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Abstract—We examine and quantify the trade-off between
information extraction and privacy preservation in the context
of the randomized response (RR) algorithm for survey question-
naires. We achieve this by formulating an optimization problem,
defined over transition probability values, that trades off the
two complementary goals. We furthermore extend our analysis
to the multiuser setting by examining how correlations between
multiple RRs’ transition probability values can affect the solution
of the optimization problem. The findings provide new insights
for data-driven applications where there is a need for balancing
informativeness with privacy preservation.

Index Terms—multiuser information theory, correlated chan-
nels, randomized response

I. INTRODUCTION

In the analysis of privacy-preserving algorithms, differential
privacy (DP) serves as a framework for quantifying the risk
of a user’s identity being compromised, when statistics are
derived from a dataset they have contributed to [[1] [2]. The
goal of DP is to minimize the risk of any individual’s identity
being compromised, while still enabling useful aggregate
statistics to be reported. An effective technique for increasing
privacy is randomization. Here, noise (in some form) is added
to data points, so that it is more difficult for a potential
attacker to identify a particular user’s data point, but without
destroying the fidelity of aggregate statistics derived from the
dataset.

In contrast, in communication systems noise serves as
an obstacle for information transmission. Noise reduces the
rate of communication between transmitter and receiver, as
measured by their mutual information [3[] [4]]. This contrast
in the role noise plays, as a means to increase privacy on the
one hand, and as an obstacle for information extraction on
the other, hints at an interesting trade-off between the two
objectives.

In this work we explore this trade-off. We do so in the
context of the randomized response (RR) algorithm for survey
questionnaires, a locaﬂ DP algorithm, for which we provide
a brief background on (together with DP) in Section In
Section [[1If we show that the competing goals of information

I'A local DP algorithm is one in which even the data curators do not collect
the true responses, but only the noisy versions.

extraction and privacy preservation can be used to formulate
an optimization problem in which we optimize over the noise
rate for the survey question. The solution to the optimization
problem maximizes the information extracted from the
survey’s response whilst minimizing privacy degradation for
individual users. In Section we furthermore setup and
examine the trade-off between information extraction and
privacy preservation, when multiple survey responses are
available for the same user. We do so using a multiuser
information-theoretic [5]] analysis in which we optimize over
the noise rates of different survey questions. We review
related work in Section and briefly conclude in Section

VI

II. BACKGROUND: RANDOMIZED RESPONSE

An algorithm A with domain NI¥| is (e, §)-DP if VS C
Range (A) AV, 2" € NI* st |l —2/|| < 1,

P(A(z) € S) < e P(A(2)) €S) +0. (1)

The condition ||z — 2’| < 1 is often referred to as (z,z’)
being neighboring datasets. The condition is equivalent to
stating that two datasets x, 2’ are neighboring if at most one
row between the two datasets differs.

The prototypical randomization algorithm in DP is
randomized response (RR) [6]]. Users are presented with a
yes/no survey question to which they answer as follows:
flip a (possibly biased) coin, if heads, respond truthfully; if
tails, flip a second coin and answer “yes” if tails, and “no”
if heads. A simple analysis of the setting shows that despite
the intrinsically noisy nature of the responses, an accurate
estimate of the true proportion of “yes” and “no” responses
can be obtained. This algorithm is effective because each user
maintains plausible deniability — the ability to claim their
answer was purely randomly generated — while the actual
summary statistics can be estimated accurately.

Here we review the DP analysis of RR to provide a basis
for later analysesE] Let (a1, ) be the probabilities of tails

2Note that for the remainder of this work, we consider the case where § = 0
as is common in RR, so that by convention we consider e-DP algorithms for
privacy level e.



for the two coins, and denote X as the true survey response
and Y as the outcome of RR. Thus P (Y = 1|X = 0) = aja0
and P(Y =1X=1)=1— a1 + ajae.

The RR algorithm is (In3)-DP for (aq,a0) = (1/2,1/2).
To show this, it suffices to evaluate %, as these
values for X, Y maximize the ratio of probabilities in Equation
I e l—ar+oas
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Then letting (o, a2) = (1/2,1/2), we have € = In 3.

