
T̂ s
k
(o), T̂ e

k
(o)

]
, ∀ k = 1, ...,K & Ek ∈ L̂o, where

L̂o is determined by C-CLASSIFY. C-REGRESS conducts
conformal regression on the start and end frame estimates of

the occurrence interval for each event. The entire procedure is
depicted in Algorithm 2, which performs the following tasks:
1. Evaluate EventHit on all the calibration data Xn : n ∈

Pr-calib and obtain the estimated occurrence interval of each
event Ek ∈ E for each data record,

(
T̂ s
k
(n), T̂ e

k
(n)

)
(Line

7).
2. Compute the residuals of both start and end frame estimates

of each data record for each event in the calibration set
(Line 9),

rs,kn =
∣∣∣T̂ s

k
(n) − T s

k
(n)

∣∣∣ , re,kn =
∣∣∣T̂ e

k
(n) − T e

k
(n)

∣∣∣ ,
∀ n ∈ Pr-calib ∀ Ek ∈ Ln.

Let |Rk| be the number of records in the calibration set
with event Ek in its time horizon,

|Rk| = |{n ∈ Pr-calib : Ek ∈ Ln}| .
3. For each event Ek ∈ Ln, we sort the residuals for both

start and end frame estimates (Lines 13,14),
rs,k
(1)

≤ rs,k
(2)

≤ ... ≤ rs,k
(|Rk|)

, re,k
(1)

≤ re,k
(2)

≤ ... ≤ re,k
(|Rk|)

.

4. Let q̂sk and q̂ek be the α-th quantile of the residuals of both
start and end frame estimations for each event Ek ∈ Ln

(Lines 15,16),
q̂sk = rs,k

(⌈α|Rk|⌉)
, q̂ek = re,k

(⌈α|Rk|⌉)
.

5. C-REGRESS adjusts the start point of the estimated occur-
rence interval to T̂

s (o)
k,new=max{1, T̂ s

k
(o) − q̂sk}, and the end

point to T̂
e (o)
k,new=min{H , T̂ e

k
(o) + q̂ek}. Thus, the estimated

set of occurrence intervals becomes
T̂o=

{(
max

{
1, T̂ s

k
(o)−q̂sk

}
,min

{
H, T̂ e

k
(o)+q̂ek

})
, ∀ k : Ek∈L̂o

}
.

(11)

Following Theorem 5.1, we can show:
Theorem 5.2: For each event Ek ∈ Lo ∩ L̂o, assume that

(Xo, T s
k
(o)) ∪ (Xn, T s

k
(n)), n ∈ Pr-calib, and the data for Ek

used to train EventHit are exchangeable, and (Xo, T e
k
(o)) ∪

(Xn, T e
k
(n)), n ∈ Pr-calib, and the data for Ek used to train

EventHit are exchangeable; then the following holds,
P
(
T s
k
(o) ∈ [T̂ s

k
(o) − q̂sk, T̂

s
k
(o) + q̂sk]

)
≥ α. ∀ Ek ∈ Lo ∩ L̂o;

P
(
T e
k
(o) ∈ [T̂ e

k
(o) − q̂ek, T̂

e
k
(o) + q̂ek]

)
≥ α. ∀ Ek ∈ Lo ∩ L̂o.

Since the new start point of the estimated occurrence interval
T̂

s (o)
k,new ≤ T̂ s

k
(o), the estimated start frame is made earlier in

time. Similarly, since T̂
e (o)
k,new ≥ T̂ e

k
(o), the estimated end frame

is moved forward in time. According to Theorem 5.2, setting
larger values of α leads to larger estimated occurrence intervals,
and as a result we are more likely not to miss events; however,
the flip side of this is that more irrelevant frames are likely
to be processed by CI, resulting in more waste of resources.
Thus, similar to c proposed in § IV-A, by varying α, we obtain
a tunable trade-off between recall and cost savings for each
event Ek ∈ E , which we will explore further in § VI.

VI. EXPERIMENTAL EVALUATION

A. Datasets
1. VIRAT [32], a realistic and natural dataset for video

surveillance domains with diverse scenes and a variety of
event categories. We select 6 representative event types from
VIRAT, as shown in Table I along with their occurrence and
duration information. As detailed in the preceding sections,
our work is focused on utilizing a CI in a subscription mode

TABLE I: Events of interest in VIRAT and THUMOS.
Event Types in VIRAT Occurrences Duration

Avg. Std.
E1: Person Opening a Vehicle 54 70.8 15.4
E2: Person Closing a Vehicle 57 62.0 11.9
E3: Person Unloading an Object 56 86.6 25.0from a Vehicle
E4: Person getting into a Vehicle 93 145.1 35.1
E5: Person getting out of a Vehicle 162 193.7 158.8
E6: Person carrying an object 165 571.2 176.4

Event Types in THUMOS Occurrences Duration
Avg. Std.

E7: Volleyball Spiking 80 99.3 40.1
E8: Diving 74 91.2 35.4
E9: Soccer Penalty 48 92.8 25.9

Event Types in Breakfast Occurrences Duration
Avg. Std.

E10: Cut Fruit 132 114.0 48.8
E11: Put fruit to Bowl 121 97.2 107.5
E12: Put Egg to Plate 95 240.2 153.8

as is possesses the latest and most advanced models for the
events of interest. As such, the CI will provide the accurate
models for detecting the events in VIRAT.

