
CSC373

Week 5:
Dynamic Programming (contd)

Network Flow (start)

373S22 - Deepanshu Kush 1

Recap

373S22 - Deepanshu Kush 2

• Dynamic Programming Basics

➢ Optimal substructure property

➢ Bellman equation

➢ Top-down (memoization) vs bottom-up implementations

• Dynamic Programming Examples

➢ Weighted interval scheduling

➢ Knapsack problem

➢ Single-source shortest paths

➢ Chain matrix product

This Lecture

373S22 - Deepanshu Kush 3

• Some more DP

➢ Traveling salesman problem (TSP)

• Start of network flow

➢ Problem statement

➢ Ford-Fulkerson algorithm

➢ Running time

➢ Correctness

Traveling Salesman

373S22 - Deepanshu Kush 4

• Input
➢ Complete directed graph 𝐺 = (𝑉, 𝐸)

➢ 𝑑𝑖,𝑗 = distance from node 𝑖 to node 𝑗

• Output
➢ Minimum distance which needs to be traveled to start from some

node 𝑣, visit every other node exactly once, and come back to 𝑣

o That is, the minimum cost of a Hamiltonian cycle

Traveling Salesman

373S22 - Deepanshu Kush 5

• Approach
➢ Let’s start at node 𝑣1 = 1

o It’s a cycle, so the starting point does not matter

➢ Want to visit the other nodes in some order, say 𝑣2, … , 𝑣𝑛
➢ Total distance is 𝑑1,𝑣2 + 𝑑𝑣2,𝑣3 +⋯+ 𝑑𝑣𝑛−1,𝑣𝑛 + 𝑑𝑣𝑛,1
o Want to minimize this distance

• Naïve solution
➢ Check all possible orderings

➢ 𝑛 − 1 ! = Θ 𝑛 ⋅
𝑛

𝑒

𝑛
(Stirling’s approximation)

Traveling Salesman

373S22 - Deepanshu Kush 6

• DP Approach
➢ Consider 𝑣𝑛 (the last node before returning to 𝑣1 = 1)

o If 𝑣𝑛 = 𝑐

• Find the optimal order of visiting nodes 2, … , 𝑛 that ends at 𝑐

• Need to keep track of the subset of nodes to be visited and the
end node

➢ 𝑂𝑃𝑇 𝑆, 𝑐 = minimum total travel distance when starting at 1, visiting
each node in 𝑆 exactly once, and ending at 𝑐 ∈ 𝑆

➢ Answer to the original problem:

o min
𝑐∈𝑆

𝑂𝑃𝑇 𝑆, 𝑐 + 𝑑𝑐,1, where 𝑆 = {2,… , 𝑛}

Traveling Salesman

373S22 - Deepanshu Kush 7

• DP Approach
➢ To compute 𝑂𝑃𝑇[𝑆, 𝑐], we can condition over the vertex visited right

before 𝑐 in the optimal trip

• Bellman equation

𝑂𝑃𝑇 𝑆, 𝑐 = min
𝑚∈𝑆∖ 𝑐

𝑂𝑃𝑇 𝑆 ∖ 𝑐 ,𝑚 + 𝑑𝑚,𝑐

Final solution = min
𝑐∈ 2,…,𝑛

𝑂𝑃𝑇 2,… , 𝑛 , 𝑐 + 𝑑𝑐,1

• Time: 𝑂(𝑛 ⋅ 2𝑛) calls, 𝑂(𝑛) time per call ⇒ 𝑂 𝑛2 ⋅ 2𝑛

➢ Much better than the naïve solution which has Τ𝑛 𝑒
𝑛

Traveling Salesman

373S22 - Deepanshu Kush 8

• Bellman equation

𝑂𝑃𝑇 𝑆, 𝑐 = min
𝑚∈𝑆∖ 𝑐

𝑂𝑃𝑇 𝑆 ∖ 𝑐 ,𝑚 + 𝑑𝑚,𝑐

Final solution = min
𝑐∈ 2,…,𝑛

𝑂𝑃𝑇 2,… , 𝑛 , 𝑐 + 𝑑𝑐,1

• Space complexity: 𝑂 𝑛 ⋅ 2𝑛

➢ But computing the optimal solution with 𝑆 = 𝑘 only requires
storing the optimal solutions with 𝑆 = 𝑘 − 1

• Question:
➢ Using this observation, how much can we reduce the space

complexity?

