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Abstract

The advent of large language models (LLMs) has revolution-
ized natural language processing but also introduced new data
privacy challenges, particularly during the inference phase
where sensitive user information may be exposed in the pro-
vided prompts. This paper addresses the critical issue of sani-
tizing prompts to preserve privacy without compromising the
utility of LLM responses. We introduce Prϵϵmpt, a novel sys-
tem that implements a prompt sanitizer for protecting the sen-
sitive tokens within prompts. Our approach categorizes sensi-
tive tokens into two types: those where the LLM’s response
is format-dependent, such as social security card numbers,
for which we utilize format-preserving encryption, and those
where the response is value-dependent, such as age, for which
we use differential privacy, preserving the utility of the LLM’s
output. By offering a systematic encryption-based solution,
our work extends privacy protections to the inference stage
of LLM usage.

Introduction
The recent advent of large language models (LLMs) have
brought forth a fresh set of challenges in the context of users’
data privacy. In addition to the well-documented risks of
training data memorization (Carlini et al. 2021; Henderson
et al. 2018; Lee et al. 2021; Thakkar et al. 2021), LLMs
pose serious threats during the inference stage. Unlike tradi-
tional ML models, prompts are expressed in terms of seman-
tically rich natural language, potentially containing a sub-
stantial amount of sensitive information. This sensitive in-
formation is, in fact, multi-faceted, ranging from personally
identifiable information (PII), such as social security number
(SSN) or credit card number (CCN), to personal data, such
as health or financial records.

The ensuing privacy threat is exacerbated as LLM infer-
ences often utilize in-context learning which entails perform-
ing fine tuning on the fly (Brown et al. 2020). In particu-
lar, the LLM is presented with a few training examples as
part of the prompt during inference, thereby shifting some
of the concerns around privacy of training data from training
time to inference time. Furthermore, the consumer-facing na-
ture and widespread accessibility (Cui et al. 2023; Moons
and Van Bulck 2023; Kamalov, Calong, and Gurrib 2023;
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Singhal et al. 2023; Jeblick et al. 2023) of LLMs have sig-
nificantly amplified the scope of these privacy risks. What
renders the privacy risks particularly potent is the general
lack of awareness among layperson users regarding these
concerns, leading to unwitting disclosure of sensitive infor-
mation (Barrett et al. 2023). Consequently, certain countries
such as Italy (Ita), along with commercial organizations like
Samsung (Sam), have prohibited the use of LLMs altogether,
underscoring the significance of these privacy concerns.

While there has been prior work on privacy-preserving
LLMs (Anil et al. 2021; Li et al. 2022; Hoory et al. 2021; Ra-
maswamy et al. 2020; Shi et al. 2022; McMahan et al. 2018;
Yu et al. 2022), the emphasis has primarily been on mech-
anisms during training. Unfortunately, these training-time
mechanisms can only protect the (pre)-training data – data
provided as part of the prompt poses additional privacy risk
that is beyond the scope of these mechanisms. For instance,
consider the following prompt "My SSN is 123-345-1534.
Can you tell me if this is valid?" Even if the LLM refuses
to respond due to built-in safety measures, the fact that the
prompt itself directly exposes the sensitive SSN to the LLM
(and is recognized by it) is already a privacy violation! This
underscores the need for technical solutions that empower
users with formal privacy guarantees that go beyond a mere
reliance on contractual trust.

However, this task is fraught with challenges. Take the fol-
lowing prompt as an example: “My SSN is 145-768-2456
and my salary is $20K. Suggest a retirement plan for me."
This prompt contains two sensitive tokens: the SSN and the
salary. The conventional approach of using standard encryp-
tion is not amenable here as the sensitive tokens would be
replaced by (pseudo) random strings1, completely altering
the responses generated by the LLM. This leads to the re-
search question

How to formally protect the sensitive information con-
tained in a prompt while maintaining the utility of the
responses?

To this end, we make the following contributions. First,
we formalize the notion of a prompt sanitizer that takes a
prompt and transforms it in a way that protects sensitive
tokens yet still preserves the ability of the LLM to make

1To be precise, the ciphertext is indistinguishable from a truly
random string for a computationally bounded adversary



a useful prediction. Second, we propose Prϵϵmpt, a system
that instantiates a prompt sanitizer. To the best of our knowl-
edge, this is the first work to tackle this challenge and we
focus on numeric or alphanumeric sensitive tokens where
the sensitive information is contained entirely in the individ-
ual token. It’s important to note that addressing this aspect
is paramount as it poses the most immediate risk and repre-
sents a low-hanging fruit for potential adversaries. The task
of handling privacy risks stemming from the contextual lin-
guistic semantics of the entire prompt (Mireshghallah et al.
2023; Brown et al. 2022) is left as future work.

Prϵϵmpt operates on the assumption that sensitive tokens
can be categorized into two types – (1) tokens for which
the LLM’s response depends solely on their format. (e.g.,
SSN, credit card number), (2) tokens where LLM’s response
depends on the specific numerical value itself (e.g., age,
salary). Accordingly, we propose encrypting the former us-
ing format-preserving encryption (Bellare et al. 2009) – a
type of property-preserving encryption scheme where the
ciphertext and the plaintext have the same format. For in-
stance, the ciphertext of a 16-digit credit card number en-
crypted under a FPE scheme would also be a 16-digit num-
ber. Tokens of the second type are sanitized via differential
privacy (Dwork and Roth 2014) which is the state-of-the art
technique for achieving data privacy. Specifically, we em-
ploy a relaxation of DP that ensures that the noisy encoding
is not too different from the input tokens, thereby ensuring
that the generated responses remain pertinent to the original
prompt.

We demonstrate the practicality of Prϵϵmpt through em-
pirical evaluation. Specifically, we evaluate three types of
tasks – translation, retrieval augmented generation (RAG)
and computational question answering. We observe that
Prϵϵmpt’s sanitization mechanism largely preserves the util-
ity of the responses across all three tasks. For instance, the
BLEU score (Papineni et al. 2002) was less than .02 lower
for sanitized prompts when compared with the baseline un-
sanitized prompts for a German language translation task
with GPT4-Turbo, and translation was often observed in-
variant with respect to Sanitization. When prompted with
Prϵϵmpt sanitized prompts, all RAG tasks achieved 100%.
For the task of computational question answering, GPT4-
Turbo exhibits a consistent relationship between prompts
and response for both the original and sanitized versions.

Modeling the Problem
Notations Let V be the set of tokens that denotes the vocabu-
lary of a language model. We represent a sequence of tokens
σ ∈ V∗ with a boldface. Let f be a LLM and ρ ∈ V∗ be a
prompt for it. A prompt is essentially a sequence of tokens
from V, i.e., ρ = 〈σ1, · · · , σn〉, σi ∈ V, ∀i ∈ [n]. Let P(V)
denotes the space of all probability distribution over V.

Language Model
We loosely follow (Fairoze et al. 2023) in our definition of a
language model.

Definition 1. A language model f is an auto-regressive
model over a token vocabulary V. It works as a determin-

istic algorithm that takes as input a prompt ρ ∈ V∗ and
tokens previously output by the model σ ∈ V∗, and outputs
a probability distribution p = f(ρ,σ) over V .

A language model f is used to generate text as a response
to a prompt by iteratively sampling from the returned distri-
bution until a special terminating token ϕ ∈ V is drawn.

A language model’s response to a prompt ρ is a random
variable σ ∈ V∗ that is defined algorithmically as follows.
We begin with an empty sequence of tokens σ = 〈〉. As
long as the last token in σ is not ϕ, we sample a token σ from
the distribution f(ρ,σ) (using either standard multinomial
sampling, or greedy sampling of the single most likely next
token) and append it to σ.

Tokens
We assume every token2 in V is associated with a type, τ ,
that captures the semantic characteristic of σ. Examples of
such a type include name, age, salary etc. Let T be the set
of all such types. Additionally, all the types in T can be
classified into two categories – sensitive and non-sensitive.
For the ease of exposition and simplicity, we denote all non-
sensitive types by ⊥ for the rest of the paper. Given a se-
quence of tokens σ ∈ V⋆, a typed sequence is a 2-tuple
στ = (σ, 〈(σ1, τ1), · · · , (σn, τn)〉, where τi ∈ T is the type
of the token σi. Note that one can construct compound types
that are defined over multiple tokens. For example, consider
a prompt "I live at 1753 Myrtle Ave, San Diego." Here the
individual tokens have types (1753, [House Number]), (Myr-
tle Ave, [Street Name]), (San Diego, [City]). However, col-
lectively the token can have a compound type (1753 Myrtle
Ave, San Diego, [Address]).

Type Annotator
We assume the existence of a type annotator.
Definition 2 (Type Annotator). A type annotator is a de-
terministic algorithm Mτ : V∗ 7→ (V × T)∗ that inputs a
prompt ρ = 〈σ1, · · · , σn〉 and outputs the corresponding
typed sequence 〈(σ1, τ1), · · · , (σn, τn)〉.

