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Introduction to Complexity
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• You have a problem at hand

• You try every technique known to humankind for finding a 
polynomial time algorithm but fail.

• You try every technique known to humankind for proving 
that there cannot exist a polynomial time algorithm for your 
problem but fail. 

• What do you do?
➢ Prove that it is NP-complete, of course!



Turing Machines
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• “Which problems can a computer (not) solve in a certain 
amount of time?”
➢ How do we mathematically define what a computer is?

• Alan Turing (“Father of Computer Science”), 1936
➢ Introduced a mathematical model

➢ “Turing machine”

➢ All present-day computers can be simulated by a Turing machine

➢ Fun fact: TMs can simulate quantum computers too, just inefficiently



Turing Machines
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• We won’t formally introduce…but at a high level…

• Turing machine
➢ Tape

o Input is given on tape

o Intermediate computations can be written there

o Output must be written there

➢ Head pointer

o Initially pointing at start of input on tape

➢ Maintains an internal “state”

➢ A transition function describes how to change state, move head 
pointer, and read/write symbols on tape



Computability
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• Church-Turing Thesis
➢ “Everything that is computable can be computed by a Turing 

machine”

➢ Widely accepted, cannot be “proven”

➢ There are problems which a Turing machine cannot solve, regardless 
of the amount of time available

o E.g., the halting problem

• What about the problems we can solve? How do we define 
the time required?
➢ Need to define an encoding of the input and output



Encoding
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• What can we write on the tape?
➢ 𝑆 = a set of finite symbols

➢ 𝑆∗ 𝑛≥0ڂ = 𝑆𝑛 = set of all finite strings using symbols from 𝑆

• Input: 𝑤 ∈ 𝑆∗

➢ Length of input = |𝑤| = length of 𝑤 on tape

• Output: 𝑓 𝑤 ∈ 𝑆∗

➢ Length of output = 𝑓 𝑤

➢ Decision problems: output = “YES” or “NO”

o E.g., “does there exist a flow of value at least 7 in this network?”



Encoding
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• Example:
➢ “Given 𝑎1, 𝑎2, … , 𝑎𝑛, compute σ𝑖=1

𝑛 𝑎𝑖”

o Suppose we are told that 𝑎𝑖 ≤ 𝐶 for all 𝑖

➢ What |𝑆| should we use?

o 𝑆 = {0,1} ( 𝑆 = 2, binary representation)

• Length of input = 𝑂 log2 𝑎1 + ⋯ + log2 𝑎𝑛 = 𝑂 𝑛 log2 𝐶

o What about 3-ary ( 𝑆 = 3) or 18-ary ( 𝑆 = 18)?

• Only changes the length by a constant factor, still 𝑂(𝑛 log 𝐶)

o What about unary (conceptually, 𝑆 = 1)?

• Length blows up exponentially to 𝑂 𝑛𝐶

o Binary is already good enough, but unary isn’t



Efficient Computability
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• Polynomial-time computability
➢ A TM solves a problem in polynomial time if there is a polynomial 𝑝

such that on every instance of 𝑛-bit input and 𝑚-bit output, the TM 
halts in at most 𝑝(𝑛, 𝑚) steps

➢ Polynomial: 𝑛, 𝑛2, 5𝑛100 + 1000𝑛3, 𝑛 log100 𝑛 = 𝑜 𝑛1.001

➢ Non-polynomial: 2𝑛, 2 𝑛, 2log2 𝑛

• Extended Church-Turing Hypothesis
➢ “Everything that is efficiently computable is computable by a TM in 

polynomial time”

➢ Much less widely accepted, especially today

➢ But in this course, efficient = polynomial-time



P
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• P (polynomial time)
➢ The class of all decision problems computable by a TM in polynomial 

time

• Examples
➢ Addition, multiplication, square root

➢ Shortest paths

➢ Network flow

➢ Fast Fourier transform

➢ Checking if a given number is a prime 
[Agrawal-Kayal-Saxena 2002]

➢ …



NP
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• NP (nondeterministic polynomial time) intuition

➢ Subset sum problem: 

Given an array {−7, −3, −2, 5, 8}, is there a zero-sum subset?

➢ Enumerating all subsets is exponential

➢ But…given {-3, -2, 5}, we can verify in polynomial time that it is 
indeed a valid subset and has zero sum

➢ A nondeterministic Turing machine could “guess” the solution and 
then test if it has zero sum in polynomial time



NP
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• NP (nondeterministic polynomial time)
➢ The class of all decision problems for which a YES answer can be 

verified by a TM in polynomial time given polynomial length “advice” 
or “witness”.