Examining a few other special cases is instructive. Clearly
if we set a; = 1, we should obtain perfect privacy, as this
corresponds to never reporting the survey respondent’s true
answer; instead only reporting the result of the second coin
flip, where the proportion of the randomly generated Os and
1s is determined by ao. As expected oy = 1 indeed leads
to perfect privacy preservation (¢ = 0). In contrast, setting
a1 = 0 means always reporting the true survey response,
thus destroying privacy completely. This intuition aligns with
o1 = 0 leading to € = oo.

Interestingly, setting ap = 0 also compromises privacy
completely, since € = oo. The reason is that although an
output of Y = 0 represents uncertainty in whether the original
response was X = 0 or X = 1, an output of ¥ =1 is only
possible if X = 1, which compromises privacy completely.

III. INFORMATION THEORY AND RANDOMIZED RESPONSE

How do the DP and RR settings relate to information
theory? To see how, Figure [T| shows a variation of the binary
symmetric channel (BSC) [3] which is equivalent to the
RR response algorithm for a given user. Multiple uses of
the channel are akin to multiple users answering the same
survey question. This suggests the insight and machinery of
information theory [4] can be used in the analysis of RR.
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Fig. 1: A variation of the binary symmetric channel, equivalent
to the randomized response (RR) algorithm. The transition
probabilities of the two coin flips are represented by a;, as.

Moreover, we can view the goals of DP as presenting
a complementary goal to those of information extraction:

here the information extracted from the survey should be
informative (as measured by mutual information), but without
compromising user privacy.

We next cast this trade-off between information extraction
and privacy-preservation as an optimization problem.

A. Trade-off Between Information Extraction and Privacy
Preservation

In information theory, we are conventionally interested in
optimizing the input probability distribution for the given
error (transition) probabilities of a communication channel.
However, in the survey respondent setting, the input is
already determined by the user’s true responseE] Thus here
we are instead interested in optimizing the channel transition
probability values. Optimizing either I (X;Y") or € in isolation
over «; leads immediately to the trivial solutions oy = 0
and a; =1, respectivelyﬂ Thus only examining the trade-off
between information extraction and privacy preservation is of
interest.

We cast this trade-off using the following optimization

problem

I(X;Y

G = max M 3)
al €

Here we have free variables pp = P(X =0) and ag. In

practice we minimize G, and add a small constant to the
denominator for numerical stability. We use the L-BFGS-B
algorithm [7] [8] with bound constraint a;; € (0,0.5) for the
minimization.

Figure [2| demonstrates that the optimization problem leads
to interesting solutions in the trade-off between information
extraction and privacy preservation.

IV. MULTIUSER INFORMATION THEORY AND
RANDOMIZED RESPONSE

A. Multiuser Information Theory Correspondence

Now consider a participant who answers multiple (K)
survey questionnaires, each involving yes or no responses.
Denote the actual (source) responses as X1, Xa,..., Xk, and
the output of the RR mechanism for the survey questions as
(Y1,Ys,...,Yk). Consider an adversary who eavesdrops on
the RR output of each survey question, so that they collectively
have access to the sequence Y = (Y1,Ys,...,Yk). Similar
to Section the adversary is interested in identifying the

3Furthermore, the probability of the input values may, for example, be
derived based on external studies concerning the survey questions.

4For the remainder of the work we will only consider optimizing o, as
the optimization problem over a2 is trivial.

SNote that defining an additive/subtractive optimization problem, such as
G = rréaxl (X;Y) — ¢, would not be of value; this is due to the differing

1
scales of I (X;Y’) and € and due to the unboundedness of e.
%We measure I (X;Y) in bits rather than nats.
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Fig. 2: Plots of G~! vs. a for various values of pg, cp. In each
instance, the optimization algorithm’s solution «j is marked
by X.
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Fig. 3: The multiple randomized response (RR) setting. An
adversary uses ¥ = (Y7,Y5,...,Yk) collectively to esti-
mate X7, Xs,..., Xk. For each survey question indexed by
i € {1,2,...,K}, the corresponding channel has transition
probabilities (o 4, @2;), which can be optimized for the best
trade-off between information extraction and privacy preser-
vation.

true responses (X1, Xo,...,Xk) from the noisy output Y.
Figure |3| illustrates the setting schematically.

