CSC373

Week 6:
Network Flow (contd)




Recap

* Some more DP

> Traveling salesman problem (TSP)

e Start of network flow
> Problem statement
> Ford-Fulkerson algorithm
»> Running time
» Correctness using max-flow, min-cut
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This Lecture

* Network flow in polynomial time
> Edmonds-Karp algorithm (shortest augmenting path)

* Applications of network flow
> Bipartite matching & Hall’s theorem
Edge-disjoint paths & Menger’s theorem
Multiple sources/sinks
Circulation networks

Survey design

>
>
>
> Lower bounds on flows
>
> Image segmentation
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Ford-Fulkerson Recap

* Define the residual graph G of flow f

> Gy has the same vertices as G
> For each edge e = (u, v) in G, G has at most two edges

o Forward edge e = (u, v) with capacity c(e) — f(e)
* We can send this much additional flow on e

o Reverse edge e’ = (v, u) with capacity f(e)

* The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on e, which is f(e)

o We only add each edge if its capacity > 0
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Ford-Fulkerson Recap

* Example!
Flow f Residual graph Gy
20/20 0/10 20 10
¢ -~ ® @+ ®
0/10 20/20 10 20

) 4
\Y
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Ford-Fulkerson Recap

MaxFlow(G):
// initialize:
Set f(e) =0 for all e in G

// while there is an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)

EndWhile

Return f
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Ford-Fulkerson Recap

* Running time:
» #Augmentations:
o At every step, flow and capacities remain integers
o For path P in Gy, bottleneck(P, f) > 0 implies bottleneck(P, f) = 1
o Each augmentation increases flow by at least 1
o At most C = ), leaving s c(e) augmentations

> Time for an augmentation:
o Gy has n vertices and at most 2m edges
o Finding an s-t path in Gy takes O(m + n) time

> Total time: O((m +n) - C)
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Edmonds-Karp Algorithm

* At every step, find the shortest path from s to t in G¢, and
augment.

MaxFlow(G): Minimum number of edges
// initialize:
Set f(e) =0 for all e in G

// Find shortest s-t path in Gy & augment:
While P = BFS(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)
EndWhile
Return f
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* d(v) = shortest distance of v from s in residual graph G

Proof

* Lemma 1: During the execution of the algorithm, d(v) does
not decrease for any v.

* Proof:
> Suppose augmentation f — f' decreases d(v) for some v

> Choose the v with the smallest d(v) in Gfr
oSayd(v) =kinGs,s0d(v) =k + 1inGf

> Look at node u just before v on a shortest path s = v in Ggr
o d(u) didn’t decrease, so d(u) < k — 1in G¢
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* d(v) = shortest distance of v from s in residual graph G

Proof

* Lemma 1: During the execution of the algorithm, d(v) does
not decrease for any v.

* Proof:

4 d(u) d(v)\

* In Gy, (u, v) must be missing

* We must have added (u, v) by
selecting (v, u) in augmenting path P

l l  But P is a shortest path, so it cannot

have edge (v, u) with d(v) > d(u)

G <k-1 =2k+1
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* Call edge (u, v) critical in an augmentation step if

> It’s part of the augmenting path P and its capacity is equal to
bottleneck(P, f)

> Augmentation step removes e and adds e"®V (if missing)

Proof

* Lemma 2: Between any two steps in which (u, v) is critical,
d(u) increases by at least 2

* Proof of Edmonds-Karp running time
> Each d(u) can go from 0 ton (Lemma 1)
> So, each edge (u, v) can be critical at most n/2 times (Lemma 2)
> So, there can be at most m - n/2 augmentation steps
» Each augmentation takes O(m) time to perform
> Hence, O(m?n) operations in total!
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* Lemma 2: Between any two steps in which (u, v) is critical,
d(u) increases by at least 2

Proof

* Proof:

> Suppose (u, v) was critical in Gy
o So, the augmentation step must have removed it

