Certificate of Optimality

* Suppose you design a state-of-the-art LP solver that can
solve very large problem instances

* You want to convince someone that you have this new
technology without showing them the code

> |dea: They can give you very large LPs and you can quickly return the
optimal solutions

> Question: But how would they know that your solutions are optimal,
if they don’t have the technology to solve those LPs?
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Certificate of Optimality

max

* Suppose | tell you that (x1,x,) = (100,300) is optimal with
objective value 1900

 How can you check this?

» Note: Can easily substitute (x4, x,), and verify that it is feasible, and
its objective value is indeed 1900
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Certificate of Optimality
Yy, t Tn dLrees

max rq + 6o + /}—-X ?0 O
r1 < 200
o | e Claim: (x4,x,) = (100,300) is
ro < 300 ] . i i
i optimal with objective value 1900
ry + ro < 400
> ()

* Any solution that satisfies these inequalities also satisfies
their positive combinations
> E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
> Try to take combinations which give you x; + 6x, on LHS
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Certificate of Optimality

max rq + 69
r1 < 200
ry < 300 . Clal.m: (xl.,xz) = (100,300) is
optimal with objective value 1900
ry + ro < 400
> ()

—
ot
R
~
v
o

e first_constraint + 6*second_constraint
> X1 +6x, <200+ 6 300 = 2000
> This shows that no feasible solution can beat 2000
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Certificate of Optimality

max rq + 69
r1 < 200
9 < 300 . Clal.m: (xl.,xz) = (100,300) is
optimal with objective value 1900
r1 + ro < 400
> ()

L1,L9

* 5*second_constraint + third _constraint
> 5x, + (x1 + x,) <5300+ 400 = 1900
> This shows that no feasible solution can beat 1900
o No need to proceed further

o We already know one solution that achieves 1900, so it must be
optimal!
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[s There a General Algorithm?

* Introduce variables y4, v,, y3 by which we will be
multiplying the three constraints
> Note: These need not be integers. They can be reals.

Multiplier Inequality
200

300
400

Y1 I
Y2 )

I /'\\‘ I / \ | ,/ .\

3 L1 T+ I9

ding constraints, we get:
x; < 200y, + 300y, + 400y3

[ - e —
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[s There a General Algorithm?

Multiplier Inequality
Y1 | 200

Yo 300
Y3 i =+ 400

| (N
IA A IA

£
Je

-

I

> We have:

()’]Jﬁia)ﬁ + (Q-£33)x; SBO% + 300y, + 400y
e fid S -

\

> Wﬁat do we wzg\1t?
oy > 0 because otherwise direction of inequality flips

o Lﬂ§ to Ioo!< I.|ke ob'Je:‘ctlve x]#-l;éxz o
* Infact, it is sufficient for LHS to be an upper bound on objective

* So,wewanty; +y; =1landy, +y; =6
—_—\
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[s There a General Algorithm?

Multiplier Inequality
Y1 | 200
o I'9 300
400

| /l\\‘ | / \ | ,./.\

3 L1 T+ I9

> We have:
(y1 + ¥3)x1 + (y2 + ¥3)x2 < 200y, + 300y, + 400y;

> What do we want?

°0 Y1,Y2,¥3 =20
> V3 >
Og%ftlh' - —t6t minimize th bound 200y, +
O Supject to these, we want to minimize e upper ooun V1
300y, + 400y, — T
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[s There a General Algorithm?

Multiplier Inequality
Y1 | 200
o I 300
Ua | + T 400

N o
IA A IA

> We have:
(y1 + ¥3)x1 + (y2 + ¥3)x2 < 200y, + 300y, + 400y;

» What do we want?
o This is just another LP!
o Called the dual Y1 +ys > 1
o Original LP is called the primal ys + 3 > 6

min 200y; + 300y + 400y,

y1.y2,y3 = 0
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[s There a General Algorithm?