For example, consider the following prompt ρ:
Kaiser Soze is 50 years old and earns 500,000 per year.
What is his ideal retirement plan?

Mτ (ρ) is given as follows:
(Kaiser Soze, [Name]) is (50, [Age]) years old and
earns (500,000 , [Salary]) per year. What is his ideal
retirement plan?

where [Name], [Age], [Salary] are types of the tokens that
precede it. For the ease of notation, here we only annotate
tokens with sensitive types, i.e., all other non-annotated to-
kens have type ⊥. Note that type annotation is context de-
pendent. For example, consider the following two prompts:
ρ1= "My age is 53 years." and ρ2= "I stay at 53 Broadway
Street.". The same token 53 has two different types in the
two prompts – type Age and type Street Number in ρ1 and
ρ2, respectively.

2The tokens can be defined arbitrarily, i.e., a token can be a
single word or a word n-gram.



Prompt Sanitizer
Given an input prompt ρ, a prompt sanitizer transforms the
entire prompt to a sanitized one ρ̂ with the goal of protecting
the sensitive tokens contained in ρ. Denoted by PS, it is
formally defined as follows:
Definition 3 (Prompt Sanitizer). A prompt sanitizer PS =
〈S,Mτ ,E,D〉 is a tuple of the following algorithms:
1. Setup (S). The setup algorithm takes no input and outputs

a secret key, as K← S.
2. Type Annotator (Mτ ). The type annotator inputs a

prompt (token sequence) ρ ∈ V∗ and outputs the cor-
responding type-annotated token sequence as ρτ ←
Mτ (ρ) (as defined in Def. 2).

3. Sanitization (E). The sanitization algorithm takes as in-
put the secret key K and a type-annotated token sequence
ρτ ∈ (V × T)∗. It outputs a token sequence ρ̂ ∈ V|ρτ |,
as ρ̂← E(K,ρτ ).

4. Desanitization (D). Desanitization recovers the original
prompt (token sequence) from the sanitized ρ̂ using the
secret key K as ρ← D(K, ρ̂).

We require that that the sanitization algorithm maintain
type. This means that if ρ = 〈σ1, · · · , σn〉 and ρτ =
〈(σ1, τ1), · · · , (σn, τn)〉 ← Mτ (ρ) and ρ̂ ← E(K,ρτ ) and
〈(σ′

1, τ
′
1), · · · , (σ′

n, τ
′
n)〉 ← Mτ (ρ̂) then it must be that

(τ1, · · · , τn) = (τ ′1, · · · , τ ′n).
The sanitization algorithm E inputs a type-annotated to-

ken sequence ρτ ∈ (V×T)∗ and transforms it to a sanitized
token sequence with the goal of protecting ρ. Examples of
such a sanitizer could be redaction, encryption or encoding
under differential privacy (more on this later in Sec. ). The
auxiliary string Ψ generated by the pre-processor algorithm
MPre can be used to encode some extra information and
provide further flexibility to the sanitizer. For instance, in
general we presume that the tokens are sanitized individu-
ally, however, one can leverage Ψ to capture scenarios where
multiple tokens might be related. For an illustrative exam-
ple, consider the following prompt “My monthly salary is
$1000. My annual salary is $12,000. How much should I
save per month?" The sensitive tokens (1000, [Salary]) and
(12, 000, [Salary]) exhibit a functional dependency the an-
nual salary is 12 times the monthly salary. Ψ can be em-
ployed to enforce this relationship during sanitization. An-
other example use of Ψ could be in scenarios involving
multiple sanitization mechanisms for the same type. For
instance, consider the following two different sanitization
mechanisms for a token of the type SSN – 1) always map
it to a fixed 9 digit number 2) Replace it by a random 9 digit
number. Here, Ψ could a bit used to indicate a particular
choice of mechanism.

The sanitization of a prompt is performed as follows.
The first step is to perform type annotation of the differ-
ent tokens viaMτ . Next, the type-annonated tokens are pre-
processed byMPre to generate the auxiliary string Ψ. After
pre-processing, the tokens are then individually sanitized us-
ing key K and auxiliary string Ψ. No operation is performed
on tokens with non-sensitive types (τ =⊥). Finally, the san-
itized prompt is constructed by concatenating all the sani-
tized tokens. The full mechanism is outlined in Algorithm 1.

Algorithm 1 Prompt Sanitization

Input: ρ - Input prompt; K - Sanitization key;
Output: ρ̂ - Sanitized prompt;

1: ρ̂ = 〈〉
2: ρτ ←Mτ (ρ)
3: Ψ←MPre(ρτ )
4: for (σ, τ) ∈ ρτ
5: if (τ 6=⊥)
6: σ̂ = E(K, (σ, τ),Ψ)
7: else
8: σ̂ = σ
9: end if

10: ρ̂.append(σ̂)
11: end for
12: return ρ̂

In a slight abuse of notation we denote PS(ρ,K) to indicate
running Algorithm 1 on the input prompt ρ with key K.

When presented with ρ̂, the LLM produces a sanitized
response, υ̂. Consequently, alongside the prompt sanitiza-
tion, we incorporate a response de-sanitization mechanism
for reverting the sanitization on υ̂. The mechanism starts
by performing type-annotation of the response v̂τ . Subse-
quently, it applies the de-sanitizer D to each token based on
its type, leaving all non-sensitive tokens untouched. The full
mechanism is outlined in Algorithm 4 and we use the no-
tation RdS(K,υ,Ψ) to denote running Algorithm 4 on the
response υ with key K and (optional) auxiliary string Ψ.

Algorithm 2 Response De-Sanitization (RdS)

Input: υ̂ - Input sanitized response; K - Sanitization
key; Ψ - Auxiliary string;
Output: υ - De-santized response;

1: υ = 〈〉
2: υ̂τ ←Mτ (υ̂)
3: for (σ, τ) ∈ υ̂τ

4: if (τ 6=⊥)
5: σ = D(K, (σ̂, τ),Ψ)
6: else
7: σ = σ̂
8: end if
9: υ.append(σ)

10: end for
11: return υ

Privacy Guarantee Let PS = 〈S,Mτ ,E,D〉 be a prompt
sanitizer as defined above. Let L be a leakage function. We
associate to them the following prompt privacy game.
Game Gpp

PS,L
1: INITIALIZE
2: K← S ; St0 ← ε ; St1 ← ε ; c←$ {0, 1}
3: SANITIZE(ρ0,ρ1)

4: (L0,St
′
0)← L(ρ0,St0) ; (L1,St

′
1)← L(ρ1,St1)

5: if L0 6= L1 then return ⊥
6: St0 ← St ′0 ; St1 ← St ′1



7: ρ̂0 ← E(K,Mτ (ρ0)) ; ρ̂1 ← E(K,Mτ (ρ1))
8: return ρ̂c
9: FINALIZE(c′)

10: return [[c′ = c]]

We let Advpp
PS,L(A) = 2Pr[Gpp

PS,L(A)]− 1.
We denote an adversary by A. We model the informa-

tion leakage from the sanitized prompts through a leakage
function. In particular, the leakage function L of a prompt
sanitizer takes as input a prompt ρ and captures all the in-
formation that is leaked by ρ̂ = PS(ρ,K) to an adversary
A for some key K. Intuitively, the above game means that
on observing the sanitized prompt, the adversary should not
be able to distinguish between two prompts with the same
leakage. The precise leakage function L depends on the un-
derlying sanitizer E. For instance, if E sanitizes a token by
redaction, then for an input prompt ρ =“My age is 26.", the
leakage function simply outputs all the non-sensitive tokens
(in order), i.e., L(ρ)=“My age is [ ].". Note that since redac-
tion is the strongest sanitization mechanism, this represents
the minimal leakage possible for any prompt sanitizer3. In
contrast, if the sanitizer E performs encryption of the sensi-
tive tokens, L would additionally leak the size of the sensi-
tive tokens for an adversary A.

Utility Guarantee Given a prompt ρ and its sanitized ver-
sion ρ̂, the behaviour of a LLM on ρ and ρ̂ should not
be "too different". We formalize this notion by classifying
prompts into three types as follows.

Definition 4 (Invariant Prompts). A prompt tuple is defined
(ρ, ρ̂) to be invariant if

∀σ ∈ V \ {ρ ∪ ρ̂}, f(ρ̂)[σ] = f(ρ)[σ] (1)
∀σ ∈ V s. t. Type(σ) =⊥, f(ρ̂)[σ] = f(ρ)[σ] (2)
∀σ ∈ ρ s. t. Type(σ) 6=⊥, f(ρ \ σ)[σ] ≤ f(ρ)[σ]

f(ρ̂)[σ] = f(ρ \ σ)[σ] (3)
∀σ̂ ∈ ρ̂ s. t. Type(σ) 6=⊥,

f(ρ̂)[σ̂] = f(ρ)[σ̂] + f(ρ)[σ]− f(ρ \ σ)[σ] (4)

Intuitively, a prompt ρ and its sanitized version ρ̂ is invari-
ant if the response of the LLM remains the same for both the
prompts except for the substitution of the sensitive tokens
σ ∈ ρ with their sanitized counterparts σ̂. In other words,
the sanitized response υ̂ obtained from the sanitized prompt
ρ̂ preserves complete utility. Formally, this implies that the
probability distributions over all non-sensitive tokens in ρ
(Eq. 2) and tokens that did not appear in ρ, ρ̂ (Eq. 1) are
identical for both f(ρ) and f(ρ̂). The probability mass over
a sensitive token σ ∈ ρ is shifted to its sanitized counterpart
σ̂ (Eq. 4). Essentially this implies that de-sanitizing υ̂, i.e.,
replacing σ̂ with σ would give us the original response υ.
Examples.
ρ1 = "My age is 61. What is the American independence
day?"
υ1 = "The American independence day is 4th July".