> Letk = d(u)in Gy
o Because (u, v) is part of a shortest path, d(v) = k + 1in G

» For (u, v) to be critical again, it must be added back at some point
o Suppose f' — f" steps adds it back
o Augmenting path in f" must have selected (v, u)
olnGe:dw) =dw)+1=2(k+1D)+1=k+?2
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Edmonds-Karp Proof Overview

* Note:
> Some graphs require {(mn) augmentation steps

> But we may be able to reduce the time to run each augmentation
step

* Two algorithms use this idea to reduce run time
> Dinitz’s algorithm [1970] = 0(mn?)
> Sleator—Tarjan algorithm [1983] = O(m nlogn)
o Using the dynamic trees data structure
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Network Flow Applications
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Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)
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Rail network connecting Soviet Union with Eastern European countries
(Tolstoi 1930s)

Min-cut

;

2

flow —_—

JORIGINS
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Integrality Theorem

* Before we look at applications, we need the following
special property of the max-flow computed by Ford-
Fulkerson and its variants

e Observation:

> If edge capacities are integers, then the max-flow computed by Ford-
Fulkerson and its variants are also integral (i.e., the flow on each
edge is an integer).

> Easy to check that each augmentation step preserves integral flow
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Bipartite Matching

4 )
* Problem
> Given a bipartite graph ¢ = (U UV, E), find a maximum cardinality
matching )

* We do not know any efficient greedy or dynamic
programming algorithm for this problem.

e But it can be reduced to max-flow.
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Bipartite Matching

* Create a directed flow graph where we...
> Add a source node s and target node t
> Add edges, all of capacity 1:
oSs—->uforeachu€eU,v—->tforeachveVlV
o u — vforeach (u,v) € E
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Bipartite Matching

e Observation

> There is a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (matching = integral flow)
> Take a matching M = {(uq,v4), ..., (ug, vy )} of size k

> Construct the corresponding unique flow f; where...
o Edgess = u;, u; = v;,and v; = t haveflow 1, foralli =1, ..., k
o The rest of the edges have flow 0

> This flow has value k
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U/ 25TV
Bipartite Matching

 Observation ?7 W

» » Thereis a 1-1 correspondence between matchings of size k in the
original graph and flows with value k in the corresponding flow
network.

* Proof: (integral flow = matching)
> Take any flow f with value k

> The corresponding unique matching My = set of edges from U to V/
with a flow of 1

o Since flow of k comes out of s, unit flow must go to k distinct
vertices in U

o From each such vertex in U, unit flow goes to a distinct vertex in V
o Uses integrality theorem
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[ NEn

(U
Bipartite Matching @/ | t

. Pe_r}fﬁ%% Eatihing = flow with value n N ——
> wheren = |=|V|: ’

F‘_—/\
—_—

e Recall naive Ford-Fulkerson running time: ,
> O(Qn-l—‘_//n_)_-\(}), where C = sum of capacities of edges leavings YVl

e a(mf)w\)

> Q: What’s the runtime when used for bipartite matching?

 Some variants are faster... A
\S) > Dinitz’s algorithm runs in time O (m+/n) when all edge capacities are
1
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i) U
A
Hall’s Marriage Theorem * % i

 When does a bipartite graph have a perfect matching?
> Well, when the corresponding flow network has value n

> But can we interpret this condition in terms of edges of the original
bipartite graph?

