
CSC373

Weeks 9 & 10:
Complexity

373S22 - Deepanshu Kush 1

Introduction to Complexity

373S22 - Deepanshu Kush 14

• You have a problem at hand

• You try every technique known to humankind for finding a
polynomial time algorithm but fail.

• You try every technique known to humankind for proving
that there cannot exist a polynomial time algorithm for your
problem but fail.

• What do you do?
➢ Prove that it is NP-complete, of course!

Turing Machines

373S22 - Deepanshu Kush 15

• “Which problems can a computer (not) solve in a certain
amount of time?”
➢ How do we mathematically define what a computer is?

• Alan Turing (“Father of Computer Science”), 1936
➢ Introduced a mathematical model

➢ “Turing machine”

➢ All present-day computers can be simulated by a Turing machine

➢ Fun fact: TMs can simulate quantum computers too, just inefficiently

Turing Machines

373S22 - Deepanshu Kush 16

• We won’t formally introduce…but at a high level…

• Turing machine
➢ Tape

o Input is given on tape

o Intermediate computations can be written there

o Output must be written there

➢ Head pointer

o Initially pointing at start of input on tape

➢ Maintains an internal “state”

➢ A transition function describes how to change state, move head
pointer, and read/write symbols on tape

Computability

373S22 - Deepanshu Kush 17

• Church-Turing Thesis
➢ “Everything that is computable can be computed by a Turing

machine”

➢ Widely accepted, cannot be “proven”

➢ There are problems which a Turing machine cannot solve, regardless
of the amount of time available

o E.g., the halting problem

• What about the problems we can solve? How do we define
the time required?
➢ Need to define an encoding of the input and output

Encoding

373S22 - Deepanshu Kush 18

• What can we write on the tape?
➢ 𝑆 = a set of finite symbols

➢ 𝑆∗ 𝑛≥0ڂ = 𝑆𝑛 = set of all finite strings using symbols from 𝑆

• Input: 𝑤 ∈ 𝑆∗

➢ Length of input = |𝑤| = length of 𝑤 on tape

• Output: 𝑓 𝑤 ∈ 𝑆∗

➢ Length of output = 𝑓 𝑤

➢ Decision problems: output = “YES” or “NO”

o E.g., “does there exist a flow of value at least 7 in this network?”

Encoding

373S22 - Deepanshu Kush 19

• Example:
➢ “Given 𝑎1, 𝑎2, … , 𝑎𝑛, compute σ𝑖=1

𝑛 𝑎𝑖”

o Suppose we are told that 𝑎𝑖 ≤ 𝐶 for all 𝑖

➢ What |𝑆| should we use?

o 𝑆 = {0,1} (𝑆 = 2, binary representation)

• Length of input = 𝑂 log2 𝑎1 + ⋯ + log2 𝑎𝑛 = 𝑂 𝑛 log2 𝐶

o What about 3-ary (𝑆 = 3) or 18-ary (𝑆 = 18)?

• Only changes the length by a constant factor, still 𝑂(𝑛 log 𝐶)

o What about unary (conceptually, 𝑆 = 1)?

• Length blows up exponentially to 𝑂 𝑛𝐶

o Binary is already good enough, but unary isn’t

Efficient Computability

373S22 - Deepanshu Kush 20

• Polynomial-time computability
➢ A TM solves a problem in polynomial time if there is a polynomial 𝑝

such that on every instance of 𝑛-bit input and 𝑚-bit output, the TM
halts in at most 𝑝(𝑛, 𝑚) steps

➢ Polynomial: 𝑛, 𝑛2, 5𝑛100 + 1000𝑛3, 𝑛 log100 𝑛 = 𝑜 𝑛1.001

➢ Non-polynomial: 2𝑛, 2 𝑛, 2log2 𝑛

• Extended Church-Turing Hypothesis
➢ “Everything that is efficiently computable is computable by a TM in

polynomial time”