3Note that we are not concerned about the privacy of non-
sensitive tokens.

ρ̂1 = "My age is 16. What is the American independence
day?"
υ̂1 = "The American independence day is 4th July".

ρ2 = "I have $500 and $1000 in Account 1 and Account
2, respectively. Which account has the higher balance?"
υ2 = "Account 2"
ρ̂2 = "I have $50056 and $700098 in Account 1 and
Account 2, respectively. Which account has the higher
balance?"
υ̂2 = "Account 2"

ρ3 = "Translate this to Spanish: My address is CA-
92103."
υ3 = "Mi dirección es CA-92103."
ρ̂3 = "Translate this to Spanish: My address is WI-53715."
υ̂3 = "Mi dirección es WI-53715."
In all the examples provided above, for a properly function-
ing LLM the responses for both ρ and ρ̂ should remain in-
variant.

For the next type of prompts, we assume that the opera-
tions of the LLM on the sensitive tokens can be expressed as
a symbolic computation.
Definition 5 (Symbolic Prompts). Let g : V 7→ V∗ be a de-
terministic map defined on tokens. A prompt tuple is defined
(ρ, ρ̂) is defined to be symbolic w.r.t to an LLM, f if

Case I: Tokens in ρ that are sensitive.
∀σ ∈ ρ s. t. Type(σ) 6=⊥
f(ρ̂)[σ] = f(ρ \ σ)[σ] (5)

f(ρ̂)[g(σ)] = f(ρ \ σ)[g(σ)] (6)
Case II: Tokens in ρ̂ that are sensitive.

∀σ̂ ∈ ρ̂ s. t. Type(σ) 6=⊥
f(ρ̂)[σ̂] = f(ρ \ σ)[σ̂] (7)

f(ρ̂)[g(σ̂)] = f(ρ)[g(σ)]− f(ρ \ σ)[g(σ)]
+f(ρ \ σ)[g(σ̂)] (8)

Case III: Tokens in V that are not sensitive.
∀σ ∈ V s. t. Type(σ) =⊥

f(ρ̂)[σ] = f(ρ)[σ] (9)

Intuitively, for symbolic prompts the probability mass on
the tokens g(σ) get shifted to g(σ̂) in the sanitized prompt.
Stated otherwise, the only expected change in the response υ̂
is that now it contains the corresponding mapping (as given
by g(·)) for the sanitized tokens σ̂ instead.
Example Consider the following prompt: ρ1 = "My salary
is $51300. What is my income with 5% interest?"
υ1 = "Your interest income is $2565."
ρ̂1 =" My salary is $1300. What is my income with 5%
interest?"
υ̂1 ="Your interest income is $65." .

ρ2 = "My credit card number is 4216 4536 6546 4537.
Which bank issued this?"
υ2 = "The issuing bank is Bank of America."
ρ̂2 = "My credit card number is 5418 8906 XXXX XXXX.
Which bank issued this?"
υ̂2 = "The issuing bank is Capital One."



ρ3 = "I was born on 12/12/2004. What day of the month
was it?"
υ3 = "It was a Monday."
ρ̂3 = "I was born on 11/11/2000. What day of the month
was it?"
υ̂3 = "It was a Sunday."
As observed from the aforementioned examples, the sani-
tized response here is a deterministic function of the sani-
tized tokens.

Finally, we provide a more general way of defining close-
ness of a response in terms of distance metrics as follows.

Definition 6 (Lipschitz Prompts). A prompt tuple is defined
(ρ, ρ̂) to be K-Lipschitz for some K ∈ R>0, distance met-
rics dVV× V 7→ R>0 and dP(V)V× V 7→ R>0, if

dP(V)(f(ρ), f(ρ̂)) ≤ KdV(ρ, ρ̂) (10)

Intuitively, two prompts ρ and ρ are Lipschitz if the differ-
ence in their responses are bounded. Any statistical distance,
such as total variation or Kullback-Leibler divergence, serve
as suitable candidates for the distance metric dP(V)(·). Dis-
tances defined over a document embedding space could be
apt for dV(·).

Prϵϵmpt System Description
In this section, we describe Prϵϵmpt– a system that instanti-
ates a prompt sanitizer.

Building Blocks
Here, we provide a brief background on building blocks used
for Prϵϵmpt.

Format-Preserving Encryption (FPE) For tasks involv-
ing invariant prompt tuples, the values of sensitive tokens
are irrelevant whereas the format in which sensitive tokens
are organized may still be important. For such settings, we
leverage format preserving encryption in sanitization to pro-
vide privacy while minimally affecting utility. Under a for-
mat preserving encryption (FPE) scheme, the plaintext and
the ciphertext has the same format. FPEs allow applications
to process ciphertexts in the same way as the plaintexts and
this backward compatibility makes them a popular tool for
secure data analytics in practice.

Definition 7 (Format Preserving Encryption (FPE)). A
format preserving encryption scheme is a tuple E =
〈GF ,EF ,DF 〉 of polynomial time algorithms:

• Key Generation (GF ). The key generation algorithm is
probabilistic polynomial time algorithm that takes as in-
put a security parameter κ and outputs a secret key K as
K← GF (1

κ).
• Encryption (EF )4. The encryption algorithm is determin-

istic polynomial time algorithm that takes as input a se-
cret key K, a plaintext x ∈ M, and a format N ∈ N and
outputs a ciphertext y ∈M as y ← EF (K,N, x).

4FPEs also take a tweak space as an input which we omit here
for the ease of exposition

• Decryption (DF ). The decryption algorithm is determin-
istic polynomial time algorithm that recovers the plain-
text as x← DF (K,N, y).

As an example, a plaintext SSN of 055-46-6168 might
be encrypted as a ciphertext 569-83-4469 or an IP ad-
dress of 76.217.83.75 might be encrypted as a ciphertext
97.381.64.35 under a FPE scheme. Typically, the format of
a plaintext is described as a finite set N over which the en-
cryption function induces a permutation. For example, with
SSNs this is the set of all nine-decimal-digit numbers.

Metric Differential Privacy For non-invariant prompt tu-
ples, FPE could lead to significant reductions to utility, ne-
cessitating the use of weaker sanitization mechanisms when
possible. A particularly promising candidate is Differential
Privacy. Differential privacy (DP) is a quantifiable measure
of the stability of the output of a randomized mechanism
to changes to its input. Here, we will be working with the
local model of DP (LDP) where each data point is individ-
ually randomized. Metric local differential privacy (mLDP)
is a generalization of LDP which allows heterogenous guar-
antees for a pair of inputs based on a distance metric d(·)
defined over the input space.
Definition 8 (Metric Local Differential Privacy (mLDP)). A
randomized algorithmM : X → Y is ϵ-mLDP for a given
metric d : X × X 7→ Z≥0 if for any pair of private values
x, x′ ∈ X and any subset of output, O ⊆ Y

Pr
[
M(x) ∈ O

]
≤ eϵd(x,x

′) · Pr
[
M(x′) ∈ O

]
(11)

mLDP uses the distance between a pair of values to cus-
tomize heterogeneous (different levels of) privacy guaran-
tees for different pairs of private values. In particular, the pri-
vacy guarantee degrades linearly with the distance between
a pair of data points. Intuitively, this means that only pairs of
data points that are “close” to each other should be indistin-
guishable. Next, we define a leakage function LmLDP for a
mechanism satisfying ϵ-mLDP which captures the informa-
tion about the input that is leaked by the mechanism.
Definition 9 (Leakage LmLDP ). For an input x ∈ X and
a threshold parameter t ∈ R+, the leakage function of a
mechanismM satisfying ϵ-mLDP for a distance metric d :
X × X 7→ R+ is given as LmLDP (x, t) = 〈S, ϵ∗〉 where
ϵ∗ = t · ϵ and S = {x′|d(x, x′) ≤ t}.

