Certificate of Optimality

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
 - Idea: They can give you very large LPs and you can quickly return the optimal solutions
 - Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

Certificate of Optimality

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

- Suppose I tell you that $(x_1, x_2) = (100,300)$ is optimal with objective value 1900
- How can you check this?
 - Note: Can easily substitute (x₁, x₂), and verify that it is feasible, and its objective value is indeed 1900

Certificate of Optimality $2 \times 47 \times 2 \times 200$ $2 \times 47 \times 2 \times 200$ $+7 \times 300$

- $x_1 \le 200$
 - $x_2 < 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
 - E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
 - > Try to take combinations which give you $x_1 + 6x_2$ on LHS

Certificate of Optimality

- $\max x_1 + 6x_2$
 - $x_1 \leq 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- first_constraint + 6*second_constraint
 - > $x_1 + 6x_2 ≤ 200 + 6 * 300 = 2000$
 - > This shows that no feasible solution can beat 2000

Certificate of Optimality

- $\max x_1 + 6x_2$
 - $x_1 \le 200$
 - $x_2 \le 300$
- $x_1 + x_2 \le 400$
 - $x_1, x_2 \ge 0$

• Claim: $(x_1, x_2) = (100,300)$ is optimal with objective value 1900

- 5*second_constraint + third_constraint
 - > $5x_2 + (x_1 + x_2) ≤ 5 * 300 + 400 = 1900$
 - > This shows that no feasible solution can beat 1900
 - $\,\circ\,$ No need to proceed further
 - We already know one solution that achieves 1900, so it must be optimal!

- Introduce variables y_1, y_2, y_3 by which we will be multiplying the three constraints
 - Note: These need not be integers. They can be reals.

Multiplier	Inequality			
y_1	x_1		\leq	200
y_2		x_2	\leq	300
y_3	$x_1 + $	x_2	\leq	400

Multiplier Inequality $x_1 \leq 200$ y_1 y_2

 \succ We have: $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

What do we want?

 $y_1, y_2, y_3 \ge 0$ because otherwise direction of inequality flips

 \circ LHS to look like objective $x_1 + 6x_2$

 y_3

• In fact, it is sufficient for LHS to be an upper bound on objective

• So, we want
$$y_1 + y_3 \ge 1$$
 and $y_2 + y_3 \ge 6$

Multiplier	I	Inequality				
y_1	x_1		≤ 200			
y_2		x_2	≤ 300			
y_3	x_1 -	$-x_2$	≤ 400			

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

Multiplier	Inequality			
y_1	x_1		≤ 200	
y_2		x_2	≤ 300	
y_3	x_1 -	$+ x_2$	≤ 400	

> We have:

 $(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

 $\min \ 200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$

$$y_1, y_2, y_3 \ge 0$$

PRIMAL

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

DUAL

min $200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- \circ For any (y_1, y_2, y_3) that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific (y_1, y_2, y_3) for which this dual objective becomes equal to the primal objective for the (x_1, x_2) given to you, then you would know that the given (x_1, x_2) is optimal for primal (and your (y_1, y_2, y_3) is optimal for dual)

PRIMAL

 $\max x_1 + 6x_2$ $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

DUAL

min $200y_1 + 300y_2 + 400y_3$ $y_1 + y_3 \ge 1$ $y_2 + y_3 \ge 6$ $y_1, y_2, y_3 \ge 0$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of (x_1, x_2) given to me?
 - You don't. Ask the other party to give you both (x₁, x₂) and the corresponding (y₁, y₂, y₃) for proof of optimality
- Issue 2: What if there are no (y_1, y_2, y_3) for which dual objective matches primal objective under optimal solution (x_1, x_2) ?
 - As we will see, this can't happen!

General version, in our standard form for LPs

Primal LP	Dual LP		
$\max \mathbf{c}^T \mathbf{x}$	min $\mathbf{y}^T \mathbf{b}$		
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T$		
$\mathbf{x} \ge 0$	$\mathbf{y} \geq 0$		

 $\circ c^T x$ for any feasible $x \leq y^T b$ for any feasible y

 $\circ \max_{\text{primal feasible } x} c^T x \le \min_{\text{dual feasible } y} y^T b$

• If there is (x^*, y^*) with $c^T x^* = (y^*)^T b$, then both must be optimal

 \circ In fact, for optimal (x^* , y^*), we claim that this must happen!

• Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:

> For any primal feasible x and dual feasible y, $c^T x \le y^T b$

• Proof:

$$c^T x \le (y^T A)x = y^T (Ax) \le y^T b$$

> For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$

Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma (one of many, many versions):
 - Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

• Geometric intuition:

- > Define image of A = set of all possible values of Ax
- It is known that this is a "linear subspace" (e.g., a line in a plane, a line or plane in 3D, etc)

Strong Duality Proof

This slide is not in the scope of the course

- Farkas' lemma: Exactly one of the following holds:
 - 1) There exists x such that $Ax \leq b$
 - 2) There exists y such that $y^T A = 0$, $y \ge 0$, $y^T b < 0$

1) Image of A contains a point "below" b

2) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A

Strong Duality

Primal LPDual LP $\max \mathbf{c}^T \mathbf{x}$ $\min \mathbf{y}^T \mathbf{b}$ $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$ $\mathbf{x} \geq 0$ $\mathbf{y} \geq 0$

- Strong duality theorem:
 - > For any primal optimal x^* and dual optimal y^* , $c^T x^* = (y^*)^T b$
 - > Proof (by contradiction):
 - Let $z^* = c^T x^*$ be the optimal primal value.
 - $\,\circ\,$ Suppose optimal dual objective value $> z^*$
 - So, there is no y such that $y^T A \ge c^T$ and $y^T b \le z^*$, i.e.,

$$\binom{-A^T}{b^T} y \le \binom{c}{z^*}$$

Strong Duality

This slide is not in the scope of the course

> There is no y such that
$$\begin{pmatrix} -A^T \\ b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ z^* \end{pmatrix}$$

 \succ By Farkas' lemma, there is x and λ such that

$$(x^T \quad \lambda) \begin{pmatrix} -A^T \\ b^T \end{pmatrix} = 0, x \ge 0, \lambda \ge 0, -x^T c + \lambda z^* < 0$$

> Case 1: $\lambda > 0$

• Note: $c^T x > \lambda z^*$ and $Ax = 0 = \lambda b$.

- Divide both by λ to get $A\left(\frac{x}{\lambda}\right) = b$ and $c^T\left(\frac{x}{\lambda}\right) > z^*$
 - Contradicts optimality of z^*

> Case 2: $\lambda = 0$

- We have Ax = 0 and $c^T x > 0$
- Adding x to optimal x^* of primal improves objective value beyond $z^* \Rightarrow$ contradiction

Exercise: Formulating LPs

- A canning company operates two canning plants (A and B).
- Three suppliers of fresh fruits: ---
- Shipping costs in \$/tonne: _____
- Plant capacities and labour costs:

•	S1: 200 tonnes at \$11/tonne
•	S2: 310 tonnes at \$10/tonne
•	S3: 420 tonnes at \$9/tonne

		To:	Plant /	A	Plant B
From:	S1		3		3.5
	S2		2		2.5
	S3		6		4

•		Plant A	Plant B
	Capacity	460 tonnes	560 tonnes
- •	Labour cost	\$26/tonne	\$21/tonne

- Selling price: \$50/tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit

H; = # tonnes of fruit purchased i E 21, 2, 33 to plant j $j \in \{A, B\}$ $\frac{max: 50(2 x_{ij}) - 3x_{14} - 3.5x_{18}}{(6342.5)} - 2x_{24} - 2.5x_{25}$ Kunchase out × 1 2 + 2 + 2 2 + 373S22 - Deepansinu Kush

netraints: $\chi_{1A} + \chi_{1B} \leq 200, \chi_{2A} + \chi_{2B} \leq 310,$ 73A + 73B < 420 $\chi_{1A} + \chi_{2A} + \chi_{3A} \leq 410$ $\chi_{13} + \chi_{2B} + \chi_{3B} \leq 560$ $\chi_{ij} \gtrsim 0$

XAINBIXLZONXATABEMAXZ Exercise: Formulating LP

- Similarly to the brewery example from earlier:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - The brewery cannot produce positive amounts of both A and B
 - Goal: maximize profit

	Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$) -	
R _A	А	5	4	35	13	
22	В	15	4	20	23	
) P(2.	С	10	7	25	15	
	Limit	500	300	1000		
MATT	7 [Daa	$(\bigcirc \mathbf{h}_{\mathcal{P}})$
375S22 - Dee	epanshu Kush	KED				69

 $\frac{1}{2}\chi \left[\chi_{F}^{2} = 0 \text{ or } \chi_{g}^{2} = 0 \right],$ XA, XB, XL \mathcal{O} (5, 0, 3) & (0, 5)(2.5, 2.5, 3)5,3