➢ Much less widely accepted, especially today

➢ But in this course, efficient = polynomial-time

P

373S22 - Deepanshu Kush 21

• P (polynomial time)
➢ The class of all decision problems computable by a TM in polynomial

time

• Examples
➢ Addition, multiplication, square root

➢ Shortest paths

➢ Network flow

➢ Fast Fourier transform

➢ Checking if a given number is a prime
[Agrawal-Kayal-Saxena 2002]

➢ …

NP

373S22 - Deepanshu Kush 22

• NP (nondeterministic polynomial time) intuition

➢ Subset sum problem:

Given an array {−7, −3, −2, 5, 8}, is there a zero-sum subset?

➢ Enumerating all subsets is exponential

➢ But…given {-3, -2, 5}, we can verify in polynomial time that it is
indeed a valid subset and has zero sum

➢ A nondeterministic Turing machine could “guess” the solution and
then test if it has zero sum in polynomial time

NP

373S22 - Deepanshu Kush 23

• NP (nondeterministic polynomial time)
➢ The class of all decision problems for which a YES answer can be

verified by a TM in polynomial time given polynomial length “advice”
or “witness”.

➢ There is a polynomial-time verifier TM 𝑉 and another polynomial 𝑝
such that

o For all YES inputs 𝑥, there exists advice 𝑦 with 𝑦 = 𝑝 𝑥 on
which 𝑉(𝑥, 𝑦) returns ACCEPT

o For all NO inputs 𝑥, 𝑉(𝑥, 𝑦) returns REJECT for every possible 𝑦

➢ Informally: “Whenever the answer is YES, there’s a short proof of it.”

o When the answer is NO, there may not be any short proof for it.

co-NP

373S22 - Deepanshu Kush 24

• co-NP
➢ Same as NP, except whenever the answer is NO, there is a short

proof of it

• Open questions
➢ NP = co-NP?

➢ P = NP ∩ co-NP?

➢ And…drum roll please…

𝑃 = 𝑁𝑃?

P versus NP

373S22 - Deepanshu Kush 25

• Lance Fortnow in his article on P and NP in Communications
of the ACM, Sept 2009

“The P versus NP problem has gone
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question of
our time, whose importance only grows
as computers become more powerful
and widespread.”

Millenium Problems

373S22 - Deepanshu Kush 26

• Award of $1M for each problem by the Clay Math institute

1. Birch and Swinnerton-Dyer Conjecture

2. Hodge Conjecture

3. Navier-Stokes Equations

4. P = NP?

5. Poincare Conjecture (Solved)1

6. Riemann Hypothesis

7. Yang-Mills Theory

1Solved by Grigori Perelman (2003): Prize unclaimed

Claim: Worth >> $1M

Cook’s Conjecture

373S22 - Deepanshu Kush 27

• Cook’s conjecture
➢ (And every sane person’s belief…)

➢ 𝑃 is likely not equal to 𝑁𝑃

• Why do we believe this?
➢ There is a large class of problems (NP-complete)

➢ By now, contains thousands and thousands of problems

➢ Each problem is the “hardest problem in NP”

➢ If you can efficiently solve any one of them, you can efficiently solve
every problem in NP

o Despite decades of effort, no polynomial time solution has been
found for any of them

Reductions

373S22 - Deepanshu Kush 28

• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if
an “oracle” (subroutine) for 𝐵 can be used to efficiently
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle for

𝐵 and doing additional polynomial-time computation

• Question: If 𝐴 is p-reducible to 𝐵, then which of the
following is true?
a) If 𝐴 cannot be solved efficiently, then neither can 𝐵.

b) If 𝐵 cannot be solved efficiently, then neither can 𝐴.

c) Both.

d) None.

