CSC373

Weeks 9 & 10:
Complexity

Introduction to Complexity

* You have a problem at hand

* You try every technique known to humankind for finding a
polynomial time algorithm but fail.

* You try every technique known to humankind for proving
that there cannot exist a polynomial time algorithm for your
problem but fail.

 What do you do?

> Prove that it is NP-complete, of course!

373522 - Deepanshu Kush

Turing Machines

* “Which problems can a computer (not) solve in a certain
amount of time?”

> How do we mathematically define what a computer is?

e Alan Turing (“Father of Computer Science”), 1936
> Introduced a mathematical model
» “Turing machine”
> All present-day computers can be simulated by a Turing machine
> Fun fact: TMs can simulate quantum computers too, just inefficiently

373522 - Deepanshu Kush

Turing Machines

 We won'’t formally introduce...but at a high level...

e Turing machine

» Tape
o Input is given on tape
o Intermediate computations can be written there
o Output must be written there

> Head pointer
o Initially pointing at start of input on tape

> Maintains an internal “state”

> A transition function describes how to change state, move head
pointer, and read/write symbols on tape

373522 - Deepanshu Kush

Computability

* Church-Turing Thesis

> “Everything that is computable can be computed by a Turing
machine”

> Widely accepted, cannot be “proven”

> There are problems which a Turing machine cannot solve, regardless
of the amount of time available

o E.g., the halting problem

 What about the problems we can solve? How do we define
the time required?

> Need to define an encoding of the input and output

373522 - Deepanshu Kush

Encoding

 What can we write on the tape?
> S = a set of finite symbols
> 8 =U,50S" = set of all finite strings using symbols from S

* Input: w € §*
> Length of input = |[w| = length of w on tape

e Qutput: f(w) € S5
> Length of output = |f(w)]
> Decision problems: output = “YES” or “NO”
o E.g., “does there exist a flow of value at least 7 in this network?”

373522 - Deepanshu Kush

Encoding

* Example:
> “Given aq, ay, ..., a,, compute Y'*; a;”
o Suppose we are told that a; < C forall i

> What |S| should we use?

o S =1{0,1} (|S| = 2, binary representation)

 Length of input = 0(log, a; + :- + log, a,;) = O(nlog, C)
o What about 3-ary (|S| = 3) or 18-ary (|S| = 18)?

* Only changes the length by a constant factor, still O(nlog C)

o What about unary (conceptually, |S| = 1)?
* Length blows up exponentially to O(nC)

o Binary is already good enough, but unary isn’t

373522 - Deepanshu Kush

Efficient Computability

* Polynomial-time computability

» A TM solves a problem in polynomial time if there is a polynomial p

such that on every instance of n-bit input and m-bit output, the TM
halts in at most p(n, m) steps

> Polynomial: n,n?,5n%% + 1000n3,nlog!% n = o(nt091)
> Non-polynomial: 27, 2V1 2log*n

e Extended Church-Turing Hypothesis

> “Everything that is efficiently computable is computable by a TM in
polynomial time”

> Much less widely accepted, especially today
> But in this course, efficient = polynomial-time

373522 - Deepanshu Kush

P

* P (polynomial time)

> The class of all decision problems computable by a TM in polynomial
time

* Examples
> Addition, multiplication, square root
> Shortest paths
> Network flow
> Fast Fourier transform

» Checking if a given number is a prime
[Agrawal-Kayal-Saxena 2002]

373522 - Deepanshu Kush

NP

* NP (nondeterministic polynomial time) intuition

» Subset sum problem:
Given an array {-7, -3, -2, 5, 8}, is there a zero-sum subset?

» Enumerating all subsets is exponential

> But...given {-3, -2, 5}, we can verify in polynomial time that it is
indeed a valid subset and has zero sum

> A nondeterministic Turing machine could “guess” the solution and
then test if it has zero sum in polynomial time

373522 - Deepanshu Kush

NP

* NP (nondeterministic polynomial time)

> The class of all decision problems for which a YES answer can be
verified by a TM in polynomial time given polynomial length “advice”
or “witness”.

» There is a polynomial-time verifier TM IV and another polynomial p
such that

o For all YES inputs x, there exists advice y with |y| = p(]x]) on
which V (x, y) returns ACCEPT

o For all NO inputs x, V' (x, y) returns REJECT for every possible y

> Informally: “Whenever the answer is YES, there’s a short proof of it.”
o When the answer is NO, there may not be any short proof for it.

373522 - Deepanshu Kush

co-NP

* co-NP
> Same as NP, except whenever the answer is NO, there is a short
proof of it

* Open questions
» NP = co-NP?
»> P=NP N co-NP?
> And...drum roll please...

P = NP?