2. THUMOS [33], [34], a large-scale video dataset for recog-
nizing and localizing wide ranges of human actions. We
select 3 representative action types from it, as predictable
events, which are listed in Table I.

3. Breakfast [35], an action recognition dataset consisting of
several cooking activities. Each video records the entire
process of completing an activity that is completed by a set
of action units. We selected 3 action units randomly as the
target events in the experiments.

We evaluate our proposed approaches and the baseline
algorithms on several prediction tasks, each of which consists
of a subset of the events in Table I. The specific tasks are listed
in Table II. For the tasks consisting of more than one event,
the occurrences of all events are predicted. For each event in
VIRAT, we select descriptive features utilizing the annotation
provided in the dataset. For example, for event E1, we have
features such as an indicator of the presence/absence of moving
cars and a value for the average distance between the cars
and the persons in a frame. For each event in THUMOS, we
select descriptive features utilizing the object detection outputs
produced by the detection models on the videos of the dataset.
For each event in Breakfast, we select descriptive features
utilizing the object detection outputs produced by the detection
models and the annotation of action units appearing in the
collection window provided in the dataset. We utilize light-
weight widely used models (such as YOLOv3 or Faster R-CNN
[36]) for feature selection purposes. All prediction methods
may benefit from more task-specific feature engineering. We
treat it as an orthogonal issue as standard feature selection
methods will apply [25]. Approaches such as frame sampling
[37] or difference detector [38] can speed up video processing
and can be readily applied in our approach. However they are
orthogonal to the methods proposed in this paper.

In the experimental evaluation, we assume that CI can
provide an accurate model for predicting the set of events
corresponding to each task. The goal is to decide whether the

time horizon (or part of it) should be relayed to CI for further
processing. In general, more time horizons being relayed to CI
means higher recall and more resource over-utilization. Our
experimental evaluation is organized as follows. We introduce
the evaluation measures in § VI.C and compare the overall
performance of our proposals with other algorithms (listed in
§ VI.B) in § VI.D, and then conduct ablation studies to evaluate
the contribution of conformal predictions in § VI.E, which is
followed by studies on the sensitivity of the proposed methods
to hyper-parameters in § VI.F. Moreover, we conduct a case
study to demonstrate the monetary savings of our proposals in
§ VI.G. Finally, we report other details of the proposals such
as training/inference time and memory used in § VI.H.

B. Algorithms Compared

1. EHO: It utilizes the output of EventHit only to determine
the existence of events via Equation (4) and estimate the
occurrence intervals via Equation (5) for events that are
predicted to occur in the time horizon. The event prediction
threshold τ1 and occurrence interval prediction threshold τ2
are both set to 0.5.

2. EHC: It utilizes C-CLASSIFY to determine the existence
of events of interest (Equation (9)) but keeps using the
occurrence interval estimation made by EventHit (Equation
(5)). We omit the threshold τ1 and set τ2 to 0.5.

3. EHR: It utilizes the output of EventHit to determine
the existence of events (Equation (4)) and produce the
occurrence intervals for events that are predicted to occur
in the time horizon by C-REGRESS (Equation (11)). The
thresholds τ1 and τ2 are both set to 0.5.

4. EHCR: It utilizes C-CLASSIFY to determine the existence
of events of interest (Equation (9)) and C-REGRESS to
estimate the occurrence intervals (Equation (11) with τ2 =
0.5) according to the output of EventHit.

5. OPT: It is the theoretically optimal approach which has
full knowledge of all true event intervals relevant to the
prediction task and applies the CI onto the frames that true
events occur only.

6. BF: The Brute-Force approach that applies the CI onto every
single frame in the video.

7. COX: We consider a strategy based on Cox’s proportional
hazard model [39], a survival regression model in statistics.
It builds the model on the covariates and estimates the
survival probability. Given a threshold τcox, we can iterate
over the frames in the time horizon to identify the first
frame (that will be considered as the start point) whose
survival probability is greater than τcox, assuming that the
events will occur from this frame to the end of the time
horizon7.

8. VQS: We also adapt a well-known video query system,
BlazeIt [40] for this problem, which utilizes specialized
models to filter out video frames that do not satisfy object-
based predicates. Given a threshold τvqs, VQS can relay
the time horizon in which the number of frames containing

7We disregard the end point, as the Cox model can only regress one variable.

TABLE II: Tasks.
Tasks Events of Interest Tasks Events of Interest
TA1 E = {E1} TA9 E = {E1, E5, E6}
TA2 E = {E2} TA10 E = {E7}
TA3 E = {E3} TA11 E = {E8}
TA4 E = {E4} TA12 E = {E9}
TA5 E = {E5} TA13 E = {E10}
TA6 E = {E6} TA14 E = {E11}
TA7 E = {E1, E5} TA15 E = {E11, E12}
TA8 E = {E5, E6} TA16 E = {E10, E12}

target object types (associated with the events of interest)
exceeds the threshold τvqs to the CI for further processing;
it will filter out those time horizons below the threshold
τvqs.

9. APP-VAE: [41] proposed a point-process-based approach
for action appearance and arrival time prediction. It can
encode past asynchronous time action sequences and make
predictions on which actions will occur and when they will
happen using a generative model. Using its prediction of
action occurrence and arrival time, we can relay only the
range of frames that may include target events to CI for
further processing. The settings follow [41].
All algorithms were implemented in Python and run on a

Linux server with Intel Xeon Gold 6244 3.60GHz CPU and
64GB memory and an NVIDIA RTX TITAN Xp GPU.