Reductions

373S22 - Deepanshu Kush 29

• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if
an “oracle” (subroutine) for 𝐵 can be used to efficiently
solve 𝐴
➢ You can solve 𝐴 by making polynomially many calls to the oracle and

doing additional polynomial computation

• Question: If I want to prove that my problem 𝑋 is “hard”, I
should:
a) Reduce my problem 𝑋 to a known hard problem.

b) Reduce a known hard problem to my problem 𝑋.

c) Both.

d) None.

NP-completeness

373S22 - Deepanshu Kush 30

• NP-completeness
➢ A problem 𝐵 is NP-complete if it is in NP and every problem 𝐴 in NP

is p-reducible to 𝐵

➢ Hardest problems in NP

➢ If one of them can be solved efficiently, every problem in NP can be
solved efficiently, implying P=NP

• Observation:
➢ If 𝐴 is in NP, and some NP-complete problem 𝐵 is p-reducible to 𝐴,

then 𝐴 is NP-complete too

o Every problem in NP ≤𝑝 𝐵 ≤𝑝 𝐴

NP-completeness

373S22 - Deepanshu Kush 31

• But this uses an already known NP-complete problem to
prove another problem is NP-complete

• How do we find the first NP-complete problem?
➢ How do we know there are any NP-complete problems at all?

➢ Key result by Cook

➢ First NP-complete problem: SAT

o By a direct reduction from every problem in NP to SAT

o “From first principles”

CNF Formulas

373S22 - Deepanshu Kush 32

• Conjunctive normal form (CNF)
➢ Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛

➢ Their negations ҧ𝑥1, ҧ𝑥2, … , ҧ𝑥𝑛

➢ Literal ℓ: a variable or its negation

➢ Clause 𝐶 = ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑟 is a disjunction of literals

➢ CNF formula 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑚 is a conjunction of clauses

o 𝑘CNF: Each clause has at most 𝑘 literals

o Exact 𝑘CNF: Each clause has exactly 𝑘 literals

➢ Example of (Exact) 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ (ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)

SAT and Exact 3SAT

373S22 - Deepanshu Kush 33

• Example of (Exact) 3CNF

𝜑 = ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ (ҧ𝑥3 ∨ ҧ𝑥4 ∨ 𝑥1)

• “SAT” (Satisfiability) Problem:
➢ A CNF formula 𝜑 is satisfiable if there is an assignment of truth

values (TRUE/FALSE) to variables under which the formula evaluates
to TRUE

o That means, in each clause, at least one literal is TRUE

➢ SAT: “Given a CNF formula 𝜑, is it satisfiable?”

➢ Exact 3SAT: “Given an exact 3CNF formula 𝜑, is it satisfiable?”

SAT and Exact 3SAT

373S22 - Deepanshu Kush 34

• Cook-Levin Theorem
➢ SAT (and even Exact 3SAT) is NP-complete

• Doesn’t use any known NP-complete problem

➢ Directly reduces any given NP problem to SAT

➢ Reduction is a bit complex, so we’ll defer it until later

➢ But for now, let’s assume SAT and Exact 3SAT are NP-complete and
reduce them to other problems (and then those problems to other
problems…)

NP-Complete Examples

373S22 - Deepanshu Kush 35

• NP-complete problems
➢ SAT = first NP complete problem

➢ Decision TSP: Is there a route visiting all 𝑛 cities with total distance at
most 𝑘?

➢ 3-Colorabitility: Can the vertices of a graph be colored with at most 3
colors such that no two adjacent vertices have the same color?

➢ Karp’s 21 NP-complete problems

• co-NP-complete
➢ Tautology problem (“negation” of SAT):

o “Given a CNF formula 𝜑, does it always evaluate to TRUE
regardless of variable assignments?”

Complexity

373S22 - Deepanshu Kush 36

By Behnam Esfahbod, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=3532181

373S22 - Deepanshu Kush 37

⋮ ⋮

373S22 - Deepanshu Kush 38

Just A Tad Bit of History

373S22 - Deepanshu Kush 39

• [Cook 1971]
➢ Proved Exact 3SAT is NP-complete in seminal paper

• [Karp 1972]
➢ Showed that 20 other problems are also NP-complete

➢ “Karp's 21 NP-complete problems”

➢ Renewed interest in this idea

• 1982: Cook won the Turing award

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a subset of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘
such that no two vertices in 𝑆 are adjacent?