We ensure that sensitive attributes are kept private by nois-
ily sampling from restricted domain of tokens that captures
the sensitive attribute type variability. For dealing with nu-
merically valued sensitive types, upper and lower bounds as
well as a step size are selected based on the type to form a
restricted domain of tokens which can be sampled for ensur-
ing privacy of the attribute, rather than just the token. Algo-
rithm 3, outlines a mechanism for achieving ϵ-mLDP for the
ℓ1 distance using a variant of the classic exponential mech-
anism (Dwork and Roth 2014; Roy Chowdhury et al. 2022).
The resulting privacy guarantee offers meaningful protection
across many practical application settings. For instance, let
the input x represent the annual revenue of a clothing firm.
The information whether a firm is a top selling or a mid-
range one is less sensitive than its actual revenue. Similarly,



if x corresponds to an age, whether a person is young or
middle-aged is less sensitive than their actual age.

Algorithm 3 MechanismMϵ

Input: x - Plaintext; ϵ - Privacy budget; [k] - Output
domain
Output: o′ - Noisy encoding;

1: for x ∈ X :
2: for i ∈ [k]
3:

px,i =
e−|x−i|·ϵ/2

k∑
j=1

e−|x−j|·ϵ/2
(12)

4: end for
5: px = {px,1, · · · , px,k}
6: end for
7: o ∼ px
8: return o

Theorem 1. Mϵ satisfies ϵ-mLDP for the ℓ1 distance.

mLDP is the most popular notion of privacy used in the
context of NLP (Feyisetan et al. 2020; Carvalho, Vasiloudis,
and Feyisetan 2021; Chen et al. 2023). However, these prior
works focused only on ensuring the privacy of the specific
token by using a metric provided by word embeddings such
as GloVe (Pennington, Socher, and Manning 2014). As mul-
tiple words can convey the same sensitive information, such
methods do not provide any guarantees that the sensitive at-
tribute is protected, whereas we are able to provide such
guarantees by sampling from a restricted subset of tokens
which captures the possible semantic variability of sensitive
attributes. For our instantiation of Prϵϵmpt, we accomplish
this simply by working with numerical values, but, more gen-
erally one would use an exponential mechanism as used in
(Chen et al. 2023) with a carefully selected domain for each
sensitive type which captures the semantic variability of the
type, and an appropriate metric.

Threat Model
Prϵϵmpt runs as an application on a user’s (trusted) local de-
vice. The user inputs a string (V∗) to Prϵϵmpt and obtains a
transformed string. Every such interaction constitutes a sep-
arate session. In particular, consider the following chain of
events. An user U submits a prompt ρ to Prϵϵmpt and ob-
tains a sanitized version of it ρ̂. Next, they obtain a response
υ̂ from an LLM on ρ̂ and again uses Prϵϵmpt to de-sanitize
it into υ. The above interaction constitutes two separates
Prϵϵmpt sessions – one for the ρ → ρ̂ transformation and
the other for the υ̂ → υ transformation. The LLM is an
untrusted third-party application which represents the adver-
sary. This is pictorially represented in Fig. 1.

In Prϵϵmpt, we focus on tokens with sensitive type where
the sensitive information can be derived solely from the in-
dividual token, i.e., no extra context is required. Examples
of such types include SSN, credit card number, license num-
ber, age, money, bank A/C number, zipcode, as well as types

Prεεmpt

Trust	Boundary

LLM

Session	1

Session	2

Session	𝑘

Session	3

.

.

.

𝜌1

𝜌2

"𝜌1

"𝜌2

"𝜌1
"𝜐1

"𝜐1

"𝜐2
𝜐2

𝜐1

"𝜌2
"𝜐2

Figure 1: Threat model of Prϵϵmpt.

with sensitive linguistic semantics, such as race, gender, mar-
ital status, religion, etc. Privacy issues stemming from the
linguistic context of the prompts (such as, a prompt indi-
cating an users’ mental health details as revealed to an AI-
powered chatbot) are beyond Prϵϵmpt’s scope

Prϵϵmpt Design Goals
Prϵϵmpt has the following design goals.

• Formal Guarantees. Prϵϵmpt should be able to able
to provide formal privacy guarantee on the sanitized
prompts.

• High Utility. We want Prϵϵmpt to have high utility – i.e.,
the sanitized responses obtained on the sanitized prompt
should be "close" to the original response.

• Stateless. Finally, the sanitization and de-sanitization
process should be stateless – that is, Prϵϵmpt should not
retain information (state) from any prior session. This de-
sign choice offers dual advantages. Firstly, storing sensi-
tive information derived from users’ prompts/responses
post-session termination would violate privacy and con-
travene legal frameworks, such as the EU’s GDPR(GDP
2016) and California’s CCPA(CCP 2018). Additionally,
these regulations grant individuals the Right to Deletion
or Right to be Forgotten, allowing data owners to re-
tract authorization previously granted for the use of their
personal data. A stateful solution, unfortunately, would
struggle to support the Right to Deletion without sacrific-
ing de-sanitization capabilities. Secondly, a stateless solu-
tion offers flexibility and storage efficiency. To illustrate,
consider the following two sequences of user actions –
A1 = (〈 Sanitize ρ1; De-sanitize υ̂1; Sanitize ρ2; De-
sanitize υ̂2; Sanitize ρ3; De-sanitize υ̂3 〉)
A2 = (〈 Sanitize ρ1; Sanitize ρ2; De-sanitize υ̂2, Sani-
tize ρ3, De-sanitize υ̂1, De-sanitize υ̂3〉.
Without perpetual retention of state information, a state-
ful solution restricts a user to a specific action sequence
of sanitizing and de-sanitizing in order (such as, A1).



Moreover, multiple de-sanitization of the same string can-
not be supported without perpetual storage of the state in-
formation. The issue is exacerbated with multiple users
as a stateful solution entails storing separate state infor-
mation for each user. In contrast, a stateless solution pro-
vides the flexibility of supporting arbitrary sequences of
user actions (such as, A2).

Prϵϵmpt Workflow
Prϵϵmpt supports three types of sessions.

User Registration. This session involves the registration
of a new user. Specifically, the registration process includes
the execution of the setup algorithm for the prompt sanitizer
(S in Def. 3). This sessions occurs only once per user at the
very outset of their interaction.

Sanitization. In this session, Prϵϵmpt executes a prompt
sanitizer PS on the users input and returns a sanitized ver-
sion of the string. For this, PS uses the setup information
specific to user for the individual token sanitizers E .

De-sanitization. In this session, Prϵϵmpt performs the re-
verse operation to de-sanitize a string. The de-sanitization
process also employs the user-specific setup information.

While user registration is a one-time event, both sanitiza-
tion and de-sanitization sessions can occur arbitrarily and in
any sequence.

Prϵϵmpt Modules
Key Authorizer. The key authorizer module of Prϵϵmpt gen-
erates a secret key KU → GF (1

κ) for a given security pa-
rameter for an user U at the time of the registration for a
FPE scheme E . Subsequently, for all interactions in any ses-
sion involving user U , the key authorizer module initializes
all instances of the FPE scheme with the key KU .

Sanitizer. The sanitizer module instantiates a PS in
Prϵϵmpt. Recall that Prϵϵmpt only sanitizes tokens where the
sensitive information can be deduced solely from the tokens
themselves (see Sec. ). To this end, Prϵϵmpt operates on the
assumption that such sensitive tokens fall into three distinct
categories:
• Category I (τI). These tokens are characterized by the

fact that the LLM’s response depends solely on their for-
mat. Examples of tokens in this category include So-
cial Security Numbers (SSN), credit card numbers, Tax-
payer Identification Numbers (TIN), passport numbers,
bank account numbers, cryptocurrency wallet numbers,
driver’s license numbers, phone numbers, license num-
bers, and IP addresses.

• Category II (τII). This category encompasses tokens
where the LLM’s response hinges on the specific numeri-
cal value itself, such as age, monetary amounts, medical
records. In other words, the LLM performs specific com-
putations based on the values of these tokens.

• Category III (τIII). This category constitutes tokens that
have sensitive linguistic semantics, such as race, gender,
occupation, religion, political affiliation, location, mari-
tal status, nationality, spoken language.

Based on the above categorization, in addition to anno-
tating the type of a token, Mτ also indicates its category.
Next, the pre-processor MPre determines if there is any
functional dependency between the tokens belonging to the
second category and captures it via the auxiliary string Ψτ .
The actual sanitization process is as follows. Prϵϵmpt ini-
tializes a FPE scheme with the format of all tokens of the
first category, using KU as the corresponding secret key. All
tokens of the first category are sanitized using this FPE,
i.e., E(τI, ·) := EF (·). On the other hand, all tokens of
the second category are sanitized to satisfy ϵ-mLDP, i.e.,
E(τII, ·) := Mϵ(·). In cases where functional dependen-
cies between tokens exist, only the determinant is perturbed,
and the sanitized versions of the dependent tokens are de-
rived from this noisy encoding. For instance, consider two
tokens, σ1 and σ2, with types [Monthly Salary] and [An-
nual Salary], respectively. Prϵϵmpt sanitizes σ1 viaMϵ and
sets σ̂2 = 12 · σ̂1. Finally, the tokens belonging to the third
category are sanitized via the TEM mechanismMTEM, i.e.,
E(τIII, ·) :=MTEM(·). The privacy budget ϵ is specified by
the user and divided equally among all the tokens of the last
two categories.