C. Measures
1) Measuring End-to-End Performance.
We measure both the accuracy and the resulting cost savings of
the algorithms compared. For the end-to-end accuracy, we are
concerned with measuring the recall rate [42], i.e., how many
frames belonging to an actual event occurrence are correctly
predicted by an algorithm and sent to the CI for processing. To
this end, we define ηkn for event Ek and the n-th record in the
dataset as the fraction of frames of the actual event occurrence
interval that is predicted by the estimate of a given algorithm:

ηkn =

∣∣∣range
(
T̂ s
k
(n), T̂ e

k
(n)

)
∩ range

(
T s
k
(n), T e

k
(n)

)∣∣∣∣∣range
(
T s
k
(n), T e

k
(n)

)∣∣ ,

where range(T1, T2) represents the set of frames from T1 to T2

(T1 < T2). In a sense, ηkn can be thought of as the frame-level
recall for event Ek and the n-th record. If an event Ek is
predicted not to occur in the next time horizon (i.e., Ek /∈ L̂n),
we set range(T̂ s

k
(n), T̂ e

k
(n))=ϕ.

To measure the end-to-end accuracy of an algorithm, we
define REC, which is the average value of ηkn for all the events
across all records,

REC =

∑
n∈Ptest

∑
Ek∈E 1 [Ek ∈ Ln] · ηkn∑

n∈Ptest

∑
Ek∈E 1 [Ek ∈ Ln]

. (12)

To measure the end-to-end cost savings, we define the
spillage of an algorithm, denoted by SPL, that computes the
following quantity: out of all the frames that do not belong
to an event, what is the proportion of frames that are sent to
the CI for processing? In a sense, SPL can be thought of as
the frame-level false positive rate [42]. Since the processing
of such frames would not return any positive identification
of events, it is wasteful to send them to the CI. Therefore,
the lower the spillage, the better. Ideally, this value should be
0, i.e., no resource is wasted on processing those irrelevant

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(a) TA1.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(b) TA2.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(c) TA3.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(d) TA4.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(e) TA5.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(f) TA6.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(g) TA7.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(h) TA8.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(i) TA9.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(j) TA10.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(k) TA11.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
COX
VQS

EHO
EHCR
EHC
EHR

(l) TA12.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
APPVAE|200
APPVAE|1500

EHO
EHCR
EHC
EHR

(m) TA13.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
APPVAE|200
APPVAE|1500

EHO
EHCR
EHC
EHR

(n) TA14.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0
RE

C

OPT
BF
APPVAE|200
APPVAE|1500

EHO
EHCR
EHC
EHR

(o) TA15.

0.0 0.2 0.4 0.6 0.8 1.0
SPL

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

OPT
BF
APPVAE|200
APPVAE|1500

EHO
EHCR
EHC
EHR

(p) TA16.
Fig. 4: REC-SPL curves.

frames, which is the case for the optimal algorithm OPT. On
the other extreme, spillage is 1 for the brute-force algorithm
BF. More precisely, spillage is defined as

SPL =
1

|Ptest| · |E|
∑

n∈Ptest

∑
Ek∈E1 [

Ek∈Ln & Ek∈L̂n

] ∣∣∣range
(
T̂ e
k
(n), T̂ s

k
(n)

)
\range

(
T e
k
(n), T s

k
(n)

)∣∣∣
H −

∣∣range
(
T e
k
(n), T s

k
(n)

)∣∣
+1

[
Ek /∈Ln & Ek∈L̂n

] ∣∣∣range
(
T̂ e
k
(n), T̂ s

k
(n)

)∣∣∣
H

 .

(13)

To evaluate the performance of the algorithms and each of
their stages (e.g., feature extraction), we use FPS, expressing
the average number of frames processed per second (FPS) by
the algorithms or by their corresponding stage.
2) Measuring Individual Components.
We now describe the measures used to evaluate the effectiveness
of the individual components in our proposed approach. In this
paper, the problem of predicting when the events of interest
occur consists of two successive tasks: the existence prediction
(whether an event will occur in the horizon), and the occurrence
interval prediction (what is the occurrence interval given that
the events are predicted to occur). The existence prediction task
can be considered as a classification problem and optimized
using C-CLASSIFY. For event Ek ∈ E , we use positive (or
negative) records to refer to the records whose time horizons

are predicted to (or not to) experience the events of interest,
i.e., Ek ∈ L̂n (or Ek /∈ L̂n). We define RECc as the recall of
the existence prediction task, calculated by:

RECc =

∑
n∈Ptest

∑
Ek∈E 1

[
Ek ∈ Ln & Ek ∈ L̂n

]
∑

n∈Ptest

∑
Ek∈E 1 [Ek ∈ Ln]

.

The records with events predicted to occur in the horizon are
processed by C-REGRESS to estimate the occurrence interval.
To measure the accuracy of this task, we define RECr, the
average value of ηkn for all the events over all those records
with events predicted to occur:

RECr =

∑
n∈Ptest

∑
Ek∈E 1

[
Ek ∈ Ln & Ek ∈ L̂n

]
· ηkn∑

n∈Ptest

∑
Ek∈E 1

[
Ek ∈ Ln & Ek ∈ L̂n

] .