> ForS € U, let N(S) € V be the set of all nodes in V adjacent to some
nodein S

e Observation:

(——’/2 If G has a perfect matching, IN(S)| = |S| foreach S € U
/ > Because each node in S mustbe matched to a distinct node in N(S)

373522 - Deepanshu Kush







Hall's Marriage Theorem

 We'll consider a slightly different flow network, which is still
equivalent to bipartite matching

> All U — V edges now have oo capacity
> § > UandV — t edges are still unit capacity

e,
(8

&\
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Hall's Marriage Theorem

* Hall’'s Theorem: m @7

> G has a perfect matching iff IN(S)| = |S| foreach S € U g~
\—//(\ —_—
* Proof (reverse direction, via network flow): bv \[

> Suppose G doesn’t have a perfect matching ( S*'_ }N (g}< (59

/—/ -
> Hence, A\pﬂaﬂow =min-cut < n t

> Let (4, B) be the min-cut C p\1’) (A ] @)

o Can’t have any U — V (oo capacity edges)

o Has unit capacityedgess = UNBandVNA-t M
W)
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Hall's Marriage Theorem

* Hall’s Theorem: %/

> G has a perfect matching iff IN(S)I > |S| foreachS c V

% c(eN H’
* Proof rev@dlr ctlon Via network flow):

ap@B) =W Bl vadl <n=1ul |y A< )U[ [UNY
>So|VnA|§JUﬂAI_ [ ;\ldm

(._’—\
> But N(U N A) € V N A because the cut doesn’t include any o edges

>SOINWUNA)|<|IVNA|<|UNA|. =

— e —

——
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Some Notes

* Runtime for bipartite perfect matching
» 1955: O(mn) — Ford-Fulkerson
> 1973: 0(m+/n) — blocking flow (Hopcroft-Karp, Karzanov)
> 2004: 0(n?378) - fast matrix multiplication (Mucha—Sankowsi)
> 2013: 0(m1%/7) - electrical flow (Madry)
> Best running time is still an open question

* Nonbipartite graphs
» Hall’'s theorem — Tutte’s theorem
> 1965: 0(n*) - Blossom algorithm (Edmonds)
> 1980/1994: 0 (m+/n) — Micali-Vazirani
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Edge-Disjoint Paths

4 )
* Problem

> Given a directed graph ¢ = (V, E), two nodes s and t, find the
maximum number of edge-disjoint s — t paths

> Two s — t paths P and P’ are edge-disjoint if they don’t share an
edge
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Edge-Disjoint Paths
e Application:
> Communication networks

* Max-flow formulation
> Assign unit capacity on all edges
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Edge-Disjoint Paths

e Theorem:

> There is 1-1 correspondence between sets -disjoints = t
paths and integral flows of value k O

* Proof (paths — flow)
> Let {Py, ..., P, } be a set of k edge-disjoint s — t paths

> Define flow f where&z/uu_henever e € P; forsomei,and 0_
/’

otherwise —

> Sincg_Bajh&aL&edge-disjoint, flow conservation and capacity

constraints are satisfie

> Unique integral flow of value k

N —

—
—
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* Theorem: h/\ >

> There is 1-1 correspondence betwee
and integral flows of value k

* Proof (flow — paths)

> Let f be an integral flow of value k
———e

> k outgoing edges from s have unit flow

> Pick one such edge (s,u,)

o By flow conservation, u; must have unit outgoing flow (which we
haven’t used up yet).

o Pick such an edge and continue building a path until you hit t

> Repeat this for the other k — 1 edges from s with unit flow =

—
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A 5
Edge-Disjoint Paths

. MaWwf edge-disjoint s — t paths

» Equals max flow in this network

> By max-flow min-cut theorem, also equals minimum cut
I \ 7
» Exercise: mini cut = mihimum number of edges we need to

delete to disconnect s from t
o Hint: Show each direction separately (< and >)

O O
ey . - .
-~ | \\._ ] y .
3 “\\ o l
~ I N ~
- | = ~ I |
4-“&‘- 1 - 7 N \'>
\o—"(u ‘g»' o o l ! ™~ ~
- Y A ~ P ] S
eC— 1 —¢K< O 50
\\\,, | \".__ A > ,/:";"
> S ' ~ I l - o
I 1 ~ A
~ - | _
"‘\.\ o -
S e |
D h. L -
O— 1 —0
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Edge-Disjoint Paths

 Exercise!