De-sanitizer. De-sanitization starts with the same type an-
notator. All sensitive tokens of the first category can be de-
sanitized using the decryption algorithm of the FPE scheme.
However, tokens sanitized withMϵ orMTEM cannot be de-
sanitized without retaining additional state information and
are hence, left untouched by default.

One drawback of this approach is that tokens from the
first category that did not appear in the original prompt (and
consequently were never sanitized) might also undergo de-
sanitization. Users can mitigate this by providing the orig-
inal prompt ρ as an auxiliary string Ψτ . In this scenario,
Prϵϵmpt will exclusively de-sanitize tokens that appeared in
the prompt. Furthermore, in the case of symbolic prompts,
if the mapping g(·) is known, Prϵϵmpt can use ρ to de-
sanitize tokens from the second category as well. Note that
the only thing required to de-sanitize is the secret key K –
Prϵϵmpt does not store any sensitive information post the
termination of a session thereby making our solution state-
less.

Prϵϵmpt Analysis
Here we provide analysis of Prϵϵmpt.

Privacy Analysis Let Secκ denote the cryptographic se-
curity guarantee of the underlying FPE scheme (see Ap-
pendix for a background on the different notions of security
for FPEs).
Theorem 2. For all tokens belonging to the first category,
Prϵϵmpt satisfies Secκ security.

Next, we formalize the guarantee for the tokens belonging
to the second category. For this we start with the definition
of neighboring prompts as follows.
Definition 10 (Neighboring prompts). Two prompts
(ρ,ρ′) ∈ V∗ × V∗ are defined to be neighboring if they
differ in a single token. We denote the differing tokens as
(σ, σ′).



Using the above definition, the privacy guarantee can be
formalized as follows.

Theorem 3. For all pairs of neighboring prompts (ρ,ρ′) ∈
V∗×V∗ that differ on a token (σ, σ′) belonging to the second
category, we have

Pr[Prϵϵmpt(ρ) = ρ̂] ≤ ed(σ,σ
′)ϵPr[Prϵϵmpt(ρ′) = ρ̂]

Utility Analysis
Conjecture 1. Let ρ be a prompt such that if all of its sensi-
tive tokens belong to the first category. Then (ρ,Prϵϵmpt(ρ))
are invariant prompts.

The above conjecture directly follows from our assump-
tion that tokens of the first category do not affect the LLM’s
response as long as the correct format is still maintained in
the sanitized prompt. We validate our conjecture through ex-
perimental evaluation in Sec. .

When dealing with tokens from the second category, em-
ploying standard LDP poses a challenge as it necessitates all
pairs of inputs to be indistinguishable. Simply put, the noisy
encoding might deviate significantly from the original input,
leading to a substantial alteration in the LLM’s response and,
consequently, a detrimental impact on utility. This notion of
utility is captured by Lipschitz prompts (Def. 6). To address
this issue, we choose to implement a relaxation. UnderMϵ

a token is more likely to be mapped to one which is close to
it, thereby boosting utility. We formalize this using the fol-
lowing two properties.
Property 1.

Pr
[
Mϵ(x, ϵ,N) = x

]
> Pr

[
Mϵ(x, ϵ,N) = y

]
, ∀y ∈ N

(13)

Property 2.

d(y1, x) < d(y2, x) ⇐⇒
Pr

[
Mϵ(x, ϵ,N) = y1

]
> Pr

[
Mϵ(x, ϵ,N) = y2

]
, ∀y1, y2 ∈ N

(14)

Nevertheless,Mϵ still provides a meaningful privacy guar-
antee in practice. For instance, consider a token indicating
the annual sale figures of a firm. The information whether a
firm is a top selling or a mid-range one is less sensitive than
its actual sales figures. Similarly, for a token of type [Age],
whether a person is young or middle-aged is less sensitive
than their actual age.

Discussion
In this section, we discuss some strawman instantiations of
a prompt sanitizer and compare them with Prϵϵmpt.

First, we consider a simple sanitization strategy where any
token of the first category (τI) is deterministically substi-
tuted by another token of the same type via a lookup table,
instead of encryption under a FPE scheme. However, such a
solution is not stateless as de-sanitization requires access to
these lookup tables and hence, suffers from the drawbacks
discussed in Sec. . The issues are exacerbated here since the
size of the lookup table grows linearly with the number of
sensitive tokens. Additionally, a new lookup table is required

for every user (otherwise the sanitized prompts will leak ad-
ditional information – this is akin to using the same secret
key for multiple users). Prϵϵmpt, on the other hand, needs
access to just a fixed size key per user irrespective of the
number or length of prompts.

Next, let’s consider the following sanitization strategy for
the tokens of the second category (τII) – a numerical to-
ken is sanitized by simply setting its k lowest order digits
to 0. The rationale behind this approach is that the LLM’s
response is most likely to depend on the higher-order dig-
its, thereby preserving utility while only leaking information
about the numerical value at a coarser granularity. However,
a challenge with this method is the difficulty in quantifying
its formal privacy guarantee. In contrast, the mLDP-based
approach used in Prϵϵmpt offers a principled way of balanc-
ing this privacy/utility trade-off.

Another possible approach to provide guarantees without
focusing on word privacy is through a split inference frame-
work, wherein a user would provide a noised encoding of
the text to an LLM as in (Mai et al. 2023). However, such an
approach requires a different API and willingness for LLM
providers to offer such an option, which may be against their
interests.

Similar solutions which change the interaction between
user and LLM include secure multi-party computation
and homomorphic encryption. While LLMevaluation per-
formed via secure-multi party computation would result
in a stronger privacy guarantee than Prϵϵmpt, the solution
suffers from a number of challenges. First, evaluating an
LLM would require not only new cryptographic protocols to
support the transformer architecture. Secondly, such meth-
ods, are many orders of magnitude slower, with SOTA im-
plementations taking 5 minutes to generate a single token
for small open source LLMs (Dong et al. 2023). Homomor-
phic encryption similarly faces high inference, memory, and
communication costs.

Experiments

We present our evaluation results in this section. Specifi-
cally, we study three different tasks – translation, Retrieval-
Augmented Generation (RAG) and computational question-
answering. While the first two tasks are considered invari-
ant to prompt sanitization, question-answering represents a
symbolic computation where the model’s answer depends
on some of the sanitized sensitive information.

Experimental Setting. We use GPT-4-Turbo (OpenAI
2023) for online translations, RAG and the question-
answering tasks. Additionally, we use OPUS-MT (Tiede-
mann and Thottingal 2020) models for offline translations 5.
We use Uni-NER (Zhou et al. 2023) for named-entity recog-
nition with half-precision (fp16). 6

5https://huggingface.co/Helsinki-NLP/opus-mt-de-en for Ger-
man and https://huggingface.co/Helsinki-NLP/opus-mt-fr-en for
French

6https://huggingface.co/Universal-NER/UniNER-7B-all.



Translation
For the purpose of translation, types such as names, age and
money should be invariant for plain and sanitized prompts
(barring minor changes in the translation due to gendered
pronouns, or notation of currency etc.), that is, the transla-
tions should not be affected due to a change in these values.
An example demonstrating this can be found in the appendix
(Figure 2)

We use a named-entity recognition (NER) model to detect
tokens of these types ([Name], [Age] and [Money]). These
are sanitized prior to translation. The NER model is again
used to annotate types and are de-sanitized thereafter.

We stress that this experiment is meant to highlight the
effectiveness of our sanitization method and it is not a com-
parison of different models of NER or translation.

Data We consider subsets of the English to German and
English to French training sets of the WMT-14 dataset (Bo-
jar et al. 2014). We curate 1000 sample pairs of each cat-
egory of interest. We report BLEU scores (Papineni et al.
2002) for translation to a target language on plain text and
sanitized text, after de-sanitizing the translated sanitized to-
kens. We further give BLEU scores for sentences where to-
kens of all three types were sanitized at the same time. Addi-
tional details and experiments can be found in the appendix,
Table 3.

Results We find that translation is largely invariant to
prompt sanitization. Of the 1000 initial samples, we find sev-
eral examples where offline translations of plain and sani-
tized text (after de-sanitization) are identical matches. The
rest either did not have all sensitive tokens picked up by
NER, or had differences in the plain and sanitized transla-
tions. The exact numbers and details can be found in the
appendix, in Table 2.

From the matching offline translations, we curate 50 sam-
ples and provide BLEU scores for both tasks in Table 1.
NER was able to identify sanitized tokens in around 40-45
GPT translated samples for each type.

1. Online Translation: We find there is only a marginal dif-
ference in the quality of plain and sanitized translations
across all types as depicted by their BLEU scores. We
note that GPT-4-Turbo does sampling during text genera-
tion, thereby making its outputs non-deterministic. How-
ever, on an average, the plain and sanitized translations
are of high quality.