D. Experimental Results
We take the average of 10 independent trials for each combi-
nation of task and algorithm compared and report the results.
Unless stated otherwise, we set the size of the collection
window M=25 and the length of the time horizon H=500 for
events in VIRAT, set M=10 and H=200 for THUMOS, and
set M=50 and H=500 for Breakfast.

Figure 4 presents the performance of all algorithms compared.
The REC of approaches OPT and BF are both 1 for all tasks
as they always send all frames with events to the CI. Also,
Since BF applies CI onto all frames blindly, its spillage SPL
is always 1. By varying the confidence level c and the coverage
level α, we obtain the REC-SPL curves for approaches EHC,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

&
RE

C c

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

(a) TA1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

&
RE

C c

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

(b) TA5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

&
RE

C c

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

REC
RECc

SPL

(c) TA7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c

0.0

0.2

0.4

0.6

0.8

1.0

RE
C

&
RE

C c

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

REC
RECc

SPL

(d) TA10.
Fig. 5: REC, SPL and RECc of EHC varying the Confidence Level c.

0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1.0

RE
C

&
RE

C r

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

(a) TA1.

0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1.0

RE
C

&
RE

C r
0.0

0.2

0.4

0.6

0.8

1.0

SP
L

(b) TA5.

0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1.0

RE
C

&
RE

C r

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

REC
RECr

SPL

(c) TA7.

0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1.0

RE
C

&
RE

C r

0.0

0.2

0.4

0.6

0.8

1.0

SP
L

(d) TA10.
Fig. 6: REC, SPL and RECr of EHR varying the Converge Level α.

EHR and EHCR. Since the outcomes of EHO and APP-VAE
cannot be adjusted explicitly via tunable knobs (such as c and
α), they are represented as a single point respectively in the
plots. While COX and VQS lack explicit tunable knobs as
well, we can nevertheless obtain the REC-SPL curves for
them by setting different thresholds. The closer the curves or
points of an algorithm are to the upper left corner, the better
the performance, as this indicates that at the same level of
spillage SPL, this algorithm is able to achieve a higher recall
REC, and vice versa.

APP-VAE requires an excessively large collection window
M to obtain an accurate prediction. In contrast to other
approaches, we give APP-VAE larger M values: M=200 and
M=1500, represented by APP-VAE|200 and APP-VAE|1500
respectively. However, a larger M requires more time in the
feature extraction phase to identify the action units appearing in
the collection window8. We did not run APP-VAE on VIRAT
and THUMOS since their event occurrences are too sparse
and the M required by APP-VAE is insurmountable. The
continuous nature of the actions in the videos of the dataset
Breakfast makes it more compact for APP-VAE.

It can be observed from Figure 4 that EHO significantly
outperforms COX and VQS on VIRAT and THUMOS9, as well
as APP-VAE|200 on Breakfast. APP-VAE|1500 is worse than
EHO on tasks TA13 and TA14 (i.e., one-event cases), and is
comparable to EHO on tasks TA15 and TA16 (i.e., multi-event
cases). For some tasks (such as TA1, TA2, TA10 and TA13 in
Figures 4a, 4b, 4j and 4m) EHO has a high REC (> 0.9)
and a low SPL (< 0.1). However, with the same network
structure and parameters, its performance is not as good on
some other tasks (such as TA5 and TA6 in Figures 4e and 4f).
To understand the performance trends, we divide the events
into two groups based on the statistics presented in Table I.

8For APP-VAE [41], its encoder and generation model take around 0.1s
for inference. However, APP-VAE200 requires around 7 seconds for feature
extraction since the speed of common action detection models is approximately
25 frames per second [43], [44]. For APP-VAE|1500, its feature extraction
will require 1 minute, which drastically reduces its competitiveness.

9For better presentation, we do not include the curves of COX and VQS
in Figures 4m-4p, which exhibit similar performance trends on Breakfast as
other datasets.

Group 1: Events with short average occurrence duration and
small standard deviation, i.e., E1, E2, E3, E4, E7,
E8, E9 and E10.

Group 2: Events with long average occurrence duration or
large standard deviation, i.e., E5, E6 E11 and E12.

By comparing the figures of tasks involving Group 1 events
with those of tasks involving Group 2, we observe that EHO
performs better (i.e., higher REC and lower SPL) on the
former category of tasks. The reason is that on one hand,
the higher variation in the duration of the occurrences (e.g.,
Std.=158.8 for E5) makes it more difficult to estimate the
intervals and thus leads to lower REC (in Figure 4e); on the
other hand, SPL tends to be higher for events with longer
occurrence duration (e.g., Avg.=571.2 for E6), because the
average number of frames in the estimated occurrence intervals
over all records, including those false positive records (i.e.,
Ek /∈Ln & Ek∈L̂n), are larger (e.g., 285 for E6 vs. 103 for E1),
resulting in higher cost due to false positive records. Moreover,
the events with longer occurrence occupy a larger proportion
of the time horizon, leaving fewer frames outside the estimated
occurrence intervals.

In addition to tasks containing a single event, we select
some representative tasks involving multiple events, shown in
Figures 4g, 4h, 4i, 4o, and 4p. It can be observed that the
performance of EHO on TA7 and TA8 is worse than that on
TA1 and TA6 respectively, but comparable to that on TA5. The
performance on TA9 is worse than on the former two. It is
also interesting to observe that for the combination of events
in a task, the overall performance is bound by the event with
the worst performance.