DP Concluding Remarks

373S22 - Deepanshu Kush 10

• High-level steps in designing a DP algorithm
➢ Focus on a single decision in optimal solution

o Typically, the first/last decision

➢ For each possible way of making that decision…

o [Optimal substructure] Write the optimal solution of the problem
in terms of the optimal solutions to subproblems

➢ Generalize the problem…

o …by looking at the type of subproblems needed

o E.g., in the weighted interval scheduling problem, we realize that
we need to solve the problem for prefixes (i.e. either for jobs
1,… , 𝑗 − 1 or 1, … , 𝑝[𝑗])

➢ Write the Bellman equation, cover your base cases

➢ Think about optimizing the running time/space using tricks

o Often easier in the bottom-up implementation

Network Flow

373S22 - Deepanshu Kush 11

Network Flow

373S22 - Deepanshu Kush 12

• Input
➢ A directed graph 𝐺 = (𝑉, 𝐸)

➢ Edge capacities 𝑐 ∶ 𝐸 → ℝ≥0

➢ Source node 𝑠, target node 𝑡

• Output
➢ Maximum “flow” from 𝑠 to 𝑡

Network Flow

373S22 - Deepanshu Kush 13

• Assumptions
➢ No edges enter 𝑠

➢ No edges leave 𝑡

➢ Edge capacity 𝑐(𝑒) is a non-
negative integer

o Later, we’ll see what happens
when 𝑐(𝑒) can be a rational or
irrational number

Network Flow

373S22 - Deepanshu Kush 14

• Flow
➢ An 𝑠-𝑡 flow is a function 𝑓: 𝐸 → ℝ≥0

➢ Intuitively, 𝑓(𝑒) is the “amount of material” carried on edge 𝑒

Network Flow

373S22 - Deepanshu Kush 15

• Constraints on flow 𝑓

1. Respecting capacities

∀𝑒 ∈ 𝐸 ∶ 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

2. Flow conservation

∀𝑣 ∈ 𝑉 ∖ 𝑠, 𝑡 ∶ σ𝑒 entering 𝑣 𝑓 𝑒 = σ𝑒 leaving 𝑣 𝑓 𝑒

Flow in = flow out at every
node other than 𝑠 and 𝑡

Network Flow

373S22 - Deepanshu Kush 16

• 𝑓𝑖𝑛 𝑣 = σ𝑒 entering 𝑣 𝑓 𝑒

• 𝑓𝑜𝑢𝑡 𝑣 = σ𝑒 leaving 𝑣 𝑓 𝑒

• Value of flow 𝑓 is 𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝑠 = 𝑓𝑖𝑛(𝑡)
➢ Q: Why is 𝑓𝑜𝑢𝑡 𝑠 = 𝑓𝑖𝑛(𝑡)?

• Restating the problem:
➢ Given a directed graph 𝐺 = (𝑉, 𝐸) with edge capacities 𝑐: 𝐸 → ℝ≥0,

find a flow 𝑓∗ with the maximum value.

First Attempt

373S22 - Deepanshu Kush 17

• A natural greedy approach

1. Start from zero flow (𝑓 𝑒 = 0 for each 𝑒).

2. While there exists an 𝑠-𝑡 path 𝑃 in 𝐺 such that 𝑓 𝑒 < 𝑐(𝑒) for
each 𝑒 ∈ 𝑃

a. Find any such path 𝑃

b. Compute Δ = min
𝑒∈𝑃

𝑐 𝑒 − 𝑓 𝑒

c. Increase the flow on each edge 𝑒 ∈ 𝑃 by Δ

• Note
➢Capacity and flow conservation constraints remain satisfied

First Attempt

373S22 - Deepanshu Kush 18

First Attempt

373S22 - Deepanshu Kush 19

First Attempt

373S22 - Deepanshu Kush 20

First Attempt

373S22 - Deepanshu Kush 21

First Attempt

373S22 - Deepanshu Kush 22

First Attempt

373S22 - Deepanshu Kush 23

First Attempt

373S22 - Deepanshu Kush 24

First Attempt

373S22 - Deepanshu Kush 25

• Q: Why does the simple greedy approach fail?

