CSC373

Week 7:

 Linear Programming

 Linear Programming}

Illustration Courtesy:
Kevin Wayne \& Denis Pankratov

Recap

- Network flow
> Ford-Fulkerson algorithm
- Ways to make the running time polynomial
> Correctness using max-flow, min-cut
> Applications:
- Edge-disjoint paths
- Multiple sources/sinks
- Circulation
- Circulation with lower bounds
- Survey design
- Image segmentation
- Profit maximization

Brewery Example

- A brewery can invest its inventory of corn, hops and malt into producing some amount of ale and some amount of beer
> Per unit resource requirement and profit of the two items are as given below

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit ($\mathbf{~})$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Brewery Example

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit $(\mathbf{\text { () }}$
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	objective function

- Suppose it produces A units of ale and B units of beer
- Then we want to solve this program:

Linear Function

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function if $f(x)=a^{T} x$ for some $a \in \mathbb{R}^{n}$ - Example: $f\left(x_{1}, x_{2}\right)=3 x_{1}-5 x_{2}=\binom{3}{-5}^{T}\binom{x_{1}}{x_{2}}$
- Linear objective: f
- Linear constraints:
$>g(x)=c$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function and $c \in \mathbb{R}$
$>$ Line in the plane (or a hyperplane in \mathbb{R}^{n})
> Example: $5 x_{1}+7 x_{2}=10$

Linear Function

- Geometrically, a is the normal vector of the line(or hyperplane) represented by $a^{T} x=c$

Linear Inequality

- $a^{T} x \leq c$ represents a "half-space"

Linear Programming

- Maximize/minimize a linear function subject to linear equality/inequality constraints

Geometrically...

Back to Brewery Example

Back to Brewery Example

Optimal Solution At A Vertex

- Claim: Regardless of the objective function, there must be a vertex that is an optimal solution

Convexity

- Convex set: S is convex if

$$
x, y \in S, \lambda \in[0,1] \Rightarrow \lambda x+(1-\lambda) y \in S
$$

- Vertex: A point which cannot be written as a strict convex combination of any two points in the set
- Observation: Feasible region of an LP is a convex set

Optimal Solution At A Vertex

- Intuitive proof of the claim:
> Start at some point x in the feasible region
$>$ If x is not a vertex:
- Find a direction d such that points within a positive distance of ϵ from x in both d and $-d$ directions are within the feasible region
- Objective must not decrease in at least one of the two directions
- Follow that direction until you reach a new point x for which at least one more constraint is "tight"
> Repeat until we are at a vertex

LP, Standard Formulation

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
> Constraints that use \geq
- $a^{T} x \geq b \Leftrightarrow-a^{T} x \leq-b$
> Constraints that use equality
○ $a^{T} x=b \Leftrightarrow a^{T} x \leq b, \quad a^{T} x \geq b$
> Objective function is a minimization
- Minimize $c^{T} x \Leftrightarrow$ Maximize $-c^{T} x$
> Variable is unconstrained
$\circ x$ with no constraint \Leftrightarrow Replace x by two variables x^{\prime} and $x^{\prime \prime}$, replace every occurrence of x with $x^{\prime}-x^{\prime \prime}$, and add constraints $x^{\prime} \geq 0, x^{\prime \prime} \geq 0$

LP Transformation Example

Optimal Solution

- Does an LP always have an optimal solution?
- No! The LP can "fail" for two reasons:

1. It is infeasible, i.e., $\{x \mid A x \leq b\}=\varnothing$

- E.g., the set of constraints is $\left\{x_{1} \leq 1,-x_{1} \leq-2\right\}$

2. It is unbounded, i.e., the objective function can be made arbitrarily large (for maximization) or small (for minimization)

- E.g., "maximize x_{1} subject to $x_{1} \geq 0$ "
- But if the LP has an optimal solution, we know that there must be a vertex which is optimal

Simplex Algorithm

let v be any vertex of the feasible region
while there is a neighbor v^{\prime} of v with better objective value: set $v=v^{\prime}$

- Simple algorithm, easy to specify geometrically
- Worst-case running time is exponential
- Excellent performance in practice

Simplex: Geometric View

let v be any vertex of the feasible region while there is a neighbor v^{\prime} of v with better objective value: set $v=v^{\prime}$

$$
\begin{aligned}
\max x_{1} & +6 x_{2} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Algorithmic Implementation

How Do We Implement This?