2. Offline Translation: We found a significant number of
translations that are identical. However among the mis-
matched samples, we observed that translated sentence
structures can vary significantly due to the value of san-
itized tokens, as shown in Figure 3. Language artifacts
like these can make sanitation for translation difficult in
practice. We leave a detailed analysis of this phenomena
for future work.

Retrieval-Augmented Generation (RAG)
RAG is a technique that enables an LLM to answer ques-
tions based on external knowledge that may not have been

English→ German

Attribute GPT-4-Turbo OPUS-MT
Plain Sanitized General

Name 0.2937 0.3237 0.3468
Age 0.1933 0.1933 0.2172
Money 0.2796 0.2618 0.2757
All 0.3243 0.3317 0.3434

English→ French

Attribute GPT-4-Turbo OPUS-MT
Plain Sanitized General

Name 0.2888 0.2883 0.3621
Age 0.3608 0.3681 0.4012
Money 0.3841 0.3823 0.4267
All 0.3996 0.4024 0.4408

Table 1: BLEU scores for both translation tasks. All scores
are with respect to the reference translations from WMT-14.
The ‘General’ column under OPUS-MT indicates the BLEU
score for the 50 samples that had identical plain and sani-
tized translations (as translated by an OPUS-MT model).

seen during training. A typical RAG pipeline involves a pre-
processing step where documents are sharded, mapped to
embedding vectors and indexed into a vector-database. At
query-time, the top-k document-shards most “relevant" to
the query are retrieved, using a combination of lexical and
semantic (i.e. embedding) similarity. The query is then “aug-
mented" with these relevant shards so that the LLM can gen-
erate a response. In our experiments we focus on this final
answer-generation step given a context and a query. We con-
sider only cases where the LLM response is not expected to
include any numerical computations.

The aim of these experiments is to investigate if the sani-
tization of sensitive tokens of the following types – [Money],
[CCN], [SSN], [ZipCode] and [Name] — impacts the cor-
rectness of the LLM responses, in two types of question-
answering scenarios: numerical comparisons, and retrieval
of factual information.

Numerical Comparisons.

Data We generate 20 tuples of context C, question Q and
answers A, using GPT4, where questions are binary-choice
comparisons of values (e.g. “Which credit card has a higher
balance?") and Answers is the correct answer, either 1 or
2. More details regarding Context can be found in the ap-
pendix.

For each tuple C,Q,A, sensitive items in C, Q are sanitized
(as identified by GPT-4). The sanitized context and question
is then fed to the LLM asking for an answer. The output is
desanitized and compared to the original answer A.

Results We evaluate our method based on percentage of
correct answers. We observed 100% correct answers.

Retrieval of factual information.

Data We generate an e-commerce question/answering
dataset of 30 tuples using GPT-4. Each tuple consists of a
context C, question Q and answer A where the question is



a customer inquiry about a single aspect of their order (e.g.
cost, arrival date etc.) and the answer is the correct response
to the question as a phrase. More details regarding context
can be found in the appendix.

For each tuple C,Q,A, the procedure is same as as men-
tioned previously, except that now the de-sanitization is non-
trivial since the answer is a sentence which may contain nu-
meric values (like cost of item). We evaluate correctness us-
ing GPT4.

Results We evaluate our method based on percentage of
correct answers. We observed 100% correct answers.

Comparison of Encryption Schemes The aim of these
experiments is to study the impact on utility by different en-
cryption schemes for the following sensitive categories: [Zip-
code], [Credit Card] and [Date]. The objective is to respond
to questions which involves retrieving sensitive information.

Data We generate 31 tuples of context C, question Q and
answers A, using GPT4, where the questions amount to re-
trieval of sensitive information from the context (e.g. credit
card number, date of purchase etc.)

For each tuple C,Q,A, sensitive elements are sanitized and
the response is de-sanitized as before. We evaluate correct-
ness with GPT4.

Format Preserving Encryption We evaluate our method
based on the percentage of correct answers. We observed
100% correct answers.

AES Encryption We evaluate our method based on the
percentage of correct answers. We observed 70.97% correct
answers.

Random substitution without Format Preservation All
sensitive attributes are randomly changed to a different
string which does not match the format of their respective
categories (for example, a 5-digit zipcode can be changed to
a randomly chosen 4-digit or 8-digit value).

We evaluate our method based on the percentage of cor-
rect answers. We observed 77.42% correct answers.

Computational Question-Answering
While the prior experiments studied the behavior of LLMs
on Invariant Prompts, we now turn to explore model behav-
ior for Symbolic Prompts. The aim of these experiments is
to assess how the numerical value of model’s outputs are
affected by prompt sanitization and contexts varying in the
sensitive information provided.

Data. A user seeks financial advice regarding how much
they money they should save each month for their retirement.
We prompt a GPT-4-Turbo model, providing a monthly in-
come, as well as age, SSN, or annual income to investigate
their impact on responses. Income and age are noised at vary-
ing noise levels and SSN is encrypted.

Results. We find GPT-4-turbo determines a symbolic rea-
soning procedure to follow based on sensitive attributes and
their relationships to one another. In particular, when only
monthly income is provided, the model follows a simple rule

recommending exactly 20% of income to be saved, however
at low incomes this sometimes switches to 10%. Inclusion of
age results in the model following a different symbolic rea-
soning rule to determine the proportion of monthly income
that should be saved. Specifically, we observe a statistically
significant change in the distribution of model outputs, and
that age results in a statistically significant negative effect on
the recommended amount to save as a fraction of income.

We find no significant difference in output distribution
from including an SSN, indicating an invariance to such ir-
relevant information.

When the prompt includes monthly and yearly salary
which are noised independently, the model detects the viola-
tion of functional dependency, and refuses to respond. Mod-
ifying the prompt to overlook this discrepancy yields highly
varying outputs that do not appear to correspond to a sym-
bolic rule based on monthly or yearly income. If instead the
dependency is addressed during sanitization, either by mak-
ing sanitized annual income dependent on sanitized monthly
income or vice versa, there is no significant difference of out-
put as fraction of income as when only monthly income was
provided.

Finally, we found that when requesting the model to pro-
vide a function for returning a recommended saving amount
in terms of the sensitive attributes provided, the function
only verifies whether the income and age are valid (non-
negative) and returns a savings rate fraction of the income
which by default is 20%, making this method less flexible
and adaptive as querying the model directly.

Medical Question-Answering
In a similar vein as the previous experiment, the aim is to as-
sess how the categorical value of the model’s output (‘Yes’,
or ‘No’) is affected by prompt sanitization and varying sen-
sitive values within the context.

Data. A user seeks to screen medical patients based on
their vital statistics. We prompt a GPT-Turbo model provid-
ing height, weight and body mass index (BMI) along with
age, to investigate their impact on responses. Height and
weight are noised at varying levels and the BMI is calculated
accordingly.

Results. We find that BMI roughly between 20 and 25 are
considered healthy by the model and is statistically signif-
icant while determining health, as per a logistic regression
model (including linear and quadratic terms). Furthermore
we found that the noise added, noised height and weight are
not significant in determining health.

Related Work
In this section, we discuss related work in the areas of text
sanitization and privacy.

The predominant approach studied in prior work involves
variants of mLDP mechanisms over a semantic embedding
space so as to preserve some utility. The first work to pro-
pose this approach, (Feyisetan et al. 2020), sought to mit-
igate the ability of an adversary to infer the author of a
given word while best preserving the semantic by adding



noise to Glove embeddings and decoding through selection
of the nearest word embedding. The followup work (Car-
valho, Vasiloudis, and Feyisetan 2021) instead leverage a
metric to assign scores to similar words and use a truncated
exponential mechanism to sample among them, simplifying
privacy analysis and making it independent of the metric
chosen. (Arnold, Yesilbas, and Weinzierl 2023a) sought to
further improve utility by incorporating sense embeddings
to disambiguate words with multiple meanings. As word em-
beddings are biased in favor of nouns, (Arnold, Yesilbas,
and Weinzierl 2023b) restricted the set of possible words
that can be decoded after noising to those belonging to the
same grammatical category. Such an approach is generalized
by(Chen et al. 2023) through utilizing a function which as-
signs a custom set of possible outputs per token over which
an mLDP exponential mechanism using token embeddings
is applied. While as a general framework, such an approach
could keep sensitive attributes private, the work proposed a
k-nearest neighbor output set for each token which at best
protects only the privacy of the specific token. Our pro-
posed Prϵϵmptinstantiation adopts this framework, however,
by working with numerical tokens with a numerical out-
put space capturing the semantics of the sensitive attributes,
we’re able to provide meaningful guarantees for sensitive at-
tribute protection.