» Show that to compute the maximum number of edge-disjoint s-t
paths in an undirected graph, you can create a directed flow network
by adding each undirected edge in both directions and setting all
capacitiesto 1

* Menger’s Theorem
> In any directed/undirected graph, the maximum number of edge-
disjoint (resp. vertex-disjoint) s — t paths equals the minimum
number of edges (resp. vertices) whose removal disconnects s and t
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Multiple Sources/Sinks

 Problem A
> Given a directed graph G = (V, E) with edge capacitiesc: E = N,
sources S, ..., S and sinks t4, ..., tp, find the maximum total flow

from saurEesTo sinks. _— y

flow netw& -
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Multiple Sources/Sinks

* Network flow formulation
» Add a new source s, edges from s to each s; with oo capacity
> Add a new sink t, edges from each t; to t with oo capacity
> Find max-flow fromstot
> Claim: 1 — 1 correspondgacebetween flows-q two networks

flow network G’ ["? ..;14}{‘)7 : - : ®
3 7 |
& A 8 | | 4 ,

(s :f; R\v o's 4.,-.;1':5;; | - 5 - 1»
&} X 10

53)
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Circulation

o ™

> Directed graph ¢ = (V,E)

—_r)
> Edge capacitiesc : E = N
> Nodedemands d : V = Z

* Qutput
» Some circulation f : E — N satisfying
o Foreache € E:0 < f(e) < c(e)

K o Foreachv €V : ), enteringvf(v) - Zeleavingvf(v) =d(v) /

> Note that you need Y., 5(,)>0 4 (V) = 2yp.qwy<0 —4 (V)
> What are demands?
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Circulation

 Demand at v = amount of flow you need to take out at
node v

> d(v) > 0: You need to take some flow out at v
o So, there should be d(v) more incoming flow than outgoing flow
o “Demand node”

> d(v) < 0:You need to put some flow in at v
o So, there should be |d(v)| more outgoing flow than incoming flow
o “Supply node”

> d(v) = 0: Node has flow conservation
o Equal incoming and outgoing flows
o “Transshipment node”
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Circulation

 Example

flow network G

(suppode)

/;7‘\ \'«.
o 61T 1/7
;-"‘f "”‘*-A, o 25
4/10 6/6 >
,;«‘/J 7~ = Q-\’?“x
7 v f/*"’ .
3/3 &Oﬁ

(demand node)
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Circulation

e Network-flow formulation G’
> Add a new source s and a new sink t

> For each “supply” node v with d(v) < 0, add edge (s, v) with
capacity —d(v)

> For each “demand” node v with d(v) > 0, add edge (v, t) with
capacity d(v)

e Claim:
> G has a circulation iff G’ has max flow of value

Z d(v) = z —d(v)
v:d(v)>0 v:d(v)<0
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Circulation

 Example
(supply node)
flow network G -8 -6
flow capacit
JoN Pox ey
P 6/7 1/7 N Y
..~"‘~‘Jé ‘\’\’ .f‘"‘o‘l -5.”" 7 / 9
4/10 6/6 > 2/ 4
/‘( = r N : ”\,\
> ¢ Y = \.\\ S A \ﬁ.ﬂ\
”~ Y o > =Y 8
- s 3 [ 3 s - >
7 @F— 33 ——0) O— +/+—3Q 1
10 0
(demand node) (transshipment node)
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Circulation

 Example

flow network G’

>0

saturates all edges
M leaving s
suppl '
, o IRy and entering ¢
8 6
__657,?( ‘x%“ v i o

7

.y
f;-‘ ;:f 0. T
” ~ P N
\“ ‘9/ \,&
.”v.,\ ~_,<‘°' 9
6 > 4 \
” .y ~
6,/ \\5‘ \\
”~ Wy .
o o .,
- . ~
A 4 - o =,

demand
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Circulation with Lower Bounds

o ™

> Directed graph G = (V, E)
> Edge capacitiesc : E = N and lower bounds ¥ : F - N
> Nodedemandsd : V —» Z