373522 - Deepanshu Kush

P versus NP

e Lance Fortnow in his article on P and NP in Communications
of the ACM, Sept 2009

ﬂ The P versus NP problem has gone \
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question of
our time, whose importance only grows
as computers become more powerful

Qnd widespread.” /

373522 - Deepanshu Kush

Millenium Problems

* Award of S1M for each problem by the Clay Math institute
1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Navier-Stokes Equations

5. Poincare Conjecture (Solved)?!

6. Riemann Hypothesis

7

Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed

373522 - Deepanshu Kush 26

Cook’s Conjecture

e Cook’s conjecture
> (And every sane person’s belief...)
> P is likely not equal to NP

 Why do we believe this?
> There is a large class of problems (NP-complete)
> By now, contains thousands and thousands of problems
> Each problem is the “hardest problem in NP”

> If you can efficiently solve any one of them, you can efficiently solve
every problem in NP

o Despite decades of effort, no polynomial time solution has been
found for any of them

373522 - Deepanshu Kush

Reductions

* Problem A is p-reducible to problem B (denoted A <, B) if
an “oracle” (subroutine) for B can be used to efficiently
solve A

> You can solve A by making polynomially many calls to the oracle for
B and doing additional polynomial-time computation

* Question: If A is p-reducible to B, then which of the
following is true?
a) If A cannot be solved efficiently, then neither can B.
b) If B cannot be solved efficiently, then neither can A.
c) Both.
d) None.

373522 - Deepanshu Kush

Reductions

* Problem A is p-reducible to problem B (denoted A <, B) if
an “oracle” (subroutine) for B can be used to efficiently

solve A

> You can solve A by making polynomially many calls to the oracle and
doing additional polynomial computation

* Question: If | want to prove that my problem X is “hard”, |
should:
a) Reduce my problem X to a known hard problem.
b) Reduce a known hard problem to my problem X.
c) Both.
d) None.

373522 - Deepanshu Kush

NP-completeness

 NP-completeness

> A problem B is NP-complete if it is in NP and every problem A in NP
is p-reducible to B

> Hardest problems in NP

> If one of them can be solved efficiently, every problem in NP can be
solved efficiently, implying P=NP

e Observation:

> If Aisin NP, and some NP-complete problem B is p-reducible to A4,
then A is NP-complete too

o Every probleminNP <, B <, A

373522 - Deepanshu Kush

NP-completeness

e But this uses an already known NP-complete problem to
prove another problem is NP-complete

 How do we find the first NP-complete problem?
> How do we know there are any NP-complete problems at all?
> Key result by Cook
> First NP-complete problem: SAT
o By a direct reduction from every problem in NP to SAT
o “From first principles”

373522 - Deepanshu Kush

CNF Formulas

e Conjunctive normal form (CNF)

» Boolean variables x¢, x5, ..., X,

» Their negations X1, X5, ..., Xp,

> Literal €: a variable or its negation

> Clause C = ¢, V¥, V.-V +L,isadisjunction of literals

> CNF formula ¢ = C; A C; A--- A Gy, is a conjunction of clauses
o kCNF: Each clause has at most k literals
o Exact kCNF: Each clause has exactly k literals

> Example of (Exact) 3CNF

@ = VX, VX)) AN VX, Vx3) AV, V) AN(X3 VX,V xg)

373522 - Deepanshu Kush

SAT and Exact 3SAT

 Example of (Exact) 3CNF
QY = (fl VXZ VX3)/\(.X'1 V.’)EZ Vx3)/\(f1 sz Vx4)/\(f3 Vf4Vx1)

e “SAT” (Satisfiability) Problem:

> A CNF formula ¢ is satisfiable if there is an assignment of truth
values (TRUE/FALSE) to variables under which the formula evaluates
to TRUE

o That means, in each clause, at least one literal is TRUE
> SAT: “Given a CNF formula ¢, is it satisfiable?”
» Exact 3SAT: “Given an exact 3CNF formula ¢, is it satisfiable?”

373522 - Deepanshu Kush

SAT and Exact 3SAT

e Cook-Levin Theorem
> SAT (and even Exact 3SAT) is NP-complete

* Doesn’t use any known NP-complete problem
> Directly reduces any given NP problem to SAT
> Reduction is a bit complex, so we’ll defer it until later

> But for now, let’s assume SAT and Exact 3SAT are NP-complete and
reduce them to other problems (and then those problems to other
problems...)

373522 - Deepanshu Kush

NP-Complete Examples

* NP-complete problems

> SAT = first NP complete problem

> Decision TSP: Is there a route visiting all n cities with total distance at
most k?

> 3-Colorabitility: Can the vertices of a graph be colored with at most 3
colors such that no two adjacent vertices have the same color?