• A: Because once it increases the flow on an edge, it is not
allowed to decrease it ever in the future.

• Need a way to “reverse”
bad decisions

Reversing Bad Decisions

373S22 - Deepanshu Kush 26

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/200/10

0/10

Suppose we start by sending
20 units of flow along this path

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

But the optimal configuration requires
10 fewer units of flow on 𝑢 → 𝑣

Reversing Bad Decisions

373S22 - Deepanshu Kush 27

We can essentially send a “reverse”
flow of 10 units along 𝑣 → 𝑢

s t

u

v

𝟐𝟎/20

𝟏𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

So now we get this optimal flow

s t

u

v

𝟐𝟎/20

𝟐𝟎/30

𝟐𝟎/20𝟏𝟎/10

𝟏𝟎/10

𝟏𝟎

Residual Graph

373S22 - Deepanshu Kush 28

• Suppose the current flow is 𝑓

• Define the residual graph 𝐺𝑓 of flow 𝑓
➢ 𝐺𝑓 has the same vertices as 𝐺

➢ For each edge e = (𝑢, 𝑣) in 𝐺, 𝐺𝑓 has at most two edges

o Forward edge 𝑒 = (𝑢, 𝑣) with capacity 𝑐 𝑒 − 𝑓 𝑒

• We can send this much additional flow on 𝑒

o Reverse edge 𝑒𝑟𝑒𝑣 = (𝑣, 𝑢) with capacity 𝑓(𝑒)

• The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on 𝑒, which is 𝑓(𝑒)

o We only really add edges of capacity > 0

Residual Graph

373S22 - Deepanshu Kush 29

• Example!

s t

u

v

20/20

20/30

20/200/10

0/10

s t

u

v

𝟐𝟎

𝟏𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

𝟐𝟎

Flow 𝑓 Residual graph 𝐺𝑓

Augmenting Paths

373S22 - Deepanshu Kush 30

• Let 𝑃 be an 𝑠-𝑡 path in the residual graph 𝐺𝑓

• Let bottleneck(𝑃, 𝑓) be the smallest capacity across all edges
in 𝑃

• “Augment” flow 𝑓 by “sending” bottleneck 𝑃, 𝑓 units of flow
along 𝑃
➢ What does it mean to send 𝑥 units of flow along 𝑃?

➢ For each forward edge 𝑒 ∈ 𝑃, increase the flow on 𝑒 by 𝑥

➢ For each reverse edge 𝑒𝑟𝑒𝑣 ∈ 𝑃, decrease the flow on 𝑒 by 𝑥

Residual Graph

373S22 - Deepanshu Kush 31

• Example!

s t

u

v

20/20

20/30

20/200/10

0/10

Flow 𝑓

s t

u

v

𝟐𝟎

𝟏𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

Residual graph 𝐺𝑓

Path 𝑷→ send flow = bottleneck = 10

𝟐𝟎

s t

u

v

20/20

10/30

20/2010/10

10/10

New flow 𝑓

Residual Graph

373S22 - Deepanshu Kush 32

• Example!

s t

u

v

𝟐𝟎

𝟐𝟎

𝟐𝟎𝟏𝟎

𝟏𝟎

New residual graph 𝐺𝑓

No 𝒔-𝒕 path because no outgoing edge from 𝒔

𝟏𝟎

Augmenting Paths

373S22 - Deepanshu Kush 33

• Let’s argue that the new flow is a valid flow

• Capacity constraints (easy):

➢ If we increase flow on 𝑒, we can do so by at most the capacity of
forward edge 𝑒 in 𝐺𝑓, which is 𝑐 𝑒 − 𝑓 𝑒

o So, the new flow can be at most 𝑓 𝑒 + 𝑐 𝑒 − 𝑓 𝑒 = 𝑐(𝑒)