➢ There is a polynomial-time verifier TM 𝑉 and another polynomial 𝑝
such that 

o For all YES inputs 𝑥, there exists advice 𝑦 with 𝑦 = 𝑝 𝑥 on 
which 𝑉(𝑥, 𝑦) returns ACCEPT

o For all NO inputs 𝑥, 𝑉(𝑥, 𝑦) returns REJECT for every possible 𝑦

➢ Informally: “Whenever the answer is YES, there’s a short proof of it.”

o When the answer is NO, there may not be any short proof for it.



co-NP
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• co-NP
➢ Same as NP, except whenever the answer is NO, there is a short 

proof of it

• Open questions
➢ NP = co-NP?

➢ P = NP ∩ co-NP?

➢ And…drum roll please…

𝑃 = 𝑁𝑃?



P versus NP
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• Lance Fortnow in his article on P and NP in Communications 
of the ACM, Sept 2009

“The P versus NP problem has gone 
from an interesting problem related to 
logic to perhaps the most fundamental 
and important mathematical question of 
our time, whose importance only grows 
as computers become more powerful 
and widespread.”



Millenium Problems
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• Award of $1M for each problem by the Clay Math institute

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Navier-Stokes Equations

4. P = NP?

5. Poincare Conjecture (Solved)1

6. Riemann Hypothesis

7. Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed

Claim: Worth >> $1M



Cook’s Conjecture
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• Cook’s conjecture
➢ (And every sane person’s belief…)

➢ 𝑃 is likely not equal to 𝑁𝑃

• Why do we believe this?
➢ There is a large class of problems (NP-complete)

➢ By now, contains thousands and thousands of problems

➢ Each problem is the “hardest problem in NP”

➢ If you can efficiently solve any one of them, you can efficiently solve 
every problem in NP

o Despite decades of effort, no polynomial time solution has been 
found for any of them



Reductions
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• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if 
an “oracle” (subroutine) for 𝐵 can be used to efficiently 
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle for 

𝐵 and doing additional polynomial-time computation

• Question: If 𝐴 is p-reducible to 𝐵, then which of the 
following is true?
a) If 𝐴 cannot be solved efficiently, then neither can 𝐵.

b) If 𝐵 cannot be solved efficiently, then neither can 𝐴.

c) Both.

d) None.



Reductions
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• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if 
an “oracle” (subroutine) for 𝐵 can be used to efficiently 
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle and 

doing additional polynomial computation

• Question: If I want to prove that my problem 𝑋 is “hard”, I 
should:
a) Reduce my problem 𝑋 to a known hard problem. 

b) Reduce a known hard problem to my problem 𝑋.

c) Both.

d) None.



NP-completeness
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• NP-completeness
➢ A problem 𝐵 is NP-complete if it is in NP and every problem 𝐴 in NP 

is p-reducible to 𝐵

➢ Hardest problems in NP

➢ If one of them can be solved efficiently, every problem in NP can be 
solved efficiently, implying P=NP

• Observation:
➢ If 𝐴 is in NP, and some NP-complete problem 𝐵 is p-reducible to 𝐴, 

then 𝐴 is NP-complete too

o Every problem in NP ≤𝑝 𝐵 ≤𝑝 𝐴



NP-completeness
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• But this uses an already known NP-complete problem to 
prove another problem is NP-complete

• How do we find the first NP-complete problem?
➢ How do we know there are any NP-complete problems at all?

➢ Key result by Cook

➢ First NP-complete problem: SAT

o By a direct reduction from every problem in NP to SAT

o “From first principles”



CNF Formulas
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• Conjunctive normal form (CNF)
➢ Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛

➢ Their negations ҧ𝑥1, ҧ𝑥2, … , ҧ𝑥𝑛

➢ Literal ℓ: a variable or its negation

➢ Clause 𝐶 = ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑟 is a disjunction of literals

➢ CNF formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚 is a conjunction of clauses

o 𝑘CNF: Each clause has at most 𝑘 literals

o Exact 𝑘CNF: Each clause has exactly 𝑘 literals

➢ Example of (Exact) 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ ( ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)



SAT and Exact 3SAT
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• Example of (Exact) 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ ( ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)

• “SAT” (Satisfiability) Problem:
➢ A CNF formula 𝜑 is satisfiable if there is an assignment of truth 

values (TRUE/FALSE) to variables under which the formula evaluates 
to TRUE

o That means, in each clause, at least one literal is TRUE

➢ SAT: “Given a CNF formula 𝜑, is it satisfiable?”