Word level sanitization has received some criticism how-
ever. (Mattern, Weggenmann, and Kerschbaum 2022) fo-
cused on the problem of sanitizing text to obscure author
identity through writing style, as opposed to sensitive or
identifying attributes, and noted that word level differen-
tially private sanitization results in the quality of text writ-
ten degrading significantly with grammatical and syntacti-
cal errors. Instead, they proposed a paraphrasing, leveraging
the softmax probabilities in next token prediction in order
to rewrite text in a private manner. (Igamberdiev and Haber-
nal 2023) also focused on rewriting entire passages of text
so as to protect author identity, using a BART (Lewis et al.
2020) encoder-decoder model to add noise to the encoded
text. However, such method suffers from a curse of dimen-
sionality, as the encoding dimension grows with the length
of the text, and quality of the decoded text can be very de-
graded or unrelated to the original.

Conclusion
In conclusion, Prϵϵmpt represents a pivotal advancement in
safeguarding user privacy within the realm of large language
models (LLMs). In this paper, we have formalized the pri-
vacy threat posed by the sensitive tokens in a prompt which
underscores the need for prompt sanitization in LLM appli-
cations. To this end, Prϵϵmpt proves to be a versatile system
that applies the most suitable privacy-preserving technique –
be it encryption or differential privacy – tailored to the con-
text and nature of the sensitive tokens involved. Our evalu-
ation demonstrates several tasks where the utility of LLM
responses remains unaffected by the sanitization of sensitive
tokens under Prϵϵmpt. This strategic approach not only bol-
sters the security and reliability of LLMs in managing sen-
sitive information but also lays the groundwork for future
privacy-forward technologies for LLMs.
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Background on FPE

Algorithm 4 Response De-Sanitizer (RdS)

Input: υ̂ - Input sanitized response; (Eτ1 , · · · , Eτ|T|) -
Token sanitizers; (Kτ1 ,Ψτ1) · · · , (Kτ|T| ,Ψτ|T|) - Param-
eters for the token sanitizers;
Output: υ - De-santized response;

1: υ′ = 〈〉
2: υ̂τ ←Mτ (υ̂)
3: for (σ, τ) ∈ υ̂τ

4: if (τ 6=⊥)
5: σ = Dτ (Kτ , σ̂,Ψτ )
6: else
7: σ = σ̂
8: end if
9: υ′.append(σ)

10: end for
11: υ ←MPost(υ

′)
12: return υ

Security Definition of FPEs. Pseudo-Random Permuta-
tion (PRP) security requires that an adversary cannot distin-
guish encryptions with a randomly chosen key from random
permutations over the format domain; single-point indistin-
guishability (SPI) requires that the adversary cannot distin-
guish the encryption of any message of its choice from a ran-
dom ciphertext; message privacy (MP) requires that cipher-
texts reveal no information on the encrypted message, except
its format; and similar to MP, but weaker than it, message re-
covery (MR) only requires that the ciphertext does not com-
pletely reveal the encrypted message. Bellare et al. (Bellare
et al. 2009) show that

PRP ⇐⇒ SPI⇒ MP⇒ MR (15)

This implies that PRP is the strongest security notion and
MR is the weakest. We note that though PRP is the best se-
curity notion one can hope to achieve for FPEs, the three
weaker notions can, in many concrete cases offer much bet-
ter efficiency and may therefore suffice in practice. Most of
the schemes in practice focus on MP or MR security guaran-
tees.

Proof of Thm. 1
Proof. For all x ∈ X and i ∈ [k], we have

Pr
[
Mϵ(x, ϵ) = i]

Pr
[
Mϵ(x+ t, ϵ) = i

] =

(
e(|x+t−i|−|x−i|)·ϵ/2 ·

k∑
j=1

e−|x+t−j|·ϵ/2

k∑
j=1

e−|x−j|·ϵ/2

)

≤ etϵ/2 · etϵ/2[
∵ |x− j| − t ≤ |x+ t− j| ≤ |x− j|+ t

]
= etϵ (16)

Similarly,

Pr
[
Mϵ(x, ϵ) = i]

Pr
[
Mϵ(x+ t, ϵ) = i

] ≥ e−tϵ

Task-specific details
Retrieval QA
More details on the dataset and procedure:

Numerical Comparisons

Dataset: We generate 20 tuples of Context, Questions and
Answers using GPT4, where:
1. Context C is a few sentences describing financial details

(jobs, salaries, credit debt, etc), which contain sensitive
items like SSN, CCN, salaries, credit-card balance.

2. Question Q is a binary-choice comparison question, e.g.
"Which credit card has higher balance?"

3. Answer A is the correct answer, indicating choice 1 or 2.

Procedure: For each tuple C,Q,A:
1. Have GPT-4 Identify, annotate sensitive items in C, Q
2. Sanitize C,Q jointly (to ensure the sanitization map is

consistent between C and Q) to sC, sQ.
3. Feed (sC, sQ) to LLM asking for an answer => sA (i.e.

we receive a sanitized answer)
4. De-sanitize sA → dsA (in this case it’s trivial, there is

nothing to desanitize since the sA is simply a numerical
choice or 1 or 2)

5. Compare A (the original correct answer) with dsA (de-
sanitized LLM answer): if they agree, treat as correct,
else wrong.

Retrieval of factual information

Dataset: An e-commerce question/answering dataset of
30 tuples generated by GPT-4. Each tuple consists of a Con-
text C, Question Q and Answer A where:
1. Context is the description of customer orders, containing

order IDs, cost, total cost with shipping, estimated arrival
dates and shipping zip code.



English→ German
Matching Mismatch NER Miss

Name 68 78 854
Age 425 182 393
Money 553 311 136
All 61 86 853

English→ French
Matching Mismatch NER Miss

Name 318 185 497
Age 431 155 414
Money 529 279 192
All 347 188 465

Table 2: Distribution of plain and sanitized translations,
along with cases where NER was unable to identify all en-
crypted attributes, for the both translation tasks.

2. Question is a customer question about single aspect of
their order (e.g. cost, estimated arrival etc)

3. Answer is the correct response to the question, as a
phrase.

Translation
Brittleness of Uni-NER: We note the brittleness of Uni-
NER, particularly for languages other than English. It often
fails to pickup our attributes of interest, or misinterpret nu-
merical values (like decimals and comma separated values)
while parsing translated sanitized text. For instance, Uni-
NER will pick up the age ‘22’ in given sentence, but fail
for the age ‘40’. It will pick up a name in English, but fail
to do so when the sentence has been translated into German,
or French. For convenience, we make some modifications to
both the source and target language datasets in our tasks

Modification of data: To make text parsing and NER
more convenient, we substitute all decimal and comma sep-
arated values with ‘10’. We also make the following substi-
tution for phrases: ‘1 million’ → ‘2 million’, ‘1 thousand’
→ ‘2 thousand’ and ‘1 billion’→ ‘2 billion’, as we noticed
that during French translations, ‘1 million’ is translated ‘1
million’, but ‘2 million’ is translated as ‘2 millions’.

Description of Table 2: The first column indicates the
samples whose plain and sanitized translations were iden-
tical. The second column indicates cases where there was
some mismatch between the plain and sanitized translations.
The third column indicates cases where the NER model was
not able to identify all encrypted attributes during the de-
cryption phase.

Ablation We found several cases during offline translation
where a minor change in sensitive attributes would change
the output translation (though not its meaning). We present
examples in Figure 3 and Figure 4. As we can see, precise
output sentence structures can vary depending on the sani-
tized value, even though the semantic meaning of all trans-
lations are the same. We leave a detailed study of this phe-
nomena and a solution for future work.

Figure 2: An example of the translation task using an OPUS-
MT model. ‘Source original’ refers to the input English
sentence, with the red text highlighting sensitive informa-
tion. ‘Sanitized source’ is the sanitized version of the input
text, with sensitive values replaced by those in green. ‘San-
itized, translated’ is the translation of that sentence. ‘De-
sanitized, translated’ replaces the sanitized information in
the text (blue). Lastly, ‘Source translation’ is a translation
of the plain text without any sanitation.

Figure 3: Sanitized values can affect the grammatical struc-
ture of sentences. When we change a sensitive value like
age from ‘9’ in the plain text (highlighted in red), to ‘11’ in
the sanitized text, the output translations also change (dif-
ferences highlighted in blue). However, this occurs only for
the number ‘11’ and returns to the original sentence struc-
ture if it is replaced with ‘12’ or any other value less than
100.Translation done using OPUS-MT, from English to Ger-
man.

Computational Question Answering
As utility is not clearly defined for questions such as "how
much should I save for retirement", we instead focus inves-
tigating variability of model outputs. For conducting our ex-
periments we prompt GPT-4-turbo with a prompt template
system prompt and a user prompt containing the sensitive
tokens.

To establish a baseline behavior, we use the system
prompt: "You are a financial advice assistant that answers
questions from a user with a single dollar value; provide only
the dollar value. For example, "Given my monthly income
of $_, how much should I allocate for savings and invest-
ments each month? Assistant: $_" and a user prompt: "User:
Given my monthly income of $X, how much should I allo-
cate for savings and investments each month Assistant: $"
where X ∈ [1000, 5000, 10000, 20000]. For each monthly
income level, and noise level ϵ ∈ [.1, .5, 1, 2], we query GPT-
4-turbo 50 times. For prompt sanitization, as the only sensi-
tive attribute is monthly income, we use the metric DP mech-
anism 3 with domain k := {500, 950, . . . , 45050, 50000}.