Independent Set

373S22 - Deepanshu Kush 40

= independent setExample:
• Does this graph have an

independent set of size 6?
• Yes!

• Does this graph have an
independent set of size 7?
• No!

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a subset of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘
such that no two vertices in 𝑆 are adjacent?

Independent Set

373S22 - Deepanshu Kush 41

= independent setExample:
• Does this graph have an

independent set of size 6?
• Yes!

• Does this graph have an
independent set of size 7?
• No!

• Claim: Independent Set is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual independent set 𝑆

➢ Algorithm: check if 𝑆 is an independent set and if 𝑆 = 𝑘

➢ Simple!

Independent Set

373S22 - Deepanshu Kush 42

• Claim: Exact 3SAT ≤𝑝 Independent Set

➢ Given a formula 𝜑 of Exact 3SAT with 𝑘 clauses, construct an instance
(𝐺, 𝑘) of Independent Set as follows

o Create 3 vertices for each clause (one for each literal)

o Connect them in a triangle

o Connect the vertex of each literal to each of its negations

Independent Set

373S22 - Deepanshu Kush 43

➢ Why does this work?

o Exact 3SAT = YES ⇒ Independent Set = YES

• From each clause, take any literal that is TRUE in the assignment

o Independent Set = YES ⇒ Exact 3SAT = YES

• Independent set 𝑆 must contain one vertex from each triangle

• No literal and its negation are both in 𝑆

• Set literals in 𝑆 to TRUE, their negations to FALSE, and the rest to
arbitrary values

Independent Set

373S22 - Deepanshu Kush 45

Different Types of Reductions

373S22 - Deepanshu Kush 46

• 𝐴 ≤ 𝐵
➢ Karp reductions

o Take an arbitrary instance of 𝐴, and in polynomial time, construct
a single instance of 𝐵 with the same answer

o Very restricted type of reduction

o The reduction we just constructed was a Karp reduction

➢ Turing/Cook reductions

o Take an arbitrary instance of 𝐴, and solve it by making
polynomially many calls to an oracle for solving 𝐵 and some
polynomial-time extra computation

o Very general reduction

o In this course, we’ll allow Turing/Cook reductions, but whenever
possible, see if you can construct a Karp reduction

Subset Sum

373S22 - Deepanshu Kush 47

• Problem
➢ Input: Set of integers 𝑆 = {𝑤1, … , 𝑤𝑛}, integer 𝑊

➢ Question: Is there 𝑆′ ⊆ 𝑆 that adds up to exactly 𝑊?

• Example
➢ 𝑆 = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, 𝑊 = 3754?

➢ Yes!

o 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754

• Claim: Subset Sum is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual subset 𝑆′

➢ Algorithm: check that 𝑆′ is indeed a subset of 𝑆 and sums to 𝑊

➢ Simple!

Subset Sum

373S22 - Deepanshu Kush 48

• Claim: Exact 3SAT ≤𝑝 Subset Sum

➢ Given a formula 𝜑 of Exact 3SAT, we want to construct (𝑆, 𝑊) of Subset
Sum with the same answer

➢ In the table in the following slide:

o Columns are for variables and clauses

o Each row is a number in 𝑆, represented in decimal

o Number for literal ℓ : has 1 in its variable column and in the column
of every clause where that literal appears

• Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

Subset Sum

373S22 - Deepanshu Kush 49

• Claim: Exact 3SAT ≤𝑝 Subset Sum

Subset Sum

373S22 - Deepanshu Kush 50

Decimal
representation

• Note
➢ The Subset Sum instance we constructed has “large” numbers

o Their values are exponentially large (~10#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠+#𝑐𝑙𝑎𝑢𝑠𝑒𝑠)

o But the number of bits required to write them is polynomial

➢ Can we hope to construct Subset Sum instance with numbers whose
values are only 𝑝𝑜𝑙𝑦(#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, #𝑐𝑙𝑎𝑠𝑢𝑠𝑒𝑠) large?

o Unlikely, as that would prove 𝑃 = 𝑁𝑃!