➢ Exact 3SAT: “Given an exact 3CNF formula 𝜑, is it satisfiable?”



SAT and Exact 3SAT

373S22 - Deepanshu Kush 34

• Cook-Levin Theorem
➢ SAT (and even Exact 3SAT) is NP-complete

• Doesn’t use any known NP-complete problem

➢ Directly reduces any given NP problem to SAT

➢ Reduction is a bit complex, so we’ll defer it until later

➢ But for now, let’s assume SAT and Exact 3SAT are NP-complete and 
reduce them to other problems (and then those problems to other 
problems…)



NP-Complete Examples
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• NP-complete problems
➢ SAT = first NP complete problem

➢ Decision TSP: Is there a route visiting all 𝑛 cities with total distance at 
most 𝑘?

➢ 3-Colorabitility: Can the vertices of a graph be colored with at most 3
colors such that no two adjacent vertices have the same color?

➢ Karp’s 21 NP-complete problems

• co-NP-complete
➢ Tautology problem (“negation” of SAT): 

o “Given a CNF formula 𝜑, does it always evaluate to TRUE 
regardless of variable assignments?”



Complexity
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By Behnam Esfahbod, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=3532181
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Just A Tad Bit of History
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• [Cook 1971]
➢ Proved Exact 3SAT is NP-complete in seminal paper

• [Karp 1972]
➢ Showed that 20 other problems are also NP-complete

➢ “Karp's 21 NP-complete problems”

➢ Renewed interest in this idea

• 1982: Cook won the Turing award



• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a subset of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘
such that no two vertices in 𝑆 are adjacent?

Independent Set
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= independent setExample:
• Does this graph have an 

independent set of size 6?
• Yes!

• Does this graph have an 
independent set of size 7?
• No!



• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a subset of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘
such that no two vertices in 𝑆 are adjacent?

Independent Set
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= independent setExample:
• Does this graph have an 

independent set of size 6?
• Yes!

• Does this graph have an 
independent set of size 7?
• No!



• Claim: Independent Set is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm 
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual independent set 𝑆

➢ Algorithm: check if 𝑆 is an independent set and if 𝑆 = 𝑘

➢ Simple!

Independent Set
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• Claim: Exact 3SAT ≤𝑝 Independent Set

➢ Given a formula 𝜑 of Exact 3SAT with 𝑘 clauses, construct an instance 
(𝐺, 𝑘) of Independent Set as follows

o Create 3 vertices for each clause (one for each literal)

o Connect them in a triangle

o Connect the vertex of each literal to each of its negations

Independent Set

373S22 - Deepanshu Kush 43



➢ Why does this work?

o Exact 3SAT = YES     ⇒ Independent Set = YES

• From each clause, take any literal that is TRUE in the assignment

o Independent Set = YES     ⇒ Exact 3SAT = YES

• Independent set 𝑆 must contain one vertex from each triangle

• No literal and its negation are both in 𝑆

• Set literals in 𝑆 to TRUE, their negations to FALSE, and the rest to 
arbitrary values

Independent Set

373S22 - Deepanshu Kush 45



Different Types of Reductions
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• 𝐴 ≤ 𝐵
➢ Karp reductions

o Take an arbitrary instance of 𝐴, and in polynomial time, construct 
a single instance of 𝐵 with the same answer

o Very restricted type of reduction

o The reduction we just constructed was a Karp reduction

➢ Turing/Cook reductions

o Take an arbitrary instance of 𝐴, and solve it by making 
polynomially many calls to an oracle for solving 𝐵 and some 
polynomial-time extra computation

o Very general reduction

o In this course, we’ll allow Turing/Cook reductions, but whenever 
possible, see if you can construct a Karp reduction



Subset Sum
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• Problem
➢ Input: Set of integers 𝑆 = {𝑤1, … , 𝑤𝑛}, integer 𝑊

➢ Question: Is there 𝑆′ ⊆ 𝑆 that adds up to exactly 𝑊?

• Example
➢ 𝑆 = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, 𝑊 = 3754?

➢ Yes!

o 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754



• Claim: Subset Sum is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm 
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual subset 𝑆′

➢ Algorithm: check that 𝑆′ is indeed a subset of 𝑆 and sums to 𝑊

➢ Simple!