C-CLASSIFY or C-REGRESS show considerable flexibility
in trading SPL for higher REC, especially when REC of
EHO is relatively low, such as on tasks TA5 or TA7. In Figures
4e and 4g, we observe that the curves of EHC and EHR can
reach higher REC than EHO. However, neither EHC nor EHR
can reach a REC value close to 1. On the other hand, EHCR,
which combines C-CLASSIFY and C-REGRESS, is able to
achieve any required level of REC. In each of the plots, the
curves of EHCR can always reach the maximum REC, albeit
at the expense of higher SPL. In comparison to the tasks

10 50 100 200
M

0.0
0.1
0.2
0.3
0.4
0.5

SP
L

REC 0.6
REC 0.7

REC 0.8
REC 0.9

(a)

100 300 500 700 900
H

0.0
0.1
0.2
0.3
0.4
0.5

SP
L

REC 0.6
REC 0.7

REC 0.8
REC 0.9

(b)
Fig. 7: SPL of EHCR under different REC levels varying the
size of the collection window M (Left) and the size of the
time horizon H (Right) on task TA1.

involving Group 1 events (e.g., Figures 4a, 4b, 4c and 4d),
EHCR incurs a higher SPL to obtain the same level of REC
on tasks involving Group 2 events (e.g., Figures 4e and 4f).
Similarly, in comparison to the tasks involving fewer event
types (e.g., Figures 4a and 4e), EHCR requires a higher SPL
to obtain the same level of REC on tasks involving more
event types (e.g., Figures 4g, 4h and 4i). This is as expected
since having more complexity in the task makes predictions
more challenging.

E. Evaluation of Conformal Prediction
We next conduct experiments using EHC and EHR to analyze
the effectiveness of C-CLASSIFY and C-REGRESS.

As per § IV, C-CLASSIFY tunes the output of EventHit via
conformal prediction and delivers the level of recall (RECc)
for a given confidence level c. We thus vary c and evaluate EHC
with respect to REC, SPL, and RECc on four representative
tasks. The results are shown in Figure 5. Consistent across all
four plots, a larger c leads to a higher REC at the expense of
a higher SPL, because a larger c increases the chances a time
horizon to be predicted as positive. As REC is influenced by
both the recall of the event existence classification and the
recall of the occurrence interval prediction, we additionally
plot the curves of RECc with varying c. As c approaches 1,
almost all the records are predicted to be positive; thus RECc
reaches 1 for all the tasks. However, REC cannot reach 1,
due to errors in estimating event occurrence intervals.

We next explore the effect of C-REGRESS, which aims to
manipulate the start and end points of the estimated occurrence
intervals at the specified coverage level α. Figure 6 presents the
performance of EHR with respect to REC, SPL and RECr
on four representative tasks, with varying coverage level α.
As discussed in § V, a larger α leads to larger estimated
occurrence intervals, resulting in a higher REC and a higher
SPL. However, the effect of α differs across the tasks. For
some tasks (such as TA1 and TA10), on which EHO already
has a high RECr, increasing α results in limited improvement
(Figure 6a and 6d); for tasks whose value of RECr resulting
by EHO is low (such as TA5 and TA7), α can significantly
improve their RECr (Figures 6b and 6c). This observation is
applicable to all tasks. Among all the event types, although
their resulting RECr by EHO varies, their RECr can reach
0.95 when α = 0.5, with a small increase of SPL (≤ 0.2)
compared with EHO.

In our experiments, c demonstrates a greater impact than
α. For some tasks whose events of interest belong in Group
1, since RECr resulting from EHO is already very high, α

has a low impact on REC; thus, in these cases, it is better to
set a small α. In contrast, for tasks with events in Group 2,
whose occurrence interval prediction with EHO is inaccurate,
increasing α can have a remarkable improvement in REC.
Thus, α can be used to further increase REC when tuning c
alone cannot reach the ideal REC.

F. Sensitivity to Hyper-Parameters
In Figure 7a, we vary M and present the different SPL values
required to reach different REC levels on task TA1. In general,
a larger collection window (larger M) offers more temporal
context when making predictions and thus leads to better
performance. As shown in Figure 7a, the performance can
be considerably enhanced by raising M until M reaches 50;
beyond that, the benefit of continuing increasing M exhibits
diminishing returns. Since feature extraction from frames incurs
overhead, it is not advisable to increase M arbitrarily. As such,
M=50 is a good choice for this dataset. We would like to note
that the optimal choice of M may vary from one dataset to
another and can be chosen experimentally by hyper-parameter
search [23], [24].

Figure 7b illustrates the SPL value required to reach different
levels of REC levels on task TA1 with varying H . As can
be observed from Figure 7b, the effect of H on EHCR is
insignificant at low REC values such as for the cases of
REC≥0.6 and REC≥0.7. For higher values of REC (as in
the case of REC≥0.8 and REC≥0.9), with increasing H ,
EHCR has an impact on SPL, since for a specific event, the
fraction (percentage) of the event occurrence interval to the time
horizon decreases (e.g., 51% for H=100 and 5.3% for H=900),
making estimation of occurrence interval more difficult. The
cost of achieving the desired higher REC levels is thus higher.