* Qutput
» Some circulation f : E — N satisfying
o Foreache € E:¥(e) < f(e) < c(e)

\ o Foreachv €V : ), enteringvf(v) - Zeleavingvf(v) =d(v) /

> Note that you still need Y.,.5(,)>0 4 (V) = Zp.a)<0 —24 (V)
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Circulation with Lower Bounds

 Transform to circulation without lower bounds
> Do the following operation to each edge

lower bound upper bound capacity
() [2,9] _;../1; () ;./1;\
Y, 2 N O/ 7 N

dv) +2 dw) =2

flow network G flow network G’

e Claim: Circulation in G iff circulation in G’

> Proof sketch: f(e) gives a valid circulation in G iff f(e) — £(e) gives a
valid circulation in G’
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Survey Design

KProbIem

> We want to design a survey about m products
o We have one question in mind for each product
o Need to ask product j’s question to between p; and p]'- consumers

» There are a total of n consumers
o Consumer i owns a subset of products O;
o We can ask consumer i questions about only these products
o We want to ask consumer i between c; and ¢; questions

\> Is there a survey meeting all these requirements?
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Survey Design

* Bipartite matching is a special case
> c;=c¢; =p;=p;=1foralliandj

* Formulate as circulation with lower bounds
> Create a network with special nodes s and t
> Edge from s to each consumer i with flow € [c;, ¢;]
» Edge from each consumer i to each product j € O; with flow € [0,1]
> Edge from each product j to t with flow € [p;, p;]
» Edge from t to s with flow in [0, oo]
> All demands and supplies are 0

373522 - Deepanshu Kush




Survey Design

* Max-flow formulation:
> Feasible survey iff feasible circulation in this network

= —— [0’ ‘T] S —
~ ol o
P = -
e /
/ 1 )— [0, 1] (1)
v /O ~—_ TN
/ e B
[e1. e1'] < - [p1. p1]
/ @G — / 2)\_\\ \\\\
g ’\“\.\\
@ % // @ \\\9/\
U C—— @) —3
'\_\ e = ==

consumers products
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Profit Maximization (Yeaa...!

KProbIem

> There are n tasks
» Performing task i generates a profit of p;
o We allow p; < 0 (i.e., performing task i may be costly)
> There is a set E of precedence relations
o (i,j) € E indicates that if we perform i, we must also perform j

e Goal

> Find a subset of tasks S which, subject to the precedence constraints,
\ maximizes profit(S) = Yies i

J

373522 - Deepanshu Kush




Profit Maximization

* We can represent the input as a graph
> Nodes = tasks, node weights = profits,
» Edges = precedence constraints

> Goal: find a subset of nodes S with highest total weights.t.ifi € S
and (i,j) € E, thenj € S as well

e’: -
< o C
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Profit Maximization

* Want to formulate as a min-cut
> Add source s and target t
» min-cut (4, B) = want desired solutiontobe § = A \ {s}
> Goals:
o cap(4, B) should nicely relate to profit(S)

o Precedence constraints must be respected
e “Hard” constraints are usually enforced using infinite capacity edges

* Construction:
> Add each (i,j) € E with infinite capacity
» For eachi:
o Ifp; > 0, add (s, i) with capacity p;
o If p; <0, add (i, t) with capacity —p;
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Profit Maximization
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Profit Maximization
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Profit Maximization

QUESTION: What is the capacity of this cut?
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Profit Maximization

Exercise: Show that...
1. A finite capacity cut exists.
2. If cap(A, B) is finite, then A\{s} is a valid solution;
3. Minimizing cap(A, B) maximizes profit(A\{s})

« Show that cap(4, B) = constant — profit(A\{s}), where the
constant is independent of the choice of (4, B)
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