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time

• That is, in polynomial time if the numbers are only polynomially
large in value

Subset Sum

373S22 - Deepanshu Kush 51

3-Coloring

373S22 - Deepanshu Kush 52

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Question: Can we color each vertex of 𝐺 using at most three colors
such that no two adjacent vertices have the same color?

• Claim: 3-coloring is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: colors of the nodes in a valid 3-coloring

➢ Algorithm: check that this is a valid 3-coloring

➢ Simple!

3-Coloring

373S22 - Deepanshu Kush 53

3-Coloring

373S22 - Deepanshu Kush 54

• Claim: Exact 3SAT ≤𝑝 3-Coloring

➢ Given an Exact 3SAT formula 𝜑, we want to construct a graph 𝐺 such
that 𝐺 is 3-colorable if and only if 𝜑 has a satisfying assignment

➢ 𝐺 will have the following nodes:

o Type 1: true, false, base, one for each 𝑥𝑖, one for each ഥ𝑥𝑖

o Type 2: additional nodes for each clause 𝐶𝑗

➢ 1-1 correspondence between valid 3-colorings of type 1 nodes and valid
truth assignments:

o All literals with the same color as “true” node are set to true

o All literals with the same color as “false” node are set to false

➢ Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of 𝐺
giving these colors to type 1 nodes if and only if the corresponding truth
assignment is satisfying for 𝜑.

3-Coloring

373S22 - Deepanshu Kush 55

➢ Create 3 new nodes T, F, and B, and connect them in a triangle

➢ Create a node for each literal, connect it to its negation and to B

➢ T-F-B must have different colors, and so must B-𝑥𝑖- ҧ𝑥𝑖

o Each literal has the color of T or F; its negation has the other color

o Valid 3-coloring ⇔ valid truth assignment (set all with color T to true)

…

3-Coloring

373S22 - Deepanshu Kush 56

➢ We also need valid 3-coloring ⇔ satisfying truth assignment

o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable ⇔ at least one of the nodes
corresponding to the literals in the clause is assigned color of T

3-Coloring

373S22 - Deepanshu Kush 57

➢ Claim: Valid 3-coloring ⇒ truth assignment satisfies 𝜑

o Suppose a clause 𝐶𝑖 is not satisfied, so all its three literals must be F

o Then the 3 nodes in top layer must be B

o Then the first two nodes in bottom layer must be F and T

o No color left for the remaining node ⇒ contradiction!

3-Coloring

373S22 - Deepanshu Kush 58

➢ We just proved: valid 3-coloring ⇒ satisfying assignment

➢ Claim: satisfying assignment ⇒ valid 3-coloring

o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F)
the other literals have, the clause widget can always be 3-colored

Review of Reductions

373S22 - Deepanshu Kush 59

• If you want to show that problem B is NP-complete

• Step 1: Show that B is in NP
➢ Some polynomial-size advice should be sufficient to verify a YES

instance in polynomial time

➢ No advice should work for a NO instance

➢ Usually, the solution of the “search version” of the problem works

o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

Review of Reductions

373S22 - Deepanshu Kush 60

• If you want to show that problem B is NP-complete

• Step 2: Find a known NP-complete problem A and reduce it
to B (i.e., show A ≤𝑝 B)
➢ This means taking an arbitrary instance of A, and solving it in

polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

➢ This would show that if B can be solved in polynomial time, then A
can be as well

➢ Some reductions are trivial, some are notoriously tricky…

