Certificate of Optimality

- Suppose you design a state-of-the-art LP solver that can solve very large problem instances
- You want to convince someone that you have this new technology without showing them the code
> Idea: They can give you very large LPs and you can quickly return the optimal solutions
> Question: But how would they know that your solutions are optimal, if they don't have the technology to solve those LPs?

Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Suppose I tell you that $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- How can you check this?
> Note: Can easily substitute (x_{1}, x_{2}), and verify that it is feasible, and its objective value is indeed 1900

Certificate of Optimality
 $\max x_{1}+6 x_{2}$
 $x_{1} \leq 200$
 $x_{2} \leq 300$
 $x_{1}+x_{2} \leq 400$
 $x_{1}, x_{2} \geq 0$
 - Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900

- Any solution that satisfies these inequalities also satisfies their positive combinations
> E.g. 2*first_constraint + 5*second_constraint + 3*third_constraint
> Try to take combinations which give you $x_{1}+6 x_{2}$ on LHS

Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- first_constraint + 6* second_constraint
$>x_{1}+6 x_{2} \leq 200+6 * 300=2000$
> This shows that no feasible solution can beat 2000

Certificate of Optimality

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim: $\left(x_{1}, x_{2}\right)=(100,300)$ is optimal with objective value 1900
- 5*second_constraint + third_constraint
$>5 x_{2}+\left(x_{1}+x_{2}\right) \leq 5 * 300+400=1900$
> This shows that no feasible solution can beat 1900
- No need to proceed further
- We already know one solution that achieves 1900, so it must be optimal!

Is There a General Algorithm?

- Introduce variables y_{1}, y_{2}, y_{3} by which we will be multiplying the three constraints
> Note: These need not be integers. They can be reals.

Multiplier

y_{1}	x_{1}	≤ 200
y_{2}	x_{2}	≤ 300
y_{3}	$x_{1}+x_{2}$	≤ 400

- After multiplying and adding constraints, we get:

Is There a General Algorithm?

Multiplier

y_{1}	x_{1}	≤ 200
y_{2}		x_{2}

> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$ because otherwise direction of inequality flips
- LHS to look like objective $x_{1}+6 x_{2}$
- In fact, it is sufficient for LHS to be an upper bound on objective
- So, we want $y_{1}+y_{3} \geq 1$ and $y_{2}+y_{3} \geq 6$

Is There a General Algorithm?

Multiplier
y_{1}
y_{2}
y_{3}

Inequality
$\begin{aligned} x_{1} & \leq 200 \\ x_{2} & \leq 300 \\ x_{1}+x_{2} & \leq 400\end{aligned}$
> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- $y_{1}, y_{2}, y_{3} \geq 0$
- $y_{1}+y_{3} \geq 1, y_{2}+y_{3} \geq 6$
- Subject to these, we want to minimize the upper bound $200 y_{1}+$ $300 y_{2}+400 y_{3}$

Is There a General Algorithm?

Multiplier

y_{1}	x_{1}	≤ 200
y_{2}		x_{2}
y_{3}	$x_{1}+x_{2}$	≤ 400

> We have:

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

> What do we want?

- This is just another LP!
- Called the dual
- Original LP is called the primal

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP

- For any $\left(y_{1}, y_{2}, y_{3}\right)$ that you can find, the objective value of the dual is an upper bound on the objective value of the primal
- If you found a specific $\left(y_{1}, y_{2}, y_{3}\right)$ for which this dual objective becomes equal to the primal objective for the (x_{1}, x_{2}) given to you, then you would know that the given (x_{1}, x_{2}) is optimal for primal (and your $\left(y_{1}, y_{2}, y_{3}\right)$ is optimal for dual)

Is There a General Algorithm?

PRIMAL

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

DUAL

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

> The problem of verifying optimality is another LP

- Issue 1: But...but...if I can't solve large LPs, how will I solve the dual to verify if optimality of $\left(x_{1}, x_{2}\right)$ given to me?
- You don't. Ask the other party to give you both $\left(x_{1}, x_{2}\right)$ and the corresponding $\left(y_{1}, y_{2}, y_{3}\right)$ for proof of optimality
- Issue 2: What if there are no $\left(y_{1}, y_{2}, y_{3}\right)$ for which dual objective matches primal objective under optimal solution $\left(x_{1}, x_{2}\right)$?
- As we will see, this can't happen!