➢ If we decrease flow on 𝑒, we can do so by at most the capacity of
reverse edge 𝑒𝑟𝑒𝑣 in 𝐺𝑓, which is 𝑓 𝑒

o So, the new flow is at least 𝑓 𝑒 − 𝑓 𝑒 = 0

Augmenting Paths

373S22 - Deepanshu Kush 34

• Let’s argue that the new flow is a valid flow

• Flow conservation (a bit trickier):
➢ Each node on the path (except 𝑠 and 𝑡) has exactly two incident

edges

o Both forward / both reverse ⇒ one is incoming, one is outgoing

• Flow increased on both or decreased on both

o One forward, one reverse ⇒ both incoming / both outgoing

• Flow increased on one but decreased on the other

o In each case, net flow remains 0

s t
+𝑥 +𝑥 −𝑥 −𝑥 +𝑥

Edge directions as in 𝐺

Ford-Fulkerson Algorithm

373S22 - Deepanshu Kush 36

MaxFlow(𝐺):

// initialize:

Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺𝑓:

While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:

𝑓 = Augment(𝑓, 𝑃)

UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓

Ford-Fulkerson Algorithm

373S22 - Deepanshu Kush 37

• Running time:
➢ #Augmentations:

o At every step, flow and capacities remain integers

o For path 𝑃 in 𝐺𝑓, bottleneck 𝑃, 𝑓 > 0 implies bottleneck 𝑃, 𝑓 ≥ 1

o Each augmentation increases flow by at least 1

o Max flow (hence max #augmentations) is at most 𝐶 = σ𝑒 leaving 𝑠 𝑐(𝑒)

➢ Time to perform an augmentation:

o 𝐺𝑓 has 𝑛 vertices and at most 2𝑚 edges

o Finding 𝑃, computing bottleneck 𝑃, 𝑓 , updating 𝐺𝑓
• 𝑂(𝑚 + 𝑛) time

➢ Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)

Ford-Fulkerson Algorithm

373S22 - Deepanshu Kush 38

• Total time: 𝑂(𝑚 + 𝑛 ⋅ 𝐶)

➢ This is pseudo-polynomial time, but NOT polynomial time

➢ The value of 𝐶 can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

• Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

373S22 - Deepanshu Kush 40

• Q: Can we convert this to polynomial time?
➢ Not if we choose an arbitrary path in 𝐺𝑓 at each step

➢ In the graph below, we might end up repeatedly sending 1 unit of flow
across 𝑎 → 𝑏 and then reversing it

o Takes 𝑋 steps, which can be exponential in the input length

Ford-Fulkerson Algorithm

373S22 - Deepanshu Kush 42

• Ways to achieve polynomial time

➢ Find the maximum bottleneck capacity augmenting path

o Runs in 𝑂 𝑚2 ⋅ log 𝐶 operations

• “Weakly polynomial time”

➢ Find the shortest augmenting path using BFS

o Edmonds-Karp algorithm

o Runs in 𝑂 𝑛𝑚2 operations

• “Strongly polynomial time”

o Can be found in CLRS

➢ …

Max Flow Problem

373S22 - Deepanshu Kush 43

• Race to reduce the running time
➢ 1972: 𝑂 𝑛 𝑚2 Edmonds-Karp

➢ 1980: 𝑂 𝑛 𝑚 log2 𝑛 Galil-Namaad

➢ 1983: 𝑂 𝑛 𝑚 log𝑛 Sleator-Tarjan

➢ 1986: 𝑂 𝑛 𝑚 log Τ𝑛2
𝑚 Goldberg-Tarjan

➢ 1992: 𝑂 𝑛 𝑚 + 𝑛2+𝜖 King-Rao-Tarjan

➢ 1996: 𝑂 𝑛 𝑚
log 𝑛

log ൗ𝑚
𝑛 log 𝑛

King-Rao-Tarjan

o Note: These are 𝑂(𝑛 𝑚) when 𝑚 = 𝜔 𝑛

➢ 2013: 𝑂(𝑛 𝑚) Orlin

o Breakthrough!

➢ 2021: 𝑂(𝑚 + 𝑛1.5 ⋅ log𝑋), where 𝑋 = max edge capacity

o Breakthrough based on very heavy techniques!