G. Case Study on Monetary Cost
To realize things concrete, we demonstrate the performance
of EHCR considering the task TA1, utilizing the pricing of
Amazon Rekognition10, that is US $0.001 per frame. Figure
8 presents REC versus the associated Expense ($) of several
approaches. OPT represents the expense of processing only the
frames in the true occurrence intervals. BF is the expense
associated with processing all frames in all records. As
illustrated in Figure 8, EHCR can achieve approximately 100%
REC with less than a fifth of the expense associated with BF,
which is significantly less than the expense of COX for this
REC. Similar results hold for the other types of tasks and
events and are omitted for brevity.

H. Details of Resource Utilization
Figure 9 presents REC versus FPS for EHCR, COX and
VQS for tasks TA10 and TA11. The FPS of EHCR includes
the inference overhead of the feature extraction model (e.g.,
YOLOv3 [45]), EventHit, and the event detection model (e.g.,
I3D [43]) provided by the CI. Similarly, for COX we account
for feature extraction, the Cox model overhead and the CI
processing; for VQS we include the specialized run-time

10https://aws.amazon.com/rekognition/pricing/

https://aws.amazon.com/rekognition/pricing/

0 100 200 300 400 500
Expense ($)

0.0
0.2
0.4
0.6
0.8
1.0

RE
C

OPT
BF

COX
EHCR

Fig. 8: REC-Expense curve
on task TA1.

0 30 60 90 120
FPS

0.5

0.6

0.7

0.8

0.9

1.0

RE
C

EHCR
COX
VQS

(a) TA10.

0 50 100 150 200
FPS

0.5

0.6

0.7

0.8

0.9

1.0

RE
C

EHCR
COX
VQS

(b) TA11.
Fig. 9: REC vs. FPS achieved by EHCR, COX and VQS.

 Models of CI (95.9%)

 EventHit (0.1%)
Feature Extraction (4.0%)

Fig. 10: Proportion of the
time overhead on each stage
of EHCR.

(inference) model overhead [38], [40] and the CI processing.
The graph demonstrates a clear trade-off between REC and
FPS, and EHCR clearly dominates this trade-off. As we relax
REC, the FPS of EHCR surpasses that of COX and VQS
significantly. For example, for TA11, when REC=0.9, where
COX and VQS can only achieve FPS less than 40, EHCR
can achieve FPS greater than 100; when REC=0.7, where
COX and VQS can only achieve FPS around 50, EHCR can
achieve FPS greater than 150. Similar results hold for the
other types of tasks and events used in this study. In addition,
with the batch size set to 128, the training time of EventHit is
usually less than 1 hour and approximately 150MB of GPU
memory is required for both training and inference. Figure 10
presents the proportion of the time spent on each of the three
stages of EHCR throughout the entire process (for TA10 and
REC=0.9). As can be observed from the figure, time spent
on CI is dominant, which is one of the reasons (along with
monetary cost) why it is desirable to reduce CI invocation
(which is the main objective of EHCR).

VII. RELATED WORK

Video analytics utilizing deep learning models as primitives
is an increasing area of research interest in the database
community. Several recent works present query processing
frameworks utilizing frame content (objects, spatial locations
in frame, etc) as first class citizens to query processing [46]–
[50]. For example, NoScope and BlazeIt [38], [40] utilize
special purpose-built neural networks (NNs) to detect objects
accelerating queries via inference-optimized model search.
Some of the query processing frameworks, such as BlazeIt
[40] and SVQ [51], [52], have similarities with our model
EHCR in that both aim to reduce the overhead of complex
detection models. However, video querying frameworks cannot
be directly applied to the problems proposed in this paper as
they lack the ability to make predictions. Such frameworks have
to apply lightweight models on all frames instead of predicting
the event occurrence intervals and skipping unnecessary frames.
The superiority of our proposal over the adaptation of such
frameworks was clearly demonstrated by our experiments.

Survival analysis is a collection of statistical techniques that
help predict the time until an event occurs [53]. These methods
were initially used to predict the time of survival for patients
under different treatments, hence the name "survival analysis".
For the same reason, the "time until an event occurs" is also
called survival time in that literature. Survival analysis has been
utilized in the past in the context of data management, such as
[18], [54]. Past applications have mainly utilized parametric

models of survival analysis as opposed to deep learning.
Although some recent research utilized neural networks [54]
to tackle the survival analysis problem, EventHit is novel in
that it is able to simultaneously predict if and when (a range)
an event will occur.

Predicting if and when events occur in a video frame
sequence is a relatively new and emerging topic, such as
[55] that proposes a model for assessing future moments
of the action of interest. In contrast, our proposal offers a
lightweight mechanism to provide tunable statistical guarantees
for predictions. We stress that the conformal event existence
prediction and conformal occurrence interval prediction algo-
rithms proposed in this paper are applicable to any models
capable of predicting the existence (and probability) of events
as well as their occurrence intervals. Thus our approach can
be wrapped around any existing or future model capable of
predictions in diverse problem settings, offering tunable knobs
with statistical guarantees. In addition, several works address
aspects of video predictions [56]–[60]. Although related, these
problems are very different from the focus of our work.

