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• Suppose you design a state-of-the-art LP solver that can 
solve very large problem instances

• You want to convince someone that you have this new 
technology without showing them the code
➢ Idea: They can give you very large LPs and you can quickly return the 

optimal solutions

➢ Question: But how would they know that your solutions are optimal, 
if they don’t have the technology to solve those LPs?
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• Suppose I tell you that 𝑥1, 𝑥2 = (100,300) is optimal with 
objective value 1900

• How can you check this?
➢ Note: Can easily substitute (𝑥1, 𝑥2), and verify that it is feasible, and 

its objective value is indeed 1900
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• Any solution that satisfies these inequalities also satisfies 
their positive combinations
➢ E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint

➢ Try to take combinations which give you 𝑥1 + 6𝑥2 on LHS

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900
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• first_constraint + 6*second_constraint
➢ 𝑥1 + 6𝑥2 ≤ 200 + 6 ∗ 300 = 2000

➢ This shows that no feasible solution can beat 2000

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900
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• 5*second_constraint + third_constraint
➢ 5𝑥2 + 𝑥1 + 𝑥2 ≤ 5 ∗ 300 + 400 = 1900

➢ This shows that no feasible solution can beat 1900

o No need to proceed further

o We already know one solution that achieves 1900, so it must be 
optimal!

• Claim: 𝑥1, 𝑥2 = (100,300) is 
optimal with objective value 1900
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• Introduce variables 𝑦1, 𝑦2, 𝑦3 by which we will be 
multiplying the three constraints
➢ Note: These need not be integers. They can be reals.

• After multiplying and adding constraints, we get:
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?

o 𝑦1, 𝑦2, 𝑦3 ≥ 0 because otherwise direction of inequality flips

o LHS to look like objective 𝑥1 + 6𝑥2
• In fact, it is sufficient for LHS to be an upper bound on objective

• So, we want 𝑦1 + 𝑦3 ≥ 1 and 𝑦2 + 𝑦3 ≥ 6
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?

o 𝑦1, 𝑦2, 𝑦3 ≥ 0

o 𝑦1 + 𝑦3 ≥ 1, 𝑦2 + 𝑦3 ≥ 6

o Subject to these, we want to minimize the upper bound 200𝑦1 +
300𝑦2 + 400𝑦3
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➢ We have: 
𝑦1 + 𝑦3 𝑥1 + 𝑦2 + 𝑦3 𝑥2 ≤ 200𝑦1 + 300𝑦2 + 400𝑦3

➢ What do we want?

o This is just another LP!

o Called the dual

o Original LP is called the primal
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➢ The problem of verifying optimality is another LP
o For any 𝑦1, 𝑦2, 𝑦3 that you can find, the objective value of the 

dual is an upper bound on the objective value of the primal

o If you found a specific 𝑦1, 𝑦2, 𝑦3 for which this dual objective 
becomes equal to the primal objective for the (𝑥1, 𝑥2) given to 
you, then you would know that the given 𝑥1, 𝑥2 is optimal for 
primal (and your (𝑦1, 𝑦2, 𝑦3) is optimal for dual)
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➢ The problem of verifying optimality is another LP
o Issue 1: But…but…if I can’t solve large LPs, how will I solve the dual 

to verify if optimality of (𝑥1, 𝑥2) given to me?

• You don’t. Ask the other party to give you both (𝑥1, 𝑥2) and the 
corresponding 𝑦1, 𝑦2, 𝑦3 for proof of optimality

o Issue 2: What if there are no (𝑦1, 𝑦2, 𝑦3) for which dual objective 
matches primal objective under optimal solution (𝑥1, 𝑥2)?

• As we will see, this can’t happen!
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Primal LP Dual LP

➢ General version, in our standard form for LPs
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Primal LP Dual LP

o 𝑐𝑇𝑥 for any feasible 𝑥 ≤ 𝑦𝑇𝑏 for any feasible 𝑦

o max
primal feasible 𝑥

𝑐𝑇𝑥 ≤ min
dual feasible 𝑦

𝑦𝑇𝑏

o If there is (𝑥∗, 𝑦∗) with 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏, then both must be optimal

o In fact, for optimal 𝑥∗, 𝑦∗ , we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut…



Weak Duality

373S22 - Deepanshu Kush 59

• From here on, assume primal LP is feasible and bounded

• Weak duality theorem:
➢ For any primal feasible 𝑥 and dual feasible 𝑦, 𝑐𝑇𝑥 ≤ 𝑦𝑇𝑏