Is There a General Algorithm?

Primal LP

> General version, in our standard form for LPs

Is There a General Algorithm?

Primal LP

$$
\max \mathbf{c}^{T} \mathbf{x}
$$

$$
\mathbf{A x} \leq \mathbf{b}
$$

$$
x \geq 0
$$

Dual LP

$\min \mathbf{y}^{T} \mathbf{b}$
$\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T}$
$y \geq 0$

- $c^{T} x$ for any feasible $x \leq y^{T} b$ for any feasible y
$\bigcirc \max _{\text {primal feasible } x} c^{T} x \leq \min _{\text {dual feasible } y} y^{T} b$
- If there is $\left(x^{*}, y^{*}\right)$ with $c^{T} x^{*}=\left(y^{*}\right)^{T} b$, then both must be optimal
- In fact, for optimal $\left(x^{*}, y^{*}\right)$, we claim that this must happen!
- Does this remind you of something? Max-flow, min-cut...

Weak Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A} \mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- From here on, assume primal LP is feasible and bounded
- Weak duality theorem:
> For any primal feasible x and dual feasible $y, c^{T} x \leq y^{T} b$
- Proof:

$$
c^{T} x \leq\left(y^{T} A\right) x=y^{T}(A x) \leq y^{T} b
$$

$$
x: n \times 1 \quad \text { Aim } \times n
$$

Strong Duality

- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$

Strong Duality Proof

- Farkas' lemma (one of many, many versions):
> Exactly one of the following holds:

1) There exists x such that $A x \leq b$
2) There exists y such that $y^{T} A=0, y \geq 0, y^{T} b<0$

- Geometric intuition:
> Define image of $A=$ set of all possible values of $A x$
> It is known that this is a "linear subspace" (e.g., a line in a plane, a line or plane in 3D, etc)

Strong Duality Proof

- Farkas' lemma: Exactly one of the following holds:

1) There exists x such that $A x \leq b$
2) There exists y such that $y^{T} A=0, y \geq 0, y^{T} b<0$
3) Image of A contains a point "below" b
4) The region "below" b doesn't intersect image of A this is witnessed by normal vector to the image of A

Strong Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$
> Proof (by contradiction):
- Let $z^{*}=c^{T} x^{*}$ be the optimal primal value.
- Suppose optimal dual objective value $>z^{*}$
- So, there is no y such that $y^{T} A \geq c^{T}$ and $y^{T} b \leq z^{*}$, i.e.,

$$
\binom{-A^{T}}{b^{T}} y \leq\binom{ c}{z^{*}}
$$

Strong Duality

> There is no y such that $\quad\binom{-A^{T}}{b^{T}} y \leq\binom{ c}{z^{*}}$
$>$ By Farkas' lemma, there is x and λ such that

$$
\left(\begin{array}{ll}
x^{T} & \lambda
\end{array}\right)\binom{-A^{T}}{b^{T}}=0, x \geq 0, \lambda \geq 0,-x^{T} c+\lambda z^{*}<0
$$

> Case 1: $\lambda>0$

- Note: $c^{T} x>\lambda z^{*}$ and $A x=0=\lambda b$.
- Divide both by λ to get $A\left(\frac{x}{\lambda}\right)=b$ and $c^{T}\left(\frac{x}{\lambda}\right)>z^{*}$
- Contradicts optimality of z^{*}
> Case 2: $\lambda=0$
- We have $A x=0$ and $c^{T} x>0$
- Adding x to optimal x^{*} of primal improves objective value beyond $z^{*} \Rightarrow$ contradiction

Exercise: Formulating LPs

- A canning company operates two canning plants (A and B).
- Three suppliers of fresh fruits:
- Shipping costs in \$/tonne: _-.-..... From:

	To:	Plant A
S1 Plant B		
$\overline{S 2}$	$\frac{3}{2}$	3.5
S 3	6	2.5
		4

- Plant capacities and labour costs:

Plant A
460 tonnes
$\$ 26 /$ tonne

Plant B
560 tonnes
\$21/tonne

- Selling price: $\$ 50 /$ tonne, no limit
- Objective: Find which plant should get how much supply from each grower to maximize profit
$x_{i, j}=$ \# tonnes of fruit purchase from supplier i and sent i $\{\{1,2,3\}$ to plant j $j \in\{A, B\}$

Constraints:

$$
\begin{aligned}
& x_{1 A}+x_{1 B} \leq 200, x_{2 A}+x_{2 B} \leqslant 310, \\
& x_{3 A}+x_{3 B} \leq 420 \\
& x_{2 A}+x_{2 A}+x_{3 A} \leq 410 \\
& x_{1 / G}+x_{2 B}+x_{3 B}<560 \\
& x_{i j} \geqslant 0 .
\end{aligned}
$$

$\left.x_{A}, x_{B}, x_{L}\right\} 0 \sim x_{A}+x_{B}=\max \left\{x_{A}, x_{B}\right\} \cap y$ Exercise: Formulating LPS \sim similarly to the brewery example from earlier:

- $x_{A} \cdot x_{B}=0$
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
$>$ The brewery cannot produce positive amounts of both A and B
> Goal: maximize profit

$$
\begin{gathered}
\left\{x \left\lvert\, \begin{array}{l}
x_{A}=0 \text { or } x_{B}=0 \\
x_{A}, x_{B}, x_{L} \geqslant 0
\end{array}\right.\right\} \\
(5,0,3) \&(0,5,3) \\
(2.5,2.5,3)
\end{gathered}
$$

$$
\left.\left.\begin{array}{l}
\text { Feasible region } 1 \\
\left\{x \mid x_{A}=0, x_{A 1} x_{B}, x_{2} ; 0\right. \\
\pi
\end{array} \right\rvert\, \frac{\text { rabible regisin 2 }}{\left\{x \mid x_{B}=0 ;--\right\}}\right\}
$$

Exercise: Formulating LPs $x_{c}=$

- Similarly to the brewery example from the beginning: $/ K_{C},{ }_{c}$, a brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
X:
> The brewery can only produce C in integral quantities up to 100
> Goal: maximize profit
$\left\{\begin{array}{c|c|c|c|c}\hline \text { Beverage } & \text { Corn (kg) } & \text { Hops (kg) } & \text { Malt (kg) } & \text { Profit (\$) } \\ \hline \text { A } & 5 & 4 & 35 & 13 \\ \hline \text { B } & 15 & 4 & 20 & 23 \\ \text { C } & 10 & 7 & 25 & 15 \\ \hline \text { Limit } & 500 & 300 & 1000 & \end{array}\right.$

Exercise: Formulating LPs

- Similarly to the brewery example from the beginning:
> A brewery can invest its inventory of corn, hops and malt into producing three types of beer
> Per unit resource requirement and profit are as given below
> Goal: maximize profit, but if there are multiple profit-maximizing solutions, then...
- Break ties to choose those with the largest quantity of A
- Break any further ties to choose those with the largest quantity of B

Beverage	Corn (kg)	Hops (kg)	Malt (kg)	Profit (\$)
A	5	4	35	13
B	15	4	20	23
C	10	7	25	15
Limit	500	300	1000	

More Tricks

- Constraint: $|x| \leq 3$

$\rightarrow>$ Replace with constraints $x \leq 3$ and $-x \leq 3$
> What if the constraint is $|x| \geq 3$?
- Objective: minimize $3|x|+y$
> Add a variable t
> Add the constraints $t \geq x$ and $t \geq-x$ (so $t \geq|x|$)
> Change the objective to minimize $3 t+y$
> What if the objective is to maximize $3|x|+y$?
- Objective: minimize $\max (3 x+y, x+2 y)$
> Hint: minimizing $3|x|+y$ in the earlier bullet was equivalent to minimizing $\max (3 x+y,-3 x+y)$
- ...

