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Week 6: 
Network Flow (contd)
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Recap
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• Some more DP

➢ Traveling salesman problem (TSP)

• Start of network flow

➢ Problem statement

➢ Ford-Fulkerson algorithm

➢ Running time

➢ Correctness using max-flow, min-cut



This Lecture
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• Network flow in polynomial time 
➢ Edmonds-Karp algorithm (shortest augmenting path)

• Applications of network flow
➢ Bipartite matching & Hall’s theorem

➢ Edge-disjoint paths & Menger’s theorem

➢ Multiple sources/sinks

➢ Circulation networks

➢ Lower bounds on flows

➢ Survey design

➢ Image segmentation



Ford-Fulkerson Recap
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• Define the residual graph 𝐺𝑓 of flow 𝑓
➢ 𝐺𝑓 has the same vertices as 𝐺

➢ For each edge e = (𝑢, 𝑣) in 𝐺, 𝐺𝑓 has at most two edges

o Forward edge 𝑒 = (𝑢, 𝑣) with capacity 𝑐 𝑒 − 𝑓 𝑒

• We can send this much additional flow on 𝑒

o Reverse edge 𝑒𝑟𝑒𝑣 = (𝑣, 𝑢) with capacity 𝑓(𝑒)

• The maximum “reverse” flow we can send is the maximum 
amount by which we can reduce flow on 𝑒, which is 𝑓(𝑒)

o We only add each edge if its capacity > 0



Ford-Fulkerson Recap
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• Example!
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Ford-Fulkerson Recap
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MaxFlow(𝐺):
// initialize:

Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺𝑓:

While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:

𝑓 = Augment(𝑓, 𝑃)

UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓



Ford-Fulkerson Recap

373S22 - Deepanshu Kush 7

• Running time: 
➢ #Augmentations:

o At every step, flow and capacities remain integers

o For path 𝑃 in 𝐺𝑓, bottleneck 𝑃, 𝑓 > 0 implies bottleneck 𝑃, 𝑓 ≥ 1

o Each augmentation increases flow by at least 1

o At most 𝐶 = σ𝑒 leaving 𝑠 𝑐(𝑒) augmentations

➢ Time for an augmentation:

o 𝐺𝑓 has 𝑛 vertices and at most 2𝑚 edges

o Finding an 𝑠-𝑡 path in 𝐺𝑓 takes 𝑂(𝑚 + 𝑛) time

➢ Total time: 𝑂( 𝑚 + 𝑛 ⋅ 𝐶)



Edmonds-Karp Algorithm
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• At every step, find the shortest path from 𝑠 to 𝑡 in 𝐺𝑓, and 
augment. 

MaxFlow(𝐺):

// initialize:

Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// Find shortest 𝑠-𝑡 path in 𝐺𝑓 & augment:

While 𝑃 = BFS(s, t,Residual(𝐺, 𝑓))!=None:

𝑓 = Augment(𝑓, 𝑃)

UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓

Minimum number of edges



Proof
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• 𝑑(𝑣) = shortest distance of 𝑣 from 𝑠 in residual graph 𝐺𝑓

• Lemma 1: During the execution of the algorithm, 𝑑(𝑣) does 
not decrease for any 𝑣.

• Proof:
➢ Suppose augmentation 𝑓 → 𝑓′ decreases 𝑑(𝑣) for some 𝑣

➢ Choose the 𝑣 with the smallest 𝑑 𝑣 in 𝐺𝑓′

o Say 𝑑 𝑣 = 𝑘 in 𝐺𝑓′, so 𝑑 𝑣 ≥ 𝑘 + 1 in 𝐺𝑓

➢ Look at node 𝑢 just before 𝑣 on a shortest path 𝑠 → 𝑣 in 𝐺𝑓′

o 𝑑 𝑢 = 𝑘 − 1 in 𝐺𝑓′

o 𝑑(𝑢) didn’t decrease, so 𝑑 𝑢 ≤ 𝑘 − 1 in 𝐺𝑓

Homework!



• 𝑑(𝑣) = shortest distance of 𝑣 from 𝑠 in residual graph 𝐺𝑓

• Lemma 1: During the execution of the algorithm, 𝑑(𝑣) does 
not decrease for any 𝑣.