Pratible region 2 Feasible region 1 XA1X8, X70 L K L X

$67.12\chi_{2} \leq 67.4$ Exercise: Formulating LPs κ_{2}^{2}

- Similarly to the brewery example from the beginning:
 - A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - Per unit resource requirement and profit are as given below
 - The brewery can only produce C in integral quantities up to 100
 - Goal: maximize profit

\leq	Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)	91 269
) [A	5	4	35	13	RC
	В	15	4	20	23	
	С	10	7	25	15	
	Limit	500	300	1000		

Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
 - > A brewery can invest its inventory of corn, hops and malt into producing three types of beer
 - > Per unit resource requirement and profit are as given below
 - Goal: maximize profit, <u>but if there are multiple profit-maximizing</u> solutions, then...
 - Break ties to choose those with the largest quantity of A
 - Break any further ties to choose those with the largest quantity of B

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
А	5	4	35	13
В	15	4	20	23
С	10	7	25	15
Limit	500	300	1000	

More Tricks

- $^{>}$ Constraint: |x| ≤
- → Replace with constraints $x \leq 3$ and $-x \leq 3$
 - > What if the constraint is $|x| \ge 3$?
 - Objective: minimize 3|x| + y
 - > Add a variable t
 - > Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)
 - > Change the objective to minimize 3t + y
 - > What if the objective is to maximize 3|x| + y?
 - Objective: minimize max(3x + y, x + 2y)
 - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing max(3x + y, -3x + y)

More Tricks

- Constraint: $|x| \leq$
 - > Replace with constraints $x \leq 3$ and $-x \leq 3$
 - > What if the constraint is $|x| \ge 3$
- Objective: minimize 3|x| + y'Add a variable t (χ, η)
 - > Add the constraints $t \ge x$ and $t \ge -x$ (so $t \ge |x|$)
 - > Change the objective to minimize 3t + y
 - > What if the objective is to maximize $3|x| + \gamma$?
- Objective: minimize max(3x + y, x + 2y)
 - > Hint: minimizing 3|x| + y in the earlier bullet was equivalent to minimizing $\max(3x + y, -3x + y)$

Network Flow via LP

• Problem

- ▶ Input: directed graph G = (V, E), edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- > Output: Value $v(f^*)$ of a maximum flow f^*
- Flow *f* is valid if:
 - ► Capacity constraints: $\forall(u, v) \in E: 0 \le f(u, v) \le c(u, v)$
 - ▶ Flow conservation: $\forall u \neq s, t: \sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$
- Maximize $v(f) = \sum_{(s,v) \in E} f(s,v)$

Linear constraints

Linear objective!

Network Flow via LP

But...but...

- For these problems, we have different combinatorial algorithms that are much faster and run in strongly polynomial time
- Why would we use LP?
- For some problems, we don't have faster algorithms than solving them via LP

Multicommodity-Flow

• Problem:

- > Input: directed graph G = (V, E), edge capacities $c: E \to \mathbb{R}_{\geq 0}$, k commodities (s_i, t_i, d_i) , where s_i is source of commodity i, t_i is sink, and d_i is demand.
- Output: valid multicommodity flow (f₁, f₂, ..., f_k), where f_i has value d_i and all f_i jointly satisfy the constraints

The only known polynomial time algorithm for this problem is based on solving LP!

$$\sum_{\nu \in V} f_{iu\nu} - \sum_{\nu \in V} f_{i\nu u} = 0 \qquad \text{for each } i = 1, 2, \dots, k \text{ and for each } u \in V - \{s_i, t_i\},$$

$$\sum_{\nu \in V} f_{i,s_i,\nu} - \sum_{\nu \in V} f_{i,\nu,s_i} = d_i \qquad \text{for each } i = 1, 2, \dots, k \text{ ,}$$

$$f_{iu\nu} \geq 0 \qquad \text{for each } u \in V \text{ and for each } u \in V \text{ and for each } i = 1, 2, \dots, k \text{ ,}$$

Integer Linear Programming

Maximize $c^T x$

Subject to $Ax \leq b$

- Variable values are restricted to be integers
- Example:
 - > Input: $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
 - Goal:

• Does this make the problem easier or harder?

> Harder. We'll prove that this is "NP-complete".

LPs are everywhere...

- > Microeconomics
- Manufacturing
- > VLSI (very large scale integration) design
- > Logistics/transportation
- Portfolio optimization
- > Bioengineering (flux balance analysis)
- Operations research more broadly: maximize profits or minimize costs, use linear models for simplicity
- > Design of approximation algorithms
- > Proving theorems, as a proof technique

≻ ...