More Tricks

- Constraint: $|x| \leq 3, \leq 1 x \mid$
- Replace with constraints $x \leq 3$ and $-x \leq 3$
> What if the constraint is $|x| \geq 3$.

- Objective: minimize $3|x|+y$

Add varainele $t \stackrel{\rightarrow}{=}(x, y) \xrightarrow{\text { wry }}(f|x|, x, y)$ is
\Rightarrow Add the constraints $t \geq x$ and $t \geq-x$ (so $t \geq|x|$) 「' so l^{n}
> Change the objective to minimize $3 t+y$
> What if the objective is to maximize $3|x|+y$?

- Objective: minimize max $(3 x+y, x+2 y)$
> Hint: minimizing $3|x|+y$ in the earlier bullet was equivalent to minimizing $\max (3 x+y,-3 x+y)$
- ...
$\min t$
s.t. $t \geqslant 3 x+y$

Network Flow via LP

- Problem
> Input: directed graph $G=(V, E)$, edge capacities

$$
c: E \rightarrow \mathbb{R}_{\geq 0}
$$

> Output: Value $v\left(f^{*}\right)$ of a maximum flow f^{*}

- Flow f is valid if:
> Capacity constraints: $\forall(u, v) \in E: 0 \leq f(u, v) \leq c(u, v)$
> Flow conservation: $\forall u \neq s, t: \sum_{(u, v) \in E} f(u, v)=\sum_{(v, u) \in E} f(v, u)$
- Maximize $v(f)=\sum_{(s, v) \in E} f(s, v)$

Network Flow via LP

$$
\begin{array}{cc}
\operatorname{maximize} \sum_{(s, v) \in E} f_{s v} & \\
0 \leq f_{u v} \leq c(u, v) & \text { for all }(u, v) \in E \\
\sum_{(u, v) \in E} f_{u v}=\sum_{(v, w) \in E} f_{v, w} & \text { for all } v \in V \backslash\{s, t\}
\end{array}
$$

Shortest Path via LP

- Problem
> Input: directed graph $G=(V, E)$, edge weights
 $w: E \rightarrow \mathbb{R}_{\geq 0}$, source vertex s, target vertex t
> Output: weight of the shortest-weight path from s to t
- Variables: for each vertex v, we have variable d_{v}

$\forall v: d_{v} \leq \frac{\text { the } w t \text { of the shortest }}{\text { th }}$

But...but...

- For these problems, we have different combinatorial algorithms that are much faster and run in strongly polynomial time

- Why would we use LP?
- For some problems, we don't have faster algorithms than solving them via LP

Multicommodity-Flow

- Problem:

> Input: directed graph $G=(V, E)$, edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$, k commodities $\left(s_{i}, t_{i}, d_{i}\right)$, where s_{i} is source of commodity i, t_{i} is sink, and d_{i} is demand.
> Output: valid multicommodity flow $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$, where f_{i} has value d_{i} and all f_{i} jointly satisfy the constraints

The only known polynomial time algorithm for this problem is based on solving LP!

$$
\sum_{i=1}^{k} f_{i u v} \leq c(u, v) \text { for each } u, v \in V
$$

$$
\sum_{v \in V} f_{i u v}-\sum_{n \in V} f_{i v u}=0 \quad \text { for each } i=1,2, \ldots, k \text { and }
$$

$$
\text { for each } u \in V-\left\{s_{i}, t_{i}\right\} \text {, }
$$

$$
\text { for each } i=1,2, \ldots, k,
$$

for each $u, v \in V$ and for each $i=1,2, \ldots, k$.

Integer Linear Programming

- Variable values are restricted to be integers
- Example:
> Input: $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
> Goal:

- Does this make the problem easier or harder?
> Harder. We'll prove that this is "NP-complete".

LPs are everywhere...

> Microeconomics
> Manufacturing
> VLSI (very large scale integration) design
> Logistics/transportation
> Portfolio optimization
> Bioengineering (flux balance analysis)
> Operations research more broadly: maximize profits or minimize costs, use linear models for simplicity
> Design of approximation algorithms
> Proving theorems, as a proof technique
> ...