• Proof:

Proof
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𝑑(𝑢) 𝑑(𝑣)

𝐺𝑓

𝐺𝑓′

≤ 𝑘 − 1

𝑘 − 1

≥ 𝑘 + 1

𝑘

• In 𝐺𝑓, (𝑢, 𝑣) must be missing

• We must have added (𝑢, 𝑣) by 
selecting (𝑣, 𝑢) in augmenting path 𝑃

• But 𝑃 is a shortest path, so it cannot 
have edge 𝑣, 𝑢 with 𝑑 𝑣 > 𝑑 𝑢

Homework!



Proof
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• Call edge (𝑢, 𝑣) critical in an augmentation step if 
➢ It’s part of the augmenting path 𝑃 and its capacity is equal to 

bottleneck(𝑃, 𝑓)

➢ Augmentation step removes 𝑒 and adds 𝑒𝑟𝑒𝑣 (if missing)

• Lemma 2: Between any two steps in which (𝑢, 𝑣) is critical, 
𝑑(𝑢) increases by at least 2

• Proof of Edmonds-Karp running time
➢ Each 𝑑(𝑢) can go from 0 to 𝑛 (Lemma 1)

➢ So, each edge (𝑢, 𝑣) can be critical at most 𝑛/2 times (Lemma 2)

➢ So, there can be at most 𝑚 ⋅ 𝑛/2 augmentation steps

➢ Each augmentation takes 𝑂(𝑚) time to perform

➢ Hence, 𝑂 𝑚2𝑛 operations in total! 

Homework!



Proof
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• Lemma 2: Between any two steps in which (𝑢, 𝑣) is critical, 
𝑑(𝑢) increases by at least 2

• Proof:
➢ Suppose (𝑢, 𝑣) was critical in 𝐺𝑓

o So, the augmentation step must have removed it

➢ Let 𝑘 = 𝑑(𝑢) in 𝐺𝑓

o Because 𝑢, 𝑣 is part of a shortest path, 𝑑 𝑣 = 𝑘 + 1 in 𝐺𝑓

➢ For (𝑢, 𝑣) to be critical again, it must be added back at some point

o Suppose 𝑓′ → 𝑓′′ steps adds it back

o Augmenting path in 𝑓′ must have selected (𝑣, 𝑢)

o In 𝐺𝑓′: 𝑑 𝑢 = 𝑑 𝑣 + 1 ≥ 𝑘 + 1 + 1 = 𝑘 + 2

Lemma 1 on 𝑣

Homework!



Edmonds-Karp Proof Overview
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• Note: 
➢ Some graphs require Ω(𝑚𝑛) augmentation steps

➢ But we may be able to reduce the time to run each augmentation 
step

• Two algorithms use this idea to reduce run time
➢ Dinitz’s algorithm [1970] ⇒ 𝑂(𝑚𝑛2)

➢ Sleator–Tarjan algorithm  [1983] ⇒ 𝑂(𝑚 𝑛 log 𝑛)

o Using the dynamic trees data structure

Homework!
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Network Flow Applications
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Rail network connecting Soviet Union with Eastern European countries

(Tolstoǐ 1930s)



373S22 - Deepanshu Kush 16

Rail network connecting Soviet Union with Eastern European countries

(Tolstoǐ 1930s)

Min-cut



Integrality Theorem
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• Before we look at applications, we need the following 
special property of the max-flow computed by Ford-
Fulkerson and its variants

• Observation:

➢ If edge capacities are integers, then the max-flow computed by Ford-
Fulkerson and its variants are also integral (i.e., the flow on each 
edge is an integer).

➢ Easy to check that each augmentation step preserves integral flow



Bipartite Matching
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• Problem
➢ Given a bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸), find a maximum cardinality 

matching

• We do not know any efficient greedy or dynamic 
programming algorithm for this problem.

• But it can be reduced to max-flow.