Subset Sum
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• Claim: Exact 3SAT ≤𝑝 Subset Sum

➢ Given a formula 𝜑 of Exact 3SAT, we want to construct (𝑆, 𝑊) of Subset 
Sum with the same answer

➢ In the table in the following slide:

o Columns are for variables and clauses

o Each row is a number in 𝑆, represented in decimal

o Number for literal ℓ : has 1 in its variable column and in the column 
of every clause where that literal appears

• Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and 
only if at least one literal is set to TRUE

Subset Sum
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• Claim: Exact 3SAT ≤𝑝 Subset Sum

Subset Sum
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Decimal 
representation



• Note
➢ The Subset Sum instance we constructed has “large” numbers 

o Their values are exponentially large (~10#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠+#𝑐𝑙𝑎𝑢𝑠𝑒𝑠)

o But the number of bits required to write them is polynomial

➢ Can we hope to construct Subset Sum instance with numbers whose 
values are only 𝑝𝑜𝑙𝑦(#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, #𝑐𝑙𝑎𝑠𝑢𝑠𝑒𝑠) large?

o Unlikely, as that would prove 𝑃 = 𝑁𝑃! 

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time 

• That is, in polynomial time if the numbers are only polynomially 
large in value

Subset Sum
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3-Coloring
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• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Question: Can we color each vertex of 𝐺 using at most three colors 
such that no two adjacent vertices have the same color?



• Claim: 3-coloring is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm 
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: colors of the nodes in a valid 3-coloring

➢ Algorithm: check that this is a valid 3-coloring

➢ Simple!

3-Coloring
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3-Coloring
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• Claim: Exact 3SAT ≤𝑝 3-Coloring

➢ Given an Exact 3SAT formula 𝜑, we want to construct a graph 𝐺 such 
that 𝐺 is 3-colorable if and only if 𝜑 has a satisfying assignment

➢ 𝐺 will have the following nodes:

o Type 1: true, false, base, one for each 𝑥𝑖, one for each ഥ𝑥𝑖

o Type 2: additional nodes for each clause 𝐶𝑗

➢ 1-1 correspondence between valid 3-colorings of type 1 nodes and valid 
truth assignments:

o All literals with the same color as “true” node are set to true

o All literals with the same color as “false” node are set to false

➢ Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of 𝐺
giving these colors to type 1 nodes if and only if the corresponding truth 
assignment is satisfying for 𝜑.



3-Coloring
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➢ Create 3 new nodes T, F, and B, and connect them in a triangle

➢ Create a node for each literal, connect it to its negation and to B

➢ T-F-B must have different colors, and so must B-𝑥𝑖- ҧ𝑥𝑖

o Each literal has the color of T or F; its negation has the other color

o Valid 3-coloring ⇔ valid truth assignment (set all with color T to true)

…



3-Coloring
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➢ We also need valid 3-coloring ⇔ satisfying truth assignment

o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable ⇔ at least one of the nodes 
corresponding to the literals in the clause is assigned color of T 



3-Coloring
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➢ Claim: Valid 3-coloring ⇒ truth assignment satisfies 𝜑

o Suppose a clause 𝐶𝑖 is not satisfied, so all its three literals must be F

o Then the 3 nodes in top layer must be B

o Then the first two nodes in bottom layer must be F and T

o No color left for the remaining node ⇒ contradiction!



3-Coloring
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➢ We just proved: valid 3-coloring ⇒ satisfying assignment

➢ Claim: satisfying assignment ⇒ valid 3-coloring

o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F) 
the other literals have, the clause widget can always be 3-colored



Review of Reductions
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• If you want to show that problem B is NP-complete

• Step 1: Show that B is in NP
➢ Some polynomial-size advice should be sufficient to verify a YES 

instance in polynomial time 

➢ No advice should work for a NO instance

➢ Usually, the solution of the “search version” of the problem works

o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the 
values of both primal and dual variables, as we saw in the last 
lecture



Review of Reductions
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• If you want to show that problem B is NP-complete

• Step 2: Find a known NP-complete problem A and reduce it 
to B (i.e., show A ≤𝑝 B)
➢ This means taking an arbitrary instance of A, and solving it in 

polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be 
polynomial in the size of the original A-instance

➢ This would show that if B can be solved in polynomial time, then A 
can be as well

➢ Some reductions are trivial, some are notoriously tricky…