• Proof:
𝑐𝑇𝑥 ≤ 𝑦𝑇𝐴 𝑥 = 𝑦𝑇 𝐴𝑥 ≤ 𝑦𝑇𝑏

Primal LP Dual LP
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

Primal LP Dual LP
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• Farkas’ lemma (one of many, many versions):
➢ Exactly one of the following holds:

1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

• Geometric intuition:
➢ Define image of 𝐴 = set of all possible values of 𝐴𝑥

➢ It is known that this is a “linear subspace” (e.g., a line in a plane, a 
line or plane in 3D, etc)

This slide is not in the 
scope of the course
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• Farkas’ lemma: Exactly one of the following holds:
1) There exists 𝑥 such that 𝐴𝑥 ≤ 𝑏

2) There exists 𝑦 such that 𝑦𝑇𝐴 = 0, 𝑦 ≥ 0, 𝑦𝑇𝑏 < 0

1) Image of 𝐴 contains a point “below” 𝑏 2) The region “below” 𝑏 doesn’t intersect image of 𝐴
this is witnessed by normal vector to the image of 𝐴

This slide is not in the 
scope of the course
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• Strong duality theorem:
➢ For any primal optimal 𝑥∗ and dual optimal 𝑦∗, 𝑐𝑇𝑥∗ = 𝑦∗ 𝑇𝑏

➢ Proof (by contradiction):

o Let 𝑧∗ = 𝑐𝑇𝑥∗ be the optimal primal value. 

o Suppose optimal dual objective value > 𝑧∗

o So, there is no 𝑦 such that 𝑦𝑇𝐴 ≥ 𝑐𝑇 and 𝑦𝑇𝑏 ≤ 𝑧∗, i.e.,

Primal LP Dual LP

This slide is not in the 
scope of the course
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➢ There is no 𝑦 such that

➢ By Farkas’ lemma, there is 𝑥 and 𝜆 such that

➢ Case 1: 𝜆 > 0
o Note: 𝑐𝑇𝑥 > 𝜆𝑧∗ and 𝐴𝑥 = 0 = 𝜆𝑏. 

o Divide both by 𝜆 to get 𝐴
𝑥

𝜆
= 𝑏 and 𝑐𝑇

𝑥

𝜆
> 𝑧∗

• Contradicts optimality of 𝑧∗

➢ Case 2: 𝜆 = 0

o We have 𝐴𝑥 = 0 and 𝑐𝑇𝑥 > 0

o Adding 𝑥 to optimal 𝑥∗ of primal improves objective value beyond 𝑧∗ ⇒
contradiction

This slide is not in the 
scope of the course
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• A canning company operates two
canning plants (A and B). 

• Three suppliers of fresh fruits:

• Shipping costs in $/tonne:

• Plant capacities and labour costs:

• Selling price: $50/tonne, no limit

• Objective: Find which plant should get how much supply 
from each grower to maximize profit
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• Similarly to the brewery example from earlier:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ The brewery cannot produce positive amounts of both A and B

➢ Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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• Similarly to the brewery example from the beginning:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ The brewery can only produce 𝐶 in integral quantities up to 100

➢ Goal: maximize profit

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000
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• Similarly to the brewery example from the beginning:
➢ A brewery can invest its inventory of corn, hops and malt into 

producing three types of beer

➢ Per unit resource requirement and profit are as given below

➢ Goal: maximize profit, but if there are multiple profit-maximizing 
solutions, then…

o Break ties to choose those with the largest quantity of 𝐴

o Break any further ties to choose those with the largest quantity of 𝐵

Beverage Corn (kg) Hops (kg) Malt (kg) Profit ($)

A 5 4 35 13

B 15 4 20 23

C 10 7 25 15

Limit 500 300 1000



373S22 - Deepanshu Kush 76



373S22 - Deepanshu Kush 77



More Tricks

373S22 - Deepanshu Kush 78

• Constraint: 𝑥 ≤ 3
➢ Replace with constraints 𝑥 ≤ 3 and −𝑥 ≤ 3

➢ What if the constraint is 𝑥 ≥ 3?

• Objective: minimize 3 𝑥 + 𝑦
➢ Add a variable 𝑡

➢ Add the constraints 𝑡 ≥ 𝑥 and 𝑡 ≥ −𝑥 (so 𝑡 ≥ |𝑥|)

➢ Change the objective to minimize 3𝑡 + 𝑦

➢ What if the objective is to maximize 3 𝑥 + 𝑦?

• Objective: minimize max(3𝑥 + 𝑦, 𝑥 + 2𝑦)
➢ Hint: minimizing 3 𝑥 + 𝑦 in the earlier bullet was equivalent to 

minimizing max(3𝑥 + 𝑦,−3𝑥 + 𝑦)

• …
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• Constraint: 𝑥 ≤ 3
➢ Replace with constraints 𝑥 ≤ 3 and −𝑥 ≤ 3

➢ What if the constraint is 𝑥 ≥ 3?