Bipartite Matching
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• Create a directed flow graph where we…
➢ Add a source node 𝑠 and target node 𝑡

➢ Add edges, all of capacity 1: 

o 𝑠 → 𝑢 for each 𝑢 ∈ 𝑈, 𝑣 → 𝑡 for each 𝑣 ∈ 𝑉

o 𝑢 → 𝑣 for each 𝑢, 𝑣 ∈ 𝐸

𝑈 𝑉 𝑈 𝑉



Bipartite Matching

373S22 - Deepanshu Kush 20

• Observation
➢ There is a 1-1 correspondence between matchings of size 𝑘 in the 

original graph and flows with value 𝑘 in the corresponding flow 
network.  

• Proof: (matching ⇒ integral flow)

➢ Take a matching 𝑀 = 𝑢1, 𝑣1 , … , 𝑢𝑘 , 𝑣𝑘 of size 𝑘

➢ Construct the corresponding unique flow 𝑓𝑀 where…

o Edges 𝑠 → 𝑢𝑖, 𝑢𝑖 → 𝑣𝑖, and 𝑣𝑖 → 𝑡 have flow 1, for all 𝑖 = 1, … , 𝑘

o The rest of the edges have flow 0

➢ This flow has value 𝑘



Bipartite Matching
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• Observation
➢ There is a 1-1 correspondence between matchings of size 𝑘 in the 

original graph and flows with value 𝑘 in the corresponding flow 
network.  

• Proof: (integral flow ⇒ matching)

➢ Take any flow 𝑓 with value 𝑘

➢ The corresponding unique matching 𝑀𝑓 = set of edges from 𝑈 to 𝑉
with a flow of 1

o Since flow of 𝑘 comes out of 𝑠, unit flow must go to 𝑘 distinct 
vertices in 𝑈

o From each such vertex in 𝑈, unit flow goes to a distinct vertex in 𝑉

o Uses integrality theorem



Bipartite Matching
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• Perfect matching = flow with value 𝑛
➢ where 𝑛 = 𝑈 = 𝑉

• Recall naïve Ford-Fulkerson running time:
➢ 𝑂((𝑚 + 𝑛) ⋅ 𝐶), where 𝐶 = sum of capacities of edges leaving 𝑠

➢ Q: What’s the runtime when used for bipartite matching?

• Some variants are faster…
➢ Dinitz’s algorithm runs in time 𝑂 𝑚 𝑛 when all edge capacities are 

1



Hall’s Marriage Theorem
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• When does a bipartite graph have a perfect matching?
➢ Well, when the corresponding flow network has value 𝑛

➢ But can we interpret this condition in terms of edges of the original 
bipartite graph?

➢ For 𝑆 ⊆ 𝑈, let 𝑁 𝑆 ⊆ 𝑉 be the set of all nodes in 𝑉 adjacent to some 
node in 𝑆

• Observation: 
➢ If 𝐺 has a perfect matching, 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑈

➢ Because each node in 𝑆 must be matched to a distinct node in 𝑁(𝑆)
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Hall’s Marriage Theorem
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• We’ll consider a slightly different flow network, which is still 
equivalent to bipartite matching
➢ All 𝑈 → 𝑉 edges now have ∞ capacity

➢ 𝑠 → 𝑈 and 𝑉 → 𝑡 edges are still unit capacity

𝑈 𝑉 𝑈 𝑉

∞

∞

1

1 1

1



Hall’s Marriage Theorem
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• Hall’s Theorem: 
➢ 𝐺 has a perfect matching iff 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑈

• Proof (reverse direction, via network flow):
➢ Suppose 𝐺 doesn’t have a perfect matching

➢ Hence, max-flow = min-cut < 𝑛

➢ Let (𝐴, 𝐵) be the min-cut

o Can’t have any 𝑈 → 𝑉 (∞ capacity edges)

o Has unit capacity edges 𝑠 → 𝑈 ∩ 𝐵 and 𝑉 ∩ 𝐴 → 𝑡
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Hall’s Marriage Theorem
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• Hall’s Theorem: 
➢ 𝐺 has a perfect matching iff 𝑁 𝑆 ≥ |𝑆| for each 𝑆 ⊆ 𝑉

• Proof (reverse direction, via network flow):
➢ 𝑐𝑎𝑝 𝐴, 𝐵 = 𝑈 ∩ 𝐵 + 𝑉 ∩ 𝐴 < 𝑛 = 𝑈