PRIMAL DUAL
max ., + 6o
T < 200

ro < 300 Yy +uy3 > 1

min 200y, + 300y + 40044

1+ o _ 100 Y2 + Y3 =2 6

yr.y2.y3 = 0

> The problem of verifying optimality is another LP

o Forany (y4,y,,y3) that you can find, the objective value of the
dual is an upper bound on the objective value of the primal

o If you found a specific (4, y,, ¥3) for which this dual objective
becomes equal to the primal objective for the (x4, x,) given to
you, then you would know that the given (x4, x,) is optimal for
primal (and your (v4, ¥», ¥3) is optimal for dual)
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[s There a General Algorithm?

PRIMAL DUAL
max ., + 6o
T < 200

ro < 300 Yy +uy3 > 1

min 200y, + 300y + 40044

r1 + 1o _ 400) Y2 + Y3 =2 6

>0 y1.42.43 = 0

> The problem of verifying optimality is another LP

o Issue 1: But...but...if | can’t solve large LPs, how will | solve the dual
to verify if optimality of (x4, x,) given to me?

* You don’t. Ask the other party to give you both (x4, x,) and the
corresponding (v1, V,, ¥3) for proof of optimality

o Issue 2: What if there are no (y4, ¥, ¥3) for which dual objective
matches primal objective under optimal solution (x{, x,)?

* As we will see, this can’t happen!
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[s There a General Algorithm?

Primal LP Dual LP
max c x i1 y,b
CAxsEY fyTazd
x >0 y >0

——

—

> General version, in our standard form for LPs
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[s There a General Algorithm?

Primal LP Dual LP
max ¢! x 1min y'l'b
Ax <b yI'A >cl
x =0 y > 0
o c!'x for any feasible x < y'b for any feasible y
o  max_  c'x < min  y'b
primal feasible x dual feasible y

o If thereis (x*, y*) with c’x* = (y*)T b, then both must be optimal

o In fact, for optimal (x*, y*), we claim that this must happen!
* Does this remind you of something? Max-flow, min-cut...
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Weak Duality

Primal LP Dual LP
max ¢! x min y'l'b
Ax <b yIA >c!

x >0 y >0

* From here on, assume primal LP is feasible and bounded
L//F/'

* Weak duality theorem:
> For any primal feasible x and dual feasible y, cTx < yTh

* Proof:
cTx <(yTA)x =yT(Ax) < yTb
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Y:onx|  Armxn
Strong Duality x|

—————
\Ir ﬁ Primal LP Dual LP (L NX \
j LD _/ -/\
[Y;‘ﬁf‘} L 111<1\ jx min 21 b cﬂf X
. 1
[ m J o Axsh /\93,2_(»4 mx |
) x>0 y > 0 j
Lh | xn

* Strong duality theorem:

> For any primal optimal x* and dual optimal y*, c"x* = (y")"b

Primal Dual

- Primal feasible opt 0=pt Dual feasible { Objective

- |
This duality gap is zero @ ( ﬁ/{//
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This slide is not in the

Strong Duality Proof scope of the course

* Farkas’ lemma (one of many, many versions):
> Exactly one of the following holds:
1) There exists x such that Ax < b
2) There exists y suchthaty’A =0, y >0, y'b <0

* Geometric intuition:
> Define image of A = set of all possible values of Ax

> Itis known that this is a “linear subspace” (e.g., a line in a plane, a
line or plane in 3D, etc)
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This slide is not in the

Strong Duality Proof scope of the course

* Farkas’ lemma: Exactly one of the following holds:

1) There exists x such that Ax < b

2) There exists y suchthat y7TA =0, y>0, yTb <0

1) Image of A contains a point “below” b 2) The region “below” b doesn’t intersect image of A
this is witnessed by normal vector to the image of A

Image of A, aka
linear subspace
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This slide is not in the

Str() ng Duallty scope of the course

Primal LP Dual LP
max ¢! x min yil'b
Ax <b yIA >c!