> Karp’s 21 NP-complete problems

e co-NP-complete
> Tautology problem (“negation” of SAT):

o “Given a CNF formula ¢, does it always evaluate to TRUE
regardless of variable assignments?”

373522 - Deepanshu Kush

Complexity

! {
| |
/ |
! i

coNP-hard |

NP-hard

373522 - Deepanshu Kush

|
NP-Hard | NP-Hard

P=NP=
NP-Complete

Ciomiplexity

P = NP P = NP

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181

| of Computational and Applied
Matt

Q
C
—
W

ematics

Survey of polynomial transformations between

\P—(Olnp]clu problems

Number Name of problem Number Name of prebles
Satiabatniit AT 2 Hity (35AT
3 ique (cligue cove a exiex coves
bset « sting
hinese postman for ed Erap k) Gr 0 t
S Three-Dimenstons) matehing (30M 10 Rectilinas ture
npress
i1 Tableis equivaience Corsistency of database
. 4
Setbasis 1t Hitt .
| Co 18
4 harte TUInOn supersequence S
J Minimum cardinal -) Part =
3 X grpwat acbise 24 Cagps Assiynrnes
25 = L 20 Exa er b X3
Miniry tegs set 9 3 M
29 }-Fa 0 30 Nume 2l three
ene ng

373522 - Deepanshu Kush

Polynomial-Time Reductions

constraint satisfaction

Dick Karp (1972)

X0
" cﬁg\x =3 1985 Turing Award

32 %

o
INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
v \ 4
SET COVER TSP

packing and covering sequencing partitioning numerical

373522 - Deepanshu Kush

Just A Tad Bit of History

e [Cook 1971]

> Proved Exact 3SAT is NP-complete in seminal paper

e [Karp 1972]
> Showed that 20 other problems are also NP-complete
> “Karp's 21 NP-complete problems”
> Renewed interest in this idea

e 1982: Cook won the Turing award

373522 - Deepanshu Kush

Independent Set

* Problem A
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a subset of vertices S € VV with |S| = k
such that no two vertices in S are adjacent? y

Example: @ - independent set
* Does this graph have an
independent set of size 67
* Yes!
* Does this graph have an
independent set of size 7°?
* No!

373522 - Deepanshu Kush

Independent Set

* Problem A
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a subset of vertices S € VV with |S| = k
such that no two vertices in S are adjacent? y

Example: @ - independent set
* Does this graph have an
independent set of size 67
* Yes!
* Does this graph have an
independent set of size 7°?
* No!

373522 - Deepanshu Kush

Independent Set

[- Claim: Independent Set is in NP }

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual independent set S
> Algorithm: check if S is an independent set and if |S| = k
> Simple!

373522 - Deepanshu Kush

Independent Set

[- Claim: Exact 3SAT <), Independent Set]

> Given a formula @ of Exact 3SAT with k clauses, construct an instance
(G, k) of Independent Set as follows

o Create 3 vertices for each clause (one for each literal)
o Connect them in a triangle
o Connect the vertex of each literal to each of its negations

X5 Xy X, X5 X5 X,

¢ = (x, V Xy V .\'3) A (.\', VX, V .\'3) A (.\', V Xy V .\'4)

373522 - Deepanshu Kush

Independent Set

> Why does this work?
o Exact 3SAT = YES = Independent Set = YES
* From each clause, take any literal that is TRUE in the assignment
o Independent Set = YES = Exact 3SAT = YES
* Independent set S must contain one vertex from each triangle
* No literal and its negation are both in §
* Set literals in S to TRUE, their negations to FALSE, and the rest to
arbitrary values

X,

-
-
-

373522 - Deepanshu Kush

Different Types of Reductions

e ALZB
> Karp reductions

o Take an arbitrary instance of A4, and in polynomial time, construct
a single instance of B with the same answer

o Very restricted type of reduction
o The reduction we just constructed was a Karp reduction

> Turing/Cook reductions

o Take an arbitrary instance of A4, and solve it by making
polynomially many calls to an oracle for solving B and some
polynomial-time extra computation

o Very general reduction

o In this course, we’ll allow Turing/Cook reductions, but whenever
possible, see if you can construct a Karp reduction

373522 - Deepanshu Kush

Subset Sum

-
* Problem
> Input: Set of integers S = {wy, ..., w,, }, integer W
9 > Question: Is there S* € S that adds up to exactly W?
 Example

> S =1{1,4,16,64,256,1040,1041,1093,1284,1344}, W = 37547
> Yes!
ol+16+ 64 + 256+ 1040 + 1093 + 1284 = 3754

373522 - Deepanshu Kush

Subset Sum

[- Claim: Subset Sum is in NP]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual subset S’
> Algorithm: check that S’ is indeed a subset of S and sums to W
> Simple!