- We'll work with the slack form of LP
> Convenient for implementing simplex operations
> We want to maximize z in the slack form, but for now, forget about the maximization objective

Standard form:
Maximize $c^{T} x$ Subject to $A x \leq b$
$x \geq 0$

Slack form:

$$
\begin{aligned}
\mathrm{z} & =c^{T} x \\
s & =b-A x \\
s, x & \geq 0
\end{aligned}
$$

Slack Form

$\operatorname{maximize} 2 x_{1}-3 x_{2}+3 x_{3}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & \leq 7 \\
-x_{1}-x_{2}+x_{3} & \leq-7 \\
x_{1}-2 x_{2}+2 x_{3} & \leq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

Nonbasic Variables

$2 x_{1}-3 x_{2}+3 x_{3}$ Basic Variables $\left\{\begin{array}{l}x_{4}=7-x_{1}-2 x_{2}+x_{3} \\ x_{5}=-7+x_{1}+x_{2}-x_{3} \\ x_{6}=4-x_{1}+2 x_{2}-2 x_{3} \\ x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0\end{array}\right.$

Slack Form

$$
\begin{array}{rlrl}
z & = & 2 x_{1} & -3 x_{2} \\
& +3 x_{3} \\
x_{4} & =7-x_{1} & -x_{2} & +x_{3} \\
x_{5} & =-7+x_{1} & +x_{2} & -x_{3} \\
x_{6} & =4-x_{1} & +2 x_{2} & -2 x_{3} \\
x_{1}, & x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0 &
\end{array}
$$

Simplex: Step 1

- Start at a feasible vertex
> How do we find a feasible vertex?
> For now, assume $b \geq 0$ (that is, each $b_{i} \geq 0$)
○ In this case, $x=0$ is a feasible vertex.
- In the slack form, this means setting the nonbasic variables to 0
> We'll later see what to do in the general case

Standard form:

Maximize $c^{T} x$ Subject to $A x \leq b$
$x \geq 0$

Slack form:

$$
\begin{aligned}
\mathrm{z} & =c^{T} x \\
s & =b-A x \\
s, x & \geq 0
\end{aligned}
$$

Simplex: Step 2

- What next? Let's look at an example

$$
\begin{aligned}
z & =3 x_{1} \\
x_{4} & =30-x_{2}+2 x_{3} \\
x_{5} & =24-x_{1}-x_{2}-3 x_{3} \\
x_{6} & =36-2 x_{2}-5 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0
\end{aligned}
$$

- To increase the value of z :
> Find a nonbasic variable with a positive coefficient
- This is called an entering variable
> See how much you can increase its value without violating any constraints

Simplex: Step 2

Try to increase!
This is because the current
values of x_{2} and x_{3} are 0 ,
and we need $x_{4}, x_{5}, x_{6} \geq 0$

Simplex: Step 2

$$
\begin{aligned}
z & =3 x_{1}+x_{2}+2 x_{3} \\
x_{4} & =30-x_{1}-x_{2}-3 x_{3} \\
x_{5} & =24-2 x_{1}-2 x_{2}-5 x_{3} \\
x_{6} & =36-4 x_{1}-x_{2}-2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & \geq 0
\end{aligned}
$$

> Solve the tightest obstacle for the nonbasic variable

$$
x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4}
$$

- Substitute the entering variable (called pivot) in other equations
- Now x_{1} becomes basic and x_{6} becomes non-basic
- x_{6} is called the leaving variable

Simplex: Step 2

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \quad z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& \begin{aligned}
z & =3 x_{1}+x_{2}+2 x_{3} \\
x_{4} & =30-x_{1}-x_{2}-3 x_{3}
\end{aligned} \quad x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& \begin{array}{l}
x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \quad x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- After one iteration of this step:
> The basic feasible solution (i.e., substituting 0 for all nonbasic variables) improves from $z=0$ to $z=27$
- Repeat!