➢ So 𝑉 ∩ 𝐴 < |𝑈 ∩ 𝐴|

➢ But 𝑁 𝑈 ∩ 𝐴 ⊆ 𝑉 ∩ 𝐴 because the cut doesn’t include any ∞ edges

➢ So 𝑁 𝑈 ∩ 𝐴 ≤ 𝑉 ∩ 𝐴 < |𝑈 ∩ 𝐴|. ∎



Some Notes
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• Runtime for bipartite perfect matching
➢ 1955: 𝑂(𝑚𝑛) → Ford-Fulkerson

➢ 1973: 𝑂 𝑚 𝑛 → blocking flow (Hopcroft-Karp, Karzanov)

➢ 2004: 𝑂 𝑛2.378 → fast matrix multiplication (Mucha–Sankowsi)

➢ 2013: ෨𝑂 𝑚 Τ10 7 → electrical flow (Mądry)

➢ Best running time is still an open question

• Nonbipartite graphs
➢ Hall’s theorem → Tutte’s theorem

➢ 1965: 𝑂(𝑛4) → Blossom algorithm (Edmonds)

➢ 1980/1994: 𝑂 𝑚 𝑛 → Micali-Vazirani



Edge-Disjoint Paths
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• Problem
➢ Given a directed graph 𝐺 = (𝑉, 𝐸), two nodes 𝑠 and 𝑡, find the 

maximum number of edge-disjoint 𝑠 → 𝑡 paths

➢ Two 𝑠 → 𝑡 paths 𝑃 and 𝑃′ are edge-disjoint if they don’t share an 
edge



Edge-Disjoint Paths

373S22 - Deepanshu Kush 31

• Application:
➢ Communication networks

• Max-flow formulation
➢ Assign unit capacity on all edges



Edge-Disjoint Paths
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• Theorem:
➢ There is 1-1 correspondence between sets of 𝑘 edge-disjoint 𝑠 → 𝑡

paths and integral flows of value 𝑘

• Proof (paths → flow)

➢ Let 𝑃1, … , 𝑃𝑘 be a set of 𝑘 edge-disjoint 𝑠 → 𝑡 paths 

➢ Define flow 𝑓 where 𝑓 𝑒 = 1 whenever 𝑒 ∈ 𝑃𝑖 for some 𝑖, and 0
otherwise

➢ Since paths are edge-disjoint, flow conservation and capacity 
constraints are satisfied

➢ Unique integral flow of value 𝑘



Edge-Disjoint Paths
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• Theorem:
➢ There is 1-1 correspondence between 𝑘 edge-disjoint 𝑠 → 𝑡 paths 

and integral flows of value 𝑘

• Proof (flow → paths)

➢ Let 𝑓 be an integral flow of value 𝑘

➢ 𝑘 outgoing edges from 𝑠 have unit flow 

➢ Pick one such edge (𝑠, 𝑢1)

o By flow conservation, 𝑢1 must have unit outgoing flow (which we 
haven’t used up yet).

o Pick such an edge and continue building a path until you hit 𝑡

➢ Repeat this for the other 𝑘 − 1 edges from 𝑠 with unit flow ∎



Edge-Disjoint Paths
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• Maximum number of edge-disjoint 𝑠 → 𝑡 paths
➢ Equals max flow in this network

➢ By max-flow min-cut theorem, also equals minimum cut

➢ Exercise: minimum cut = minimum number of edges we need to 
delete to disconnect 𝑠 from 𝑡

o Hint: Show each direction separately (≤ and ≥)



Edge-Disjoint Paths
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• Exercise!
➢ Show that to compute the maximum number of edge-disjoint 𝑠-𝑡

paths in an undirected graph, you can create a directed flow network 
by adding each undirected edge in both directions and setting all 
capacities to 1

• Menger’s Theorem
➢ In any directed/undirected graph, the maximum number of edge-

disjoint (resp. vertex-disjoint) 𝑠 → 𝑡 paths equals the minimum 
number of edges (resp. vertices) whose removal disconnects 𝑠 and 𝑡



Multiple Sources/Sinks
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• Problem
➢ Given a directed graph 𝐺 = (𝑉, 𝐸) with edge capacities 𝑐: 𝐸 → ℕ, 

sources 𝑠1, … , 𝑠𝑘 and sinks 𝑡1, … , 𝑡ℓ, find the maximum total flow 
from sources to sinks.



Multiple Sources/Sinks
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• Network flow formulation
➢ Add a new source 𝑠, edges from 𝑠 to each 𝑠𝑖 with ∞ capacity

➢ Add a new sink 𝑡, edges from each 𝑡𝑗 to 𝑡 with ∞ capacity

➢ Find max-flow from 𝑠 to 𝑡

➢ Claim: 1 − 1 correspondence between flows in two networks



Circulation
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• Input
➢ Directed graph 𝐺 = (𝑉, 𝐸)

➢ Edge capacities 𝑐 ∶ 𝐸 → ℕ

➢ Node demands 𝑑 ∶ 𝑉 → ℤ

• Output
➢ Some circulation 𝑓 ∶ 𝐸 → ℕ satisfying

o For each 𝑒 ∈ 𝐸 : 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

o For each 𝑣 ∈ 𝑉 : σ𝑒 entering 𝑣 𝑓(𝑣) − σ𝑒 leaving 𝑣 𝑓 𝑣 = 𝑑(𝑣)

➢ Note that you need σ𝑣:𝑑 𝑣 >0 𝑑(𝑣) = σ𝑣:𝑑 𝑣 <0 −𝑑(𝑣)

➢ What are demands?



Circulation
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• Demand at 𝑣 = amount of flow you need to take out at 
node 𝑣

➢ 𝑑 𝑣 > 0 : You need to take some flow out at 𝑣

o So, there should be 𝑑(𝑣) more incoming flow than outgoing flow

o “Demand node”

➢ 𝑑 𝑣 < 0 : You need to put some flow in at 𝑣

o So, there should be 𝑑 𝑣 more outgoing flow than incoming flow

o “Supply node”

➢ 𝑑 𝑣 = 0 : Node has flow conservation

o Equal incoming and outgoing flows

o “Transshipment node”



Circulation
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• Example



Circulation
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• Network-flow formulation 𝐺′
➢ Add a new source 𝑠 and a new sink 𝑡

➢ For each “supply” node 𝑣 with 𝑑 𝑣 < 0, add edge (𝑠, 𝑣) with 
capacity −𝑑(𝑣)

➢ For each “demand” node 𝑣 with 𝑑 𝑣 > 0, add edge (𝑣, 𝑡) with 
capacity 𝑑(𝑣)

• Claim: 
➢ 𝐺 has a circulation iff 𝐺′ has max flow of value 

෍
𝑣:𝑑 𝑣 >0

𝑑 𝑣 = ෍
𝑣:𝑑 𝑣 <0

−𝑑(𝑣)



Circulation
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• Example



Circulation
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• Example



Circulation with Lower Bounds
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• Input
➢ Directed graph 𝐺 = (𝑉, 𝐸)

➢ Edge capacities 𝑐 ∶ 𝐸 → ℕ and lower bounds ℓ ∶ 𝐸 → ℕ

➢ Node demands 𝑑 ∶ 𝑉 → ℤ

• Output
➢ Some circulation 𝑓 ∶ 𝐸 → ℕ satisfying

o For each 𝑒 ∈ 𝐸 : ℓ(𝑒) ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

o For each 𝑣 ∈ 𝑉 : σ𝑒 entering 𝑣 𝑓(𝑣) − σ𝑒 leaving 𝑣 𝑓 𝑣 = 𝑑(𝑣)

➢ Note that you still need σ𝑣:𝑑 𝑣 >0 𝑑(𝑣) = σ𝑣:𝑑 𝑣 <0 −𝑑(𝑣)



Circulation with Lower Bounds
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• Transform to circulation without lower bounds
➢ Do the following operation to each edge

• Claim: Circulation in 𝐺 iff circulation in 𝐺′
➢ Proof sketch: 𝑓(𝑒) gives a valid circulation in 𝐺 iff 𝑓 𝑒 − ℓ(𝑒) gives a 

valid circulation in 𝐺′



Survey Design
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• Problem

➢ We want to design a survey about 𝑚 products

o We have one question in mind for each product

o Need to ask product 𝑗’s question to between 𝑝𝑗 and 𝑝𝑗
′ consumers

➢ There are a total of 𝑛 consumers

o Consumer 𝑖 owns a subset of products 𝑂𝑖

o We can ask consumer 𝑖 questions about only these products

o We want to ask consumer 𝑖 between 𝑐𝑖 and 𝑐𝑖
′ questions

➢ Is there a survey meeting all these requirements?