In the context of multiuser information theory, this setting

precisely parallels the multiple-access channel (MAC) [9] [4]],
where we have transmitters X1, X, ..., Xx communicating
to a common receiver Y = (Y1,Ys,...,Yk). Their mutual
information I (X, Xos,...,Xk;Y) quantifies the extent
to which the receiver can reliably determine the K true
responses. Additionally, during decoding the receiver can
make use of any known correlations between the survey
questions’ responses to construct a better estimate of
X1, Xo,..., Xk; a setting which parallels the decoding of
correlated sources [[10]] [11] [12f.

Here we take care to highlight a few distinguishing factors
between the classic multiuser setting and the present one.
In the former, correlations between sources, represented
by conditional probabilities between the inputs of various
channels, are of interest because both the optimization of
the joint probability distribution over channel inputs, and the
subsequent decoding of the input messages, depends on the
correlations. In contrast, because the (marginal) probabilities
of inputs are known in the present paper’s setting (see
Subsection [[[I-A)), and because we optimize over the channel
transition probabilities rather than over the inputs, input
correlations have no impact on the optimization problem.
However, as in the classic multiuser setting, using knowledge
of the input correlations for subsequent decoding remains
possible.

The present work is furthermore concerned with correlations
between the channels’ transition probability values. These
correlations affect the optimization over the joint channel
transition probabilities values, because the optimal value of
G depends on them. However, these correlations do not affect
the subsequent decoding of inputs. We discuss the setting
of correlated channel transition probability values further in
Subsection [V-D}

Finally, we consider how correlations between channel
transition probability values might arise in practice[] Suppose
it is required by some entity that for particularly sensitive
survey questions, the probability of tails be higher to further
improve privacy on those questions, and suppose it is known
when a question is considered sensitive. Then the requirement
for higher privacy on particularly sensitive questions, and the
knowledge of what constitutes a sensitive question, together
leads to a soft constraint on different channels’ transition
probabilities values — which is equivalent to a correlation
between them.

Given the preceding discussion, we will only consider
correlations in the context of channel transition probability
values, rather than between inputs, for the remainder of the
work.

"We note that the setting is also of interest in its purely abstract form,
removed from the particular application.



B. Differential Privacy Correspondence

In the context of responses to multiple survey ques-
tions, a necessary condition for satisfying €;.x-DP is that
for all S C Y with ¥ = {(yl,...,yK)E{O,l}K},
Equation is satisfied (with ¢ 0). Furthermore, in
the multiple RR setting each user’s set of responses can
be considered as the entry of a single-row database;
an entry consisting of K responses/attributes. Therefore
(z,2') = ((z1,...,2K),(x],...,2%)) are considered neigh-
boring even if (x,’) differ in more than one of the re-
sponses/attributes. Thus we must satisfy Equation || for all

(z1,...,2x),(2),...,2%)) €

{(@imr) € 00,1 (@, wl) € {0,135
K

st 1 (w; # ) > 1}.

i=1
We can evaluate €1.x for this setting as follows. For each

“)

of the ¢ € {1,..., K} survey responses, let
By =P(Y;=0/X; =0)=1— a0,
Bé,l =P(Y;=0/X;=1)= Q5 — Q02 4, 5)
10 =PY; =1X; =0) = ay ;a9
=P =1X;=1)=1— 01 + a109,.

Now consider the following two sets, which serve to index the
received responses by their values:

SO = {’L = 0}
(6)
81 = {Z = 1}
Then we have
P((Y1,....Yx)|X1,..., XK)
= H BO sTq H Bl » L
1€So 1€S1 (7)
= H H B‘;F/I:l
j€{0,1} i€S;
We next evaluate €1.x using the following expression:
€1 K _ P(Y:(L?l)'Xl:xlavXK:xK)
e — Imax ,
zz P(Y =(1,...,1) | X1 =21,..., Xk =2%)
(3
where the maximum is obtained for « = (1,1,...,1) and
= (0,0,...,0), so that
61:K:P(Y:(1717~-~,1)|X1:17...,XK 1)
P(Y =(1,1,...,1)|X; =0,..., Xk =
_ lics, Bin
HiES1 Bi,O
~ Lies, @ — a1 +ar00,)
Hiesl (011 iOCQi) 9
_H 1_a12+alza2z
i=1 a1 70121

=Y (1 Lm0 -

Thus the privacy budget for the multi-response setting
corresponds to the sum of the privacy budgets for the
individual responses.