• Objective: minimize 3 𝑥 + 𝑦
➢ Add a variable 𝑡

➢ Add the constraints 𝑡 ≥ 𝑥 and 𝑡 ≥ −𝑥 (so 𝑡 ≥ |𝑥|)

➢ Change the objective to minimize 3𝑡 + 𝑦

➢ What if the objective is to maximize 3 𝑥 + 𝑦?

• Objective: minimize max(3𝑥 + 𝑦, 𝑥 + 2𝑦)
➢ Hint: minimizing 3 𝑥 + 𝑦 in the earlier bullet was equivalent to 

minimizing max(3𝑥 + 𝑦,−3𝑥 + 𝑦)

• …



373S22 - Deepanshu Kush 83



Network Flow via LP

373S22 - Deepanshu Kush 4

• Problem
➢ Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities 

𝑐: 𝐸 → ℝ≥0

➢ Output: Value 𝑣 𝑓∗ of a maximum flow 𝑓∗

• Flow 𝑓 is valid if:
➢ Capacity constraints: ∀ 𝑢, 𝑣 ∈ 𝐸: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐(𝑢, 𝑣)

➢ Flow conservation: ∀𝑢 ≠ 𝑠, 𝑡: σ 𝑢,𝑣 ∈𝐸 𝑓 𝑢, 𝑣 = σ 𝑣,𝑢 ∈𝐸 𝑓 𝑣, 𝑢

• Maximize 𝑣 𝑓 = σ 𝑠,𝑣 ∈𝐸 𝑓 𝑠, 𝑣

Linear objective!

Linear constraints
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෍

(𝑠,𝑣)∈𝐸

𝑓𝑠𝑣

0 ≤ 𝑓𝑢𝑣 ≤ 𝑐 𝑢, 𝑣

෍

(𝑢,𝑣)∈𝐸

𝑓𝑢𝑣 = ෍

(𝑣,𝑤)∈𝐸

𝑓𝑣,𝑤

for all (𝑢, 𝑣) ∈ 𝐸

for all 𝑣 ∈ 𝑉\{𝑠, 𝑡}

maximize

Exercise: Write the dual of this LP. 
What is the dual trying to find?



Shortest Path via LP

• Problem
➢ Input: directed graph 𝐺 = 𝑉, 𝐸 , edge weights 

𝑤: 𝐸 → ℝ≥0, source vertex 𝑠, target vertex 𝑡

➢ Output: weight of the shortest-weight path from 𝑠 to 𝑡

• Variables: for each vertex 𝑣, we have variable 𝑑𝑣

Why max?

If objective was min., then we 
could set all variables 𝑑𝑣 to 0.

Exercise: prove formally 
that this works!

373S22 - Deepanshu Kush 6



373S22 - Deepanshu Kush 7



But…but…

373S22 - Deepanshu Kush 8

• For these problems, we have different combinatorial 
algorithms that are much faster and run in strongly 
polynomial time

• Why would we use LP?

• For some problems, we don’t have faster algorithms than 
solving them via LP
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• Problem:
➢ Input: directed graph 𝐺 = (𝑉, 𝐸), edge capacities 𝑐: 𝐸 → ℝ≥0, 

𝑘 commodities (𝑠𝑖 , 𝑡𝑖 , 𝑑𝑖), where 𝑠𝑖 is source of commodity 𝑖, 𝑡𝑖 is 
sink, and 𝑑𝑖 is demand.

➢ Output: valid multicommodity flow 𝑓1, 𝑓2, … , 𝑓𝑘 , where 𝑓𝑖 has value 
𝑑𝑖 and all 𝑓𝑖 jointly satisfy the constraints

The only known polynomial 
time algorithm for this problem 

is based on solving LP!
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Integer Linear Programming
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• Variable values are restricted to be integers

• Example:
➢ Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

➢ Goal:

Maximize       𝑐𝑇𝑥

Subject to      𝐴𝑥 ≤ 𝑏

𝒙 ∈ {𝟎, 𝟏}𝒏

• Does this make the problem easier or harder?
➢ Harder. We’ll prove that this is “NP-complete”.
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➢ Microeconomics

➢ Manufacturing

➢ VLSI (very large scale integration) design

➢ Logistics/transportation

➢ Portfolio optimization

➢ Bioengineering (flux balance analysis)

➢ Operations research more broadly: maximize profits or minimize 
costs, use linear models for simplicity

➢ Design of approximation algorithms

➢ Proving theorems, as a proof technique

➢ …