English→ German

Attribute GPT-4-Turbo OPUS-MT
Plain Sanitized Mutual General GPT Valid Mutual

Name 0.2937 0.3237 0.8350 0.3468 0.3583 1.000
Age 0.1933 0.1933 0.9157 0.2172 0.2017 1.000
Money 0.2796 0.2618 0.9382 0.2757 0.2788 1.000
All 0.3243 0.3317 0.8946 0.3434 0.3808 1.000

English→ French

Attribute GPT-4-Turbo OPUS-MT
Plain Sanitized Mutual General GPT Valid Mutual

Name 0.2888 0.2883 0.8962 0.3621 0.3552 1.000
Age 0.3608 0.3681 0.9629 0.4012 0.3939 1.000
Money 0.3841 0.3823 0.9431 0.4267 0.4237 1.000
All 0.3996 0.4024 0.8688 0.4408 0.4546 1.000

Table 3: BLEU scores for both translation tasks. The ‘Mutual’ column indicates the BLEU score between the plain and sanitized
translations. The rest are all with respect to the reference translations from WMT-14. The ‘General’ column under OPUS-MT
indicates the BLEU score for the 50 samples that had identical plain and sanitized translations (as translated by an OPUS-MT
model). The ‘GPT Valid’ column gives BLEU scores for samples that were successfully parsed by NER after being translated
by GPT-4-Turbo.

Figure 4: Changes in output translations for different san-
itized values. Translation done using OPUS-MT, from En-
glish to German.

In
As a large part of the output variance seen in Figure 5

could stem from input variability, and in order to compare
outputs at different income scales we also provide output
distributions as fraction of income as can be seen in Figure
6.

As seen in Figure 6 for sufficiently high incomes, the
model consistently provides a recommendation that is ex-
actly 20% of the monthly salary, whereas for lower incomes
recommendations vary from being 10% and 20% of the pro-
vided monthly income. Nevertheless, model outputs exhibit
a symbolic relationship with respect to the sensitive attribute
provided.

To establish whether or not changes to original salary
level and amount of noise added to sanitize salary are sig-
nificant, we perform median quantile regression with the
null hypothesis that the coefficients for Salary and Noise
are 0. We find that Salary has a small (1.6e − 11) but sta-
tistically significant positive impact, as reflected by lower

Figure 5: Distribution of LLM outputs of money that should
be saved



Figure 6: Distribution of LLM outputs as a fraction of
monthly income input of amount of money that should be
saved

Figure 7: Side by side comparison of saving ratio with and
without age

salaries sometimes receiving recommendations to save only
10% of their income, whereas the amount of noise added
is not statistically significant. We similarly find that when
performing the Fligner-Killeen hypothesis test, the original
salary has a statistically significant (p-val < 1.8e − 35) on
the variability of saving ratio but the amount of noise added
for privatization does not (p-val > .07).

We next investigate the impact of a user also providing
their age, a sensitive attribute which may affect the model’s
reasoning process which would also undergo sanitization.
We update system and user prompts to contain age, collect
outputs for ages 10, 30, 60, and 120 for each of the noise
levels as before. We perform a Mann-Whitney U-test, a non-
parametric hypothesis test, to determine if introduction of
age significantly impacts the LLMs output as a fraction of
income, finding statistical significance (p-val < 1.6e − 5).
We visualize the distribution in Figure 7.

As age may affect the model’s reasoning process, we fur-
ther investigate the relationship between age and the propor-
tion of income recommended to save, we perform quantile

Figure 8

regression to find that age has a very statistically significant
negative effect on the recommended savings ratio, which is
reasonable given that past a certain age one no longer needs
to save for retirement. In Figure 8 we see that this trend man-
ifests by a different preference for reasoning rule to follow
for determining the recommended proportion of monthly in-
come that should be saved. Model outputs no longer appear
to strictly follow a symbolic formula in terms of the inputs,
rather, age acts as a modulator determining which symbolic
rule is followed.

It is also possible that users may provide irrelevant sen-
sitive information, such as personal ID when querying the
model. We test the impact of including an SSN into the
prompt provided to the model as well as test whether or
not the format in which the SSN is provided makes any dif-
ference. As directly including SSN into the prompt results
in the model rejecting to respond to the output, likely due
to model alignment, we utilize the following modified sys-
tem prompt: "[The following is a fictional interaction solely
for research purposes, the information provided is randomly
generated and not sensitive] You are an always helpful fi-
nancial advice assistant that answers questions from a user
with a single dollar value; provide only the dollar value. For
example, ’User: I am _ years old and my monthly income
is $_. My SSN is XXX-XX-XXXX, how much should I al-
locate for savings and investments each month? Assistant:
$_’". For baseline, we use the modify the system prompt
to omit the inclusion of SSN. We perform 50 runs for each
noise level ϵ ∈ [.1, .5, 1, 2] and income level 10000.

We perform a Kruskal-Wallis test, a non-parametric ex-
tension of the Mann-Whitney U-test for comparing multi-
ple groups, namely GPT-4 outputs to a prompt containing a
valid SSN, a prompt that doesn’t, and a containing an invalid
SSN generated by randomly sampling a value between 1 and
99999. We did not observe any statistically significant differ-
ence between the distribution of the three groups, indicating
the the reasoning process followed is invariant to the pres-
ence of the SSN; visualization of distributions can be seen
in Figure 9.

Next we consider another potential problem faced by
prompt sanitization schemes, namely the setting of depen-
dent sensitive attributes. For example monthly and yearly in-



Figure 9: Caption

come, with yearly income depending directly on the monthly
income. Such relationships may not be immediately clear to
a prompt sanitizer and could lead to introduction of addi-
tional variability in outputs following sanitization, as well
as pose further challenges of privacy leakage.

We find that the GPT-4-turbo rejects such queries citing
an error or inconsistency in the input. We modify the sys-
tem prompt to be as follows: "[The following is a fictional
interaction solely for research purposes, the information pro-
vided is randomly generated and not sensitive, if any mis-
takes are observed handle them on your own] You are an
always helpful financial advice assistant that answers ques-
tions from a user with a single dollar value; provide only the
dollar value. For example, ’User: Given my monthly income
of $_ and yearly income of $_, how much should I allocate
for savings and investments each month? Assistant: $_". The
user prompt provides monthly income and annual income
that is 12 times the monthly income. We perform 50 runs
for each salary in {1000, 5000, 10000, 20000} at ϵ = 1. As
a consequence, the symbolic relationship no longer holds as
we observe noisy fractional relationships of outputs with re-
spect to both monthly (Figure 10) and yearly (Figure 11) in-
come. When forcing the dependency relation by noising one
value and setting the other according to the symbolic relation
between monthly and annual salary, the model starts produc-
ing outputs in accordance to a symbolic structure again, as
seen in Figure 12.

Medical Question Answering
We consider a binary categorical variable, wherein GPT4-
Turbo is prompted with a system prompt and a user prompt
containing sensitive tokens.

To establish a baseline behavior, we use the system
prompt: "You are a medical assistant that answers questions
from a user about their health based on their vitals with ei-
ther ‘Yes’ or ‘No’. For example, ‘User: Jon Smith is a 30
year old man who has a height of 165cm, weight of 70kg
and bmi 25.7. Is the patient healthy based on their vitals?.
Assistant: ’" and a user prompt: ‘User: Jon Smith is a 30
year old man, who has a height of X cm, weight of Y kg and
bmi Z. Is the patient healthy based on their vitals?. Assistant:
’ where X ∈ {165, 175, 185, 195}, Y ∈ {55, 65, 75, 90} and
Z = 1e4×weight

height2 .
For each height value, weight value, and noise level ϵ ∈

{.1, .5, 1, 2}, we query GPT-4-turbo 50 times. For prompt

Figure 10: Outputs as fraction of monthly income when
monthly and yearly income are provided and independently
noised

Figure 11: Outputs as fraction of yearly income when
monthly and yearly income are provided and independently
noised

Figure 12: Outputs as fraction of monthly income when ei-
ther monthly income is noised and yearly income is set to be
12 times the monthly income



Figure 13: Logistic regression of patient health and BMI.

Figure 14: Distribution of height for different values of ϵ

sanitization, as the only sensitive attribute are height and
weight, we use the metric DP mechanism. We calculate
the BMI based on independently noised height and weight,
whose distributions can be seen in Figure 14 and Figure 15
respectively.

As seen in Figure 13, BMI roughly 20 to 25 are predicted
as healthy by the model. To determine whether changes to
the BMI (via height and weight) and noise are significant,
we perform logistic regression with the null hypothesis that
the coefficients for the linear and quadratic terms of BMI,
and that of noise, are zero. We find that BMI is statistically
significant in determining the health of a patient as both, a
linear and quadratic term (the P-values associated with their
z-statistic is 0.000), and noise is not significant.

Figure 15: Distribution of weight for different values of ϵ.