C. Multiple Response Optimization Problem

We now cast the trade-off between information extraction
and privacy preservation in the multiple response setting using
the following optimization problem:

I(X17X27'"7XK;(Y17Y27"'

€1:K

,YK)).

Gk (10)

= max
(5]

Here a; = (a1,1,04,2,..., a1 k), and we have free variables
Po = (Po,1,P0,2,---,Po, k) and ag = (a21,022,...,Q2 k).

D. Analysis of the Multiple Response Setting

We analyze two settings: the first where the questionnaire
transition probabilities are uncorrelated, and the second where
correlations exist. For clarity of exposition in both settings the
number of users is set to K = 2, and we will only consider
correlations between «; 1, 1,2 and not between a1, a2 2.

1) Setting 1:  Uncorrelated  Channel  Transition
Probabilities: Here the values for aj;; and g are
uncorrelated. Figure @ shows plots of G5 vs. oy, for two
configurations of the free parameters (po1,po,2,Q2,1,02.2).
In each plot, a2 is set to its optimal value aiz, derived
from the joint optimization over (aqi,12). As in the
single response setting, this example demonstrates that the
joint optimization problem over the entries of ay leads to
interesting solutions in the trade-off between information
extraction and privacy preservation.

(Po,1=0.2,po,2=0.4),(a2,1=0.5,a2,,=0.5) (po,1=0.2,po,2=0.7), (a2, = 0.5, a3, = 0.5)
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Fig. 4: Plots of Gy vs. aq,1 for two configurations of
(0.1, P0,2, 02,1, 2 2), and where ;1,04 2 are uncorrelated.
In each case, a2 was set to its optimal value ah, derived
from the joint optimization over (o 1, o1.2).

2) Setting 2: Correlated Channel Transition Probabilities:
To analyze the setting where the o are correlated, it
is useful to consider the binary erasure channel shown
in Figure [5| which represents the outcome of the first
coin flip in RR, given by T; € {0,1,e} where e
signifies erasure. Clearly o1, = P(7;=¢). We can
represent correlations between the values of «q 1,12
using the following pairs of conditional probabilities:



]P)(TQ 75 €|T1 75 6) = S, ]P)(TQ = €|T1 = 6) = (5. Then with
a1 = P(Ty = e) as the only free variable, we can specify
arjp = P(Th=e) = (1-p51) + a1 (B1+ B2 —1). For
simplicity let 8 = 1 = (5 in the sequel.

1-— Qa1

1-— Qg4

Fig. 5: The binary erasure channel representing the outcome
of the first coin flip in RR.

For given 3, denote by I° ¢° the values for the mutual
information and the privacy parameter, respectively. Figure
|§| demonstrates that for larger values of [, the information
extracted from the survey is higher, and the privacy
correspondingly worse. Similarly for lower values of g,
the information extracted from the survey is lower, and the
privacy correspondingly better. Thus the effect of correlations
in the channels’ transition probabilities significantly affects
the channel characteristics. Interestingly, as ;1 — 0.5, the
value of (3 becomes irrelevant because the channels become
completely random.

V. RELATED WORK

Several works relate DP and mutual information. In the
work of [13], an equivalent definition of DP as a mutual
information constraint, positioned between standard e-DP
and (e,0)-DP in terms of its privacy guarantees, is proposed.
The work of [14]] develops a framework which characterizes
the trade-offs between privacy preservation and accuracy in
statistical estimation problems, under the local DP setting.
It presents mechanisms that maintain local privacy while
achieving minimax optimality in various estimation problems,
and investigates the limits of what can be achieved in private
data analysis and the trade-off between accuracy and privacy.
In the work of [15]], DP mechanisms are related to rate-
distortion theory, addressing the trade-off between the fidelity
of data representation and the amount of data compression.
A formal analysis of the trade-off between accuracy and
privacy preservation is presented, illustrating that enhancing
privacy generally comes at the cost of reduced accuracy. This
relationship is modeled through a risk-distortion function
that quantifies the trade-off between accuracy and the risk of
privacy breaches.