Back to Ford-Fulkerson

373S22 - Deepanshu Kush 44

• We argued that the algorithm must terminate, and must
terminate in 𝑂 𝑚 + 𝑛 ⋅ 𝐶 time

• But we didn’t argue correctness yet, i.e., the algorithm must
terminate with the optimal flow

Recall: Ford-Fulkerson

373S22 - Deepanshu Kush 45

MaxFlow(𝐺):

// initialize:

Set 𝑓 𝑒 = 0 for all 𝑒 in 𝐺

// while there is an 𝑠-𝑡 path in 𝐺𝑓:

While 𝑃 = FindPath(s, t,Residual(𝐺, 𝑓))!=None:

𝑓 = Augment(𝑓, 𝑃)

UpdateResidual(𝐺,𝑓)

EndWhile

Return 𝑓

Recall: Notation

373S22 - Deepanshu Kush 46

• 𝑓 = flow, 𝑠 = source, 𝑡 = target

• 𝑓𝑜𝑢𝑡 , 𝑓𝑖𝑛

➢ For a node 𝑢: 𝑓𝑜𝑢𝑡 𝑢 , 𝑓𝑖𝑛(𝑢) = total flow out of and into 𝑢

➢ For a set of nodes 𝑋: 𝑓𝑜𝑢𝑡 𝑋 , 𝑓𝑖𝑛(𝑋) defined similarly

• Constraints
➢ Capacity: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒)

➢ Flow conservation: 𝑓𝑜𝑢𝑡 𝑢 = 𝑓𝑖𝑛(𝑢) for all 𝑢 ≠ 𝑠, 𝑡

• 𝑣 𝑓 = 𝑓𝑜𝑢𝑡(𝑠) = 𝑓𝑖𝑛(𝑡) = value of the flow

Cuts and Cut Capacities

373S22 - Deepanshu Kush 47

• (𝐴, 𝐵) is an 𝑠-𝑡 cut if it is a partition of vertex set 𝑉 (i.e., 𝐴 ∪ 𝐵 = 𝑉,
𝐴 ∩ 𝐵 = ∅) with 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• Its capacity, denoted 𝑐𝑎𝑝 𝐴, 𝐵 , is the sum of capacities of edges leaving 𝐴

Cuts and Flows

373S22 - Deepanshu Kush 48

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),

𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛(𝐴)

• Proof (on the board): Just take a sum of the flow conservation
constraint over all nodes in 𝐴

Cuts and Flows

373S22 - Deepanshu Kush 50

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• Proof:
𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴

≤ 𝑓𝑜𝑢𝑡 𝐴

= σ𝑒 leaving 𝐴 𝑓(𝑒)

≤ σ𝑒 leaving 𝐴 𝑐(𝑒)

= 𝑐𝑎𝑝(𝐴, 𝐵)

Cuts and Flows

373S22 - Deepanshu Kush 51

• Theorem: For any flow 𝑓 and any 𝑠-𝑡 cut (𝐴, 𝐵),

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

• Hence, max
𝑓

𝑣 𝑓 ≤ min 𝐴,𝐵 𝑐𝑎𝑝 𝐴, 𝐵

➢ Max value of any flow ≤ min capacity of any 𝑠-𝑡 cut

• We will now prove:

➢ Value of flow generated by Ford-Fulkerson = capacity of some cut

• Implications

➢ 1) Max flow = min cut

➢ 2) Ford-Fulkerson generates max flow.

Cuts and Flows

373S22 - Deepanshu Kush 53

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ 𝑓 = flow returned by Ford-Fulkerson

➢ 𝐴∗ = nodes reachable from 𝑠 in 𝐺𝑓
➢ 𝐵∗ = remaining nodes 𝑉 ∖ 𝐴∗

➢ Note: We look at the residual graph 𝐺𝑓, but define the cut in 𝐺

Graph 𝐺

𝐺𝑓

Cuts and Flows

373S22 - Deepanshu Kush 54

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Claim: 𝐴∗, 𝐵∗ is a valid cut

o 𝑠 ∈ 𝐴∗ by