VIII. CONCLUSIONS AND FUTURE WORK

Despite the convenience and processing power offered by cloud-
based serving of deep models, the cost of using such services
for processing video streams can grow rapidly if the streams
are sent to the CI unabridged. In this paper, we consider
the problem of marshalling the model inference requests, and
propose a framework called EventHit to decide which segments
of the video are to be sent to the CI utilizing predictions on
event occurrence in a given time horizon. A salient contribution
of our work is that we offer two optimizations of EventHit,
through novel adoption of the conformal prediction technique.
Such optimizations provide tunable knobs for the users to have
fine control over the trade-off between accuracy and cost with
probabilistic guarantees, thus making the framework highly
versatile to serve a wide variety of applications. Extensive
evaluation on real datasets has confirmed the superiority of
the proposed approach over baseline methods in that it offers
significant cost savings and unprecedented control over the
accuracy/cost trade-off in cloud-based model serving.

In our study, we have assumed that the occurrence of each
type of event follows a stationary underlying distribution. For
future work, it would be interesting to investigate how to detect
and adapt to changes in the occurrence distribution over time.
Another possible direction is to study further optimizations
to our proposal that would allow it to meet certain fairness
criteria [61] when they are present.

REFERENCES

[1] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning,
ser. Adaptive computation and machine learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org/

[2] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.
[Online]. Available: https://doi.org/10.1109/TPAMI.2016.2577031

[3] H. Zhang, Y. Zhang, B. Zhong, Q. Lei, L. Yang, J. Du, and D. Chen,
“A comprehensive survey of vision-based human action recognition
methods,” Sensors, vol. 19, no. 5, p. 1005, 2019. [Online]. Available:
https://doi.org/10.3390/s19051005

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84–90, May 2017. [Online]. Available: http://doi.acm.org/10.
1145/3065386

[5] C. M. Inc, “Meraki mx cloud managed smart cameras,” 2021, https:
//meraki.cisco.com/products/smart-cameras/.

[6] A. R. D. Guide, “What is amazon rekognition,” 2021. [Online]. Available:
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html

[7] P. Farley and D. Coulter, “What is custom vision?” 2021. [Online].
Available: https://docs.microsoft.com/en-us/azure/cognitive-services/
custom-vision-service/overview

[8] T. Cheng, “Introduction to google cloud vision,” 2021. [Online].
Available: https://nanonets.com/blog/google-cloud-vision/

[9] IBM, “What is watson visual recognition?” 2021. [Online]. Available:
https://www.ibm.com/dk-en/cloud/watson-visual-recognition

[10] A. C. Community, “Alibaba cloud intelligence brain,” 2021. [Online].
Available: https://www.alibabacloud.com/solutions/intelligence-brain

[11] Clarifai, “Clarifai computer vision, nlp & machine learning platform,”
2021. [Online]. Available: https://www.clarifai.com/

[12] L. Kleinrock, Theory, Volume 2, Queueing Systems: Computer Applica-
tions. USA: Wiley-Interscience, 1975.

[13] ——, Theory, Volume 1, Queueing Systems. USA: Wiley-Interscience,
1975.

[14] R. Herbrich, “Machine learning at amazon,” in Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining, WSDM
2017, Cambridge, United Kingdom, February 6-10, 2017, M. de Rijke,
M. Shokouhi, A. Tomkins, and M. Zhang, Eds. ACM, 2017, p. 535.
[Online]. Available: https://doi.org/10.1145/3018661.3022764

[15] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a
random world. Springer Science & Business Media, 2005.

[16] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
“Distribution-free predictive inference for regression,” Journal of the
American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[17] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival analysis:
A survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[18] P. G. Ipeirotis, A. Ntoulas, J. Cho, and L. Gravano, “Modeling and
managing changes in text databases,” ACM Transactions on Database
Systems (TODS), vol. 32, no. 3, pp. 14–es, 2007.

[19] Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, and M. Shah, “High-level event
recognition in unconstrained videos,” International journal of multimedia
information retrieval, vol. 2, no. 2, pp. 73–101, 2013.

[20] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel, A. Smeaton,
W. Kraaij, and G. Quenot, “Trecvid 2010 - an overview of the goals,
tasks, data, evaluation mechanisms, and metrics,” 2011-04-15 2011.

[21] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel, W. Kraaij,
A. Smeaton, and G. Quénot, “Trecvid 2010 - an overview,” NIST
TRECVID Workshop, 2010.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, 2011.

[24] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

[25] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[26] L. Van Der Maaten, E. Postma, J. Van den Herik et al., “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, no. 66-71, p. 13,
2009.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[28] V. Vovk, “Conditional validity of inductive conformal predictors,” in
Asian conference on machine learning. PMLR, 2012, pp. 475–490.

[29] G. Zeni, M. Fontana, and S. Vantini, “Conformal prediction: a unified
review of theory and new challenges,” arXiv preprint arXiv:2005.07972,
2020.

[30] H. Boström, U. Johansson, and A. Vesterberg, “Predicting with confidence
from survival data,” in Conformal and Probabilistic Prediction and
Applications. PMLR, 2019, pp. 123–141.

[31] R. C. Smith, Uncertainty quantification: theory, implementation, and
applications. Siam, 2013, vol. 12.

[32] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-scale
benchmark dataset for event recognition in surveillance video,” in CVPR
2011. IEEE, 2011, pp. 3153–3160.

[33] A. Gorban, H. Idrees, Y.-G. Jiang, A. Roshan Zamir, I. Laptev, M. Shah,
and R. Sukthankar, “THUMOS challenge: Action recognition with a
large number of classes,” http://www.thumos.info/, 2015.