x >0 y >0

e Strong duality theorem:
> For any primal optimal x* and dual optimal y*, cTx* = (y*)Tb
> Proof (by contradiction):
o Let z* = cTx* be the optimal primal value.

o Suppose optimal dual objective value > z*
o So, thereisno y such that y’A > ¢T and y'b < z%, i.e,,

(_b/f) y<(,)
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This slide is not in the

StrO ng Duallty scope of the course

—AT C
> There is no y such that ( BT )y = (Z)
> By Farkas’ lemma, there is x and A such that
' &T
(xT ,1)( b/; ) =0,x>20,A20—-xTc+1z*<0
> Case1: 1 >0
o Note: cTx > Az* and Ax = 0 = Ab.

o Divide both by 1 to get A G) =bandcT G) > z*

e Contradicts optimality of z*

» Case2: A =0
o Wehave Ax =0andclx >0

o Adding x to optimal x™ of primal improves objective value beyond z* =
contradiction
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Exercise: Formulating LPs

— -
° : o |51: 200 tonnes at $11/tonne
A car)nlng company operates two =+ |$7-310tonnes at $10/tonne
canning plants (A and B). " ( o$3: 420 tonnes at $9/tonne
1 .
* Three suppliers of fresh fruits: --- ~—
To: Plant A Plant B
. . . From: ﬂ 3 3.5
* Shipping costs in S/tonne: - ___ R 2 2 2.5
T ee— 53 B 4
* Plant capacities and labour costs: Plant A Plant B
: Capacity 458 tonnes 56@ tonnes
____________ > Labour cost %26/ /tonne $£21/tonne

Selling price: $50/tonne, no limit

—_—

—

Objective: Find which plant should get how much supply
from each grower to maximize profit
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Exercise: Formulating LPs™ Ag = O
22
e Similarly to the brewery example from earlier: =

> A brewery can invest its inventory of corn, hops and malt into

producing three types of beer 0
> Per unit resource requirement and profit are as given below 7
P} > The brewery cannot produce positive amounts of both A and B ﬂc
> Goal: maximize profit /\Pfﬁ e?
Soevrsge | Com )| o | ) | o ) |
L O A 5 4 35 13
1L B 15 4 20 23
Lq ( i, C LC? 751; 7 25 15
Limit 300 1000
T D e L Op
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Exercise: Formulating LPs x> 73

e Similarly to the brewery example from the beginning: K?( J

> A brewery can invest its inventory of corn, hops and malt into
producing three types of beer _ é ?\

> Per unit resource requirement and profit are as given below
Y > The brewery can only produce C in integral guantities up to 100

> Goal: maximize profit N, © é?’

| Beverage |_Com (ke) | Hops (ke) | Mkt kg) | Profit (5)_EVESEEANA
A 5 4 35 C

13

B 15 4 20 23

C 10 7 25 15
Limit 500 300 1000
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Exercise: Formulating LPs

e Similarly to the brewery example from the beginning:

> A brewery can invest its inventory of corn, hops and malt into
producing three types of beer
> Per unit resource requirement and profit are as given below

> Goal: maximize profit, but if there are multiple profit-maximizing
solutions, then...

o Break ties to choose those with the largest quantity of 4

o Break any further ties to choose those with the largest quantltg of B

m

B 15 4 20 23
C 10 7 25 15
Limit 500 300 1000

373522 - Deepanshu Kush




373522 - Deepanshu Kush






More Trlcks

Constraint: [x| < 3
—> > Replace W|th constraints x < _. 3 and —x <3
> What if the constraint is |x| > 37

——————

= >

9L<3

Objective: minimize 3|x| + y

> Add a variable t

» Add the constraintst = xandt = —x (sot = |x|)
» Change the objective to minimize 3t + y

> What if the objective is to maximize 3|x| + y?