Survey Design
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• Bipartite matching is a special case
➢ 𝑐𝑖 = 𝑐𝑖

′ = 𝑝𝑗 = 𝑝𝑗
′ = 1 for all 𝑖 and 𝑗

• Formulate as circulation with lower bounds
➢ Create a network with special nodes 𝑠 and 𝑡

➢ Edge from 𝑠 to each consumer 𝑖 with flow ∈ [𝑐𝑖 , 𝑐𝑖
′]

➢ Edge from each consumer 𝑖 to each product 𝑗 ∈ 𝑂𝑖 with flow ∈ [0,1]

➢ Edge from each product 𝑗 to 𝑡 with flow ∈ [𝑝𝑗 , 𝑝𝑗
′]

➢ Edge from 𝑡 to 𝑠 with flow in [0, ∞]

➢ All demands and supplies are 0



Survey Design
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• Max-flow formulation:
➢ Feasible survey iff feasible circulation in this network



Profit Maximization (Yeaa…!)
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• Problem
➢ There are 𝑛 tasks

➢ Performing task 𝑖 generates a profit of 𝑝𝑖

o We allow 𝑝𝑖 < 0 (i.e., performing task 𝑖 may be costly)

➢ There is a set 𝐸 of precedence relations 

o 𝑖, 𝑗 ∈ 𝐸 indicates that if we perform 𝑖, we must also perform 𝑗

• Goal
➢ Find a subset of tasks 𝑆 which, subject to the precedence constraints, 

maximizes 𝑝𝑟𝑜𝑓𝑖𝑡 𝑆 = σ𝑖∈𝑆 𝑝𝑖



Profit Maximization

373S22 - Deepanshu Kush 59

• We can represent the input as a graph 
➢ Nodes = tasks, node weights = profits, 

➢ Edges = precedence constraints

➢ Goal: find a subset of nodes 𝑆 with highest total weight s.t. if 𝑖 ∈ 𝑆
and 𝑖, 𝑗 ∈ 𝐸, then 𝑗 ∈ 𝑆 as well

-1

3

-4

-2

-3

7

3

-9



Profit Maximization

373S22 - Deepanshu Kush 60

• Want to formulate as a min-cut
➢ Add source 𝑠 and target 𝑡

➢ min-cut (𝐴, 𝐵) ⇒ want desired solution to be 𝑆 = 𝐴 ∖ {𝑠}

➢ Goals:

o 𝑐𝑎𝑝(𝐴, 𝐵) should nicely relate to 𝑝𝑟𝑜𝑓𝑖𝑡(𝑆)

o Precedence constraints must be respected

• “Hard” constraints are usually enforced using infinite capacity edges

• Construction:
➢ Add each 𝑖, 𝑗 ∈ 𝐸 with infinite capacity

➢ For each 𝑖:
o If 𝑝𝑖 > 0, add (𝑠, 𝑖) with capacity 𝑝𝑖

o If 𝑝𝑖 < 0, add (𝑖, 𝑡) with capacity −𝑝𝑖
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A possible cut

QUESTION: What is the capacity of this cut?
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Exercise: Show that…

1. A finite capacity cut exists.

2. If 𝑐𝑎𝑝(𝐴, 𝐵) is finite, then 𝐴\ 𝑠 is a valid solution;

3. Minimizing 𝑐𝑎𝑝(𝐴, 𝐵) maximizes 𝑝𝑟𝑜𝑓𝑖𝑡(𝐴\ 𝑠 )

• Show that 𝑐𝑎𝑝 𝐴, 𝐵 = constant − 𝑝𝑟𝑜𝑓𝑖𝑡 𝐴\ 𝑠 , where the 
constant is independent of the choice of (𝐴, 𝐵)