[34] H. Idrees, A. R. Zamir, Y. Jiang, A. Gorban, I. Laptev, R. Sukthankar,
and M. Shah, “The thumos challenge on action recognition for videos
“in the wild”,” Computer Vision and Image Understanding, vol. 155, pp.
1–23, 2017.

[35] H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recov-
ering the syntax and semantics of goal-directed human activities,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 780–787.

[36] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, pp. 91–99, 2015.

[37] D. Greig, “Video object detection speedup using staggered sampling,” in
IEEE Workshop on Applications of Computer Vision (WACV 2009), 7-8
December, 2009, Snowbird, UT, USA. IEEE Computer Society, 2009, pp.
1–7. [Online]. Available: https://doi.org/10.1109/WACV.2009.5403129

[38] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, pp. 1586–1597, 2017.

[39] D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 34, no. 2, pp. 187–202,
1972.

[40] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Fast exploratory video
queries using neural networks,” arXiv preprint arXiv:1805.01046, 2018.

[41] N. Mehrasa, A. A. Jyothi, T. Durand, J. He, L. Sigal, and G. Mori,
“A variational auto-encoder model for stochastic point processes,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 3165–3174.

[42] D. M. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” arXiv preprint
arXiv:2010.16061, 2020.

[43] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 2017, pp. 4724–4733. [Online].
Available: https://doi.org/10.1109/CVPR.2017.502

[44] E. Vahdani and Y. Tian, “Deep learning-based action detection in
untrimmed videos: A survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[45] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767

[46] Y. Chen, X. Yu, and N. Koudas, “Evaluating temporal queries over video
feeds,” Proceedings of the 2021 ACM SIGMOD International Conference
on Management of Data, 2021.

[47] ——, “Tqvs: Temporal queries over video streams in action,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 2737–2740.

[48] D. Chao, N. Koudas, and I. Xarchakos, “Svq++: Querying for object
interactions in video streams,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 2769–2772.

[49] I. Xarchakos and N. Koudas, “Querying for interactions,” in 2021 IEEE
37th International Conference on Data Engineering (ICDE), 2021.

[50] D. Chao, Y. Chen, N. Koudas, and X. Yu, “Track merging for effective
video query processing,” in 2023 IEEE 39th International Conference
on Data Engineering, 2023.

http://www.deeplearningbook.org/
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/s19051005
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
https://meraki.cisco.com/products/smart-cameras/
https://meraki.cisco.com/products/smart-cameras/
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/overview
https://nanonets.com/blog/google-cloud-vision/
https://www.ibm.com/dk-en/cloud/watson-visual-recognition
https://www.alibabacloud.com/solutions/intelligence-brain
https://www.clarifai.com/
https://doi.org/10.1145/3018661.3022764
http://www.thumos.info/
https://doi.org/10.1109/WACV.2009.5403129
https://doi.org/10.1109/CVPR.2017.502
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767

[51] I. Xarchakos and N. Koudas, “Svq: Streaming video queries,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 2013–2016.

[52] N. Koudas, R. Li, and I. Xarchakos, “Video monitoring queries,” in
2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 1285–1296.

[53] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,
4th ed. New York: Springer, 2002, iSBN 0-387-95457-0. [Online].
Available: http://www.stats.ox.ac.uk/pub/MASS4

[54] C. Lee, W. Zame, J. Yoon, and M. Van Der Schaar, “Deephit: A
deep learning approach to survival analysis with competing risks,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 32,
no. 1, 2018.

[55] Q. Ke, M. Fritz, and B. Schiele, “Future moment assessment
for action query,” in IEEE Winter Conference on Applications
of Computer Vision, WACV 2021, Waikoloa, HI, USA, January
3-8, 2021. IEEE, 2021, pp. 3218–3227. [Online]. Available:
https://doi.org/10.1109/WACV48630.2021.00326

[56] S. Oprea, P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas,
S. Orts-Escolano, J. Garcia-Rodriguez, and A. Argyros, “A review on
deep learning techniques for video prediction,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[57] A. Hu, F. Cotter, N. Mohan, C. Gurau, and A. Kendall, “Probabilistic
future prediction for video scene understanding,” in European Conference
on Computer Vision. Springer, 2020, pp. 767–785.

[58] S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua, “Long-
term planning by short-term prediction,” arXiv preprint arXiv:1602.01580,
2016.

[59] W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction
for anomaly detection–a new baseline,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
6536–6545.

[60] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4463–4471.

[61] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning.
fairmlbook.org, 2019, http://www.fairmlbook.org.

http://www.stats.ox.ac.uk/pub/MASS4
https://doi.org/10.1109/WACV48630.2021.00326
http://www.fairmlbook.org

	Introduction
	Problem Definition
	EventHit
	Conformal Event Existence Predictions
	Conformal Prediction
	C-CLASSIFY

	Conformal Occurrence Interval Predictions
	Conformal Regression
	C-REGRESS

	Experimental Evaluation
	Datasets
	Algorithms Compared
	Measures
	Measuring End-to-End Performance.
	Measuring Individual Components.

	Experimental Results
	Evaluation of Conformal Prediction
	Sensitivity to Hyper-Parameters
	Case Study on Monetary Cost
	Details of Resource Utilization

	Related Work
	Conclusions and Future Work
	References