373522 - Deepanshu Kush

Subset Sum

[- Claim: Exact 3SAT <y Subset Sum]

> Given a formula ¢ of Exact 3SAT, we want to construct (S, W) of Subset
Sum with the same answer

> In the table in the following slide:
o Columns are for variables and clauses
o Each row is a numberin S, represented in decimal

o Number for literal € : has 1 in its variable column and in the column
of every clause where that literal appears

e Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

373522 - Deepanshu Kush

Subset

[° Claim: Exact 3SAT <p Subset Sum] =D
x B
-x 1
= =y

C=xVvyvz - BB
C3 = ; \" _;) \' 2 - Z 0
r Bo
0
dummies to get 0
clause columns 0
to sum to 4 0
. 0O

w

373522 - Deepanshu Kush

Decimal

representation

~

HOOOOOOHHOOOOH
HOOOONHOHOHHOH

HOOOOOOOOHHOO

HOONHOOOHHOOHH

HNHOOOOHOHOHOH

n1
(=]

Subset Sum

* Note

> The Subset Sum instance we constructed has “large” numbers
o Their values are exponentially large (~10#variables+iclauses)

o But the number of bits required to write them is polynomial

> Can we hope to construct Subset Sum instance with numbers whose
values are only poly(#variables, #clasuses) large?

o Unlikely, as that would prove P = NP!
o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time

* Thatis, in polynomial time if the numbers are only polynomially
large in value

373522 - Deepanshu Kush

3-Coloring

* Problem
> Input: Undirected graph ¢ = (V,E)

> Question: Can we color each vertex of ¢ using at most three colors
K such that no two adjacent vertices have the same color?

J

373522 - Deepanshu Kush

3-Coloring

[- Claim: 3-coloring is in NP]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: colors of the nodes in a valid 3-coloring
> Algorithm: check that this is a valid 3-coloring
> Simple!

373522 - Deepanshu Kush

3-Coloring

[- Claim: Exact 3SAT <,, 3-Coloring]

» Given an Exact 3SAT formula ¢, we want to construct a graph G such
that G is 3-colorable if and only if ¢ has a satisfying assignment

> G will have the following nodes:
o Type 1: true, false, base, one for each x;, one for each x;
o Type 2: additional nodes for each clause (;

> 1-1 correspondence between valid 3-colorings of type 1 nodes and valid
truth assignments:

o All literals with the same color as “true” node are set to true
o All literals with the same color as “false” node are set to false

> Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of G
giving these colors to type 1 nodes if and only if the corresponding truth
assignment is satisfying for @.

373522 - Deepanshu Kush

3-Coloring

> Create 3 new nodes T, F, and B, and connect them in a triangle
> Create a node for each literal, connect it to its negation and to B
» T-F-B must have different colors, and so must B-x;-X;
o Each literal has the color of T or F; its negation has the other color
o Valid 3-coloring & valid truth assignment (set all with color T to true)

true false

373522 - Deepanshu Kush

3-Coloring

> We also need valid 3-coloring & satisfying truth assignment
o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable & at least one of the nodes
corresponding to the literals in the clause is assigned color of T

true (@

373522 - Deepanshu Kush

3-Coloring

» Claim: Valid 3-coloring = truth assignment satisfies @
o Suppose a clause (; is not satisfied, so all its three literals must be F
o Then the 3 nodes in top layer must be B
o Then the first two nodes in bottom layer must be Fand T
o No color left for the remaining node = contradiction!

not 3-colorable if all are red

/

‘ G=x VX, Vx

contradiction

o false

373522 - Deepanshu Kush

3-Coloring

> We just proved: valid 3-coloring = satisfying assignment
» Claim: satisfying assignment = valid 3-coloring
o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F)
the other literals have, the clause widget can always be 3-colored

a literal set to true in 3-SAT assignment

/

frue

373522 - Deepanshu Kush

Review of Reductions

* If you want to show that problem B is NP-complete
e Step 1: Show that Bisin NP

> Some polynomial-size advice should be sufficient to verify a YES
instance in polynomial time

> No advice should work for a NO instance

> Usually, the solution of the “search version” of the problem works
o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

373522 - Deepanshu Kush

Review of Reductions

* If you want to show that problem B is NP-complete

e Step 2: Find a known NP-complete problem A and reduce it
to B (i.e., show A <,, B)

> This means taking an arbitrary instance of A, and solving it in
polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

> This would show that if B can be solved in polynomial time, then A
can be as well

> Some reductions are trivial, some are notoriously tricky...

373522 - Deepanshu Kush