Simplex: Step 2

$$
\begin{aligned}
& \text { Entering variable } \\
& \text { Try to increase! } \\
& z=27+\frac{x_{2}}{4}+\frac{x_{3}}{2}-\frac{3 x_{6}}{4} \\
& x_{1}=9-\frac{x_{2}}{4}-\frac{x_{3}}{2}-\frac{x_{6}}{4} \\
& x_{4}=21-\frac{3 x_{2}}{4}-\frac{5 x_{3}}{2}+\frac{x_{6}}{4} \\
& x_{5}=6-\frac{3 x_{2}}{2}-4 x_{3}+\frac{x_{6}}{2} . \\
& x_{1}=\frac{311}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \\
& \text { Leaving variable } \\
& \text { Tightest obstacle! }
\end{aligned}
$$

Simplex: Step 2

$$
\begin{aligned}
& \text { Entering variable } \\
& \text { Try to increase! } \\
& z=\frac{111}{4}+\frac{x_{2}}{16}-\frac{x_{5}}{8}-\frac{11 x_{6}}{16} \\
& x_{1}=\frac{33}{4}-\frac{x_{2}}{16}+\frac{x_{5}}{8}-\frac{5 x_{6}}{16} \\
& x_{3}=\frac{3}{2}-\frac{3 x_{2}}{8}-\frac{x_{5}}{4}+\frac{x_{6}}{8} \quad \text { Pivot! } \\
& x_{4}=\frac{69}{4}+\frac{3 x_{2}}{16}+\frac{5 x_{5}}{8}-\frac{x_{6}}{16} . \\
& x_{1}, x_{2}, x=28 \\
& x_{4}, x_{5}, x_{6} \geq \\
& \text { Leaving variable } \\
& \text { Tightest obstacle! }
\end{aligned}
$$

Simplex: Step 2

$$
\begin{aligned}
& z=28-\frac{x_{3}}{6}-\frac{x_{5}}{6}-\frac{2 x_{6}}{3} \\
& x_{1}=8+\frac{x_{3}}{6}+\frac{x_{5}}{6}-\frac{x_{6}}{3} \\
& x_{2}=4-\frac{8 x_{3}}{3}-\frac{2 x_{5}}{3}+\frac{x_{6}}{3} \\
& x_{4}=18-\frac{x_{3}}{2}+\frac{x_{5}}{2} . \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- There is no entering variable (nonbasic variable with positive coefficient)
- What now? Nothing! We are done.
- Take the basic feasible solution ($x_{3}=x_{5}=x_{6}=0$).
- Gives the optimal value $z=28$
- In the optimal solution, $x_{1}=8, x_{2}=4, x_{3}=0$

Simplex Overview

Some Outstanding Issues

- What if the entering variable has no upper bound?
> If it doesn't appear in any constraints, or only appears in constraints where it can go to ∞
> Then z can also go to ∞, so declare that LP is unbounded
- What if pivoting doesn't change the constant in z ?
> Known as degeneracy, and can lead to infinite loops
> Can be prevented by "perturbing" b by a small random amount in each coordinate
> Or by carefully breaking ties among entering and leaving variables, e.g., by smallest index (known as Bland's rule)

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?

Multiply every constraint with negative b_{i} by -1 so RHS is now positive

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?

Some Outstanding Issues

- We assumed $b \geq 0$, and then started with the vertex $x=0$
- What if this assumption does not hold?

Remember: the RHS is now

$L P_{4}$
$\operatorname{Min} \sum_{i} z_{i}$
s.t. $a_{1}^{T} x+s_{1}+z_{1}=b_{1}$
$-a_{2}^{T} x-s_{2}+z_{2}=-b_{2}$
\vdots
$-a_{m}^{T} x-s_{m}+z_{m}=-b_{m}$
$x, s, z \geq 0$

What now?

- Solve $L P_{4}$ using simplex with the initial basic solution being $x=s=0, z=|b|$
- If its optimum value is 0 , extract a basic feasible solution x^{*} from it, use it to solve $L P_{1}$ using simplex
- If optimum value for $L P_{4}$ is greater than 0 , then $L P_{1}$ is infeasible

Some Outstanding Issues

- Curious about pseudocode? Proof of correctness? Running time analysis?
- See textbook for details, but this is NOT in syllabus!

Running Time

- Notes
> \#vertices of a polytope can be exponential in the \#constraints
o There are examples where simplex takes exponential time if you choose your pivots arbitrarily
- No pivot rule known which guarantees polynomial running time
> Other algorithms known which run in polynomial time
- Ellipsoid method, interior point method, ...
- Ellipsoid uses $O\left(m n^{3} L\right)$ arithmetic operations
- L = length of input in binary
- But no known strongly polynomial time algorithm
- Number of arithmetic operations = poly(m,n)
- We know how to avoid dependence on length(b), but not for length(A)