Objective: minimize max(3x + y, x + 2y)

> Hint: minimizing 3|x| + y in the earlier bullet was equivalent to
minimizing max(3x + y,—3x + y)
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More Trick
=t <[]
Constraint: Ig_cJ___S_:Ea

> Replace with constraints x < 3 and —x < 3

> What if the constraint i ﬁ?)\ de

Objective: minimize 3|x| +y

6\)2”5 -
) s vaisie P () D Ll %) e
> Ad e constraintst = xandt = —x (sot = |x]|) f\ S0 XA

» Change the objective to minimize 3t + y X Yo LD
w —_—
> What if the objective is to max1mlze SLJ/;I/—_Q/ £
: —~D [ - T
Objective: minimize maX\(Bx 3x+yx+2y) _

> Hint: minimizing 3| x| +V}1 the earlier bullet was equivalent to
minimizing max(3x + y,—3x + y)

... . { g%—ﬁ\j
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LINEAR PROGRAMMING
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Network Flow via LP

* Problem A
> Input: directed graph G = (V, E), edge capacities
C. E - [RZO
> Output: Value v(f*) of a maximum flow f*

* Flow f is valid if:
» Capacity constraints: V(u,v) € E: 0 < f(u,v) < c(u,v)
> Flow conservation: Vu # s, t: Xy yyep f (U, V) = X wyep f (0, W)

< Maximize () = Zpep 5,
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Network Flow via LP

maximize Z fsv

(S,V)EE

0< fir < c(u,v) forall (u,v) €E

fuv = z fow forallv € V\{s, t}

(uw,v)EE (v,Ww)EE

\ Exercise: Write the dual of this LP.

What is the dual trying to find?
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Shortest Path via LP (—fﬁ 7 ﬁ{t /f
(. Problem | }1;\((&“\ s

> Input: directed graph G = (V, E), edge weights
w: E - R, source vertex s, target vertex t

s Output: weight of the shortest-weight path from s to t )

— ——

* Variables: for each vertex v, we have variable d,,

Exercise: prove formally

m—&mammlze d, — that this works!
subjeet

‘_\5\ d, +w(u,v)
If objective was min., then we
could set all variables d,, to 0.

for each edge (u.v) € E .







But...but...

* For these problems, we have different combinatorial
algorithms that are much faster and run in strongly
polynomial time — =

* Why would we use LP?
Ak

. Forrv’swp@ms, we don’t have faster algorithms than
solving them via LP
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Multicommodity-Flow
7o Problem: )

> Input: directed graph G = (V, E), edge capacities c: E = R,
k commodities (s;, t;, d;), where s; is source of comﬁo’(ﬁy [, t;is
sink, and d; is demand. ——
> Output: vaMommodity flow (f1, f5, ..., fx), where f; has value
\ d; and all f; jointly satisfy the constraints /

foreachu.v e V ,

The only known polynomial

time algarithm for this problem foreachi = 1,2,...,k and
is based on solving LP! =y =p foreachu € V — {s;.1;} .
foreachi = 1,2...., k .
.7‘},,,, > 0 for each u,v € V and
forgaehi = 2. 4 «
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Integer Linear Programming

e Variable values are restricted to be integers

* Example:
> Input: c € R", b € R™, 4 € R™*"
> Goal:

Maximize c¢Tx

Subjectto Ax < b 3()
2\ ¥

. € {0, 13" L
K R0 (F Feoy {0,1} 7%%/
* Does this make the problem easier or harder.

> Harder. We'll prove that this is “NP-complete”.
N\ /
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LPs are everywhere...

Microeconomics

Manufacturing

VLSI (very large scale integration) design
Logistics/transportation

Portfolio optimization

Bioengineering (flux balance analysis)

Operations research more broadly: maximize profits or minimize
costs, use linear models for simplicity

Design of approximation algorithms
> Proving theorems, as a proof technique

vV VYV VY YV VY VYV V

A\
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