In the present work the trade-off between information
extraction and privacy preservation was quantified using an
optimization problem, thus offering a principled approach
for trading-off the two contrasting goals. Furthermore, the
present work motivates an optimization problem defined over

1B(X1, X2; Y) /1°5(X1, X2; Y)
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Fig. 6: Plots showing the ratio of

IP (X1, X0;Y) /1% (X1, X5;Y)  (top) and  €,/e%:3
(bottom) for various values of S (see plot legend). In
all cases (p071,p0,2, g1, 042’2) = (0.5, 0.57 0.5, 0.5), and
ar2=(1—-p8)4+a11(28—1) (see text for details). Higher
values of [ correspond to better information extraction, but
correspondingly worse privacy.

channel transition probability values, which contrasts with
the conventional setting of optimizing over input probability
values.

VI. CONCLUSION

We explored the relationship between information theory
and DP by means of a comprehensive analysis of the RR
algorithm in survey questionnaires. By framing the trade-off
between information extraction and privacy preservation
as an optimization problem, we showed the best possible
trade-off between the two can be achieved by tuning the
transition probability values. Furthermore, our analysis was
extended to the multiuser setting with correlated transition
probability values. The optimization problems developed,
and their corresponding solutions, offer practical strategies
for managing privacy risks in real-world data analysis settings.

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Cryptography, S. Halevi
and T. Rabin, Eds.  Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 265-284.

[2] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3—4, p. 211-407,
aug 2014.

[3] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.



[4]

[5

[ty

[6]

(1]

[12]

[13]

[14]

[15]

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). USA: Wiley-
Interscience, 2006.

A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

S. L. Warner, “Randomized response: A survey technique for eliminating
evasive answer bias,” Journal of the American Statistical Association,
vol. 60, no. 309, pp. 63-69, 1965, pMID: 12261830.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190-1208, 1995.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrained optimization,”
ACM Trans. Math. Softw., vol. 23, no. 4, p. 550-560, dec 1997.

R. Ahlsvvede, “Multi-way communication channels,” in Proc. 2nd Int.
Symp. Inf. Theory, 1971, pp. 23-51.

D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471-480, 1973.

D. Slepian and J. K. Wolff, “A coding theorem for multiple access
channels with correlated sources,” The Bell System Technical Journal,
vol. 52, no. 7, pp. 1037-1076, 1973.

T. Cover, A. Gamal, and M. Salehi, “Multiple access channels with ar-
bitrarily correlated sources,” IEEE Transactions on Information Theory,
vol. 26, no. 6, pp. 648-657, 1980.

P. Cuff and L. Yu, “Differential privacy as a mutual information
constraint,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 43-54.

M. L. J. John C. Duchi and M. J. Wainwright, “Minimax optimal
procedures for locally private estimation,” Journal of the American
Statistical Association, vol. 113, no. 521, pp. 182-201, 2018.

D. J. Mir, “Information-theoretic foundations of differential privacy,”
in Foundations and Practice of Security, J. Garcia-Alfaro, F. Cuppens,
N. Cuppens-Boulahia, A. Miri, and N. Tawbi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 374-381.



	Introduction
	Background: Randomized Response
	Information Theory and Randomized Response
	Trade-off Between Information Extraction and Privacy Preservation

	Multiuser Information Theory and Randomized Response
	Multiuser Information Theory Correspondence
	Differential Privacy Correspondence
	Multiple Response Optimization Problem
	Analysis of the Multiple Response Setting 
	Setting 1: Uncorrelated Channel Transition Probabilities
	Setting 2: Correlated Channel Transition Probabilities


	Related Work
	Conclusion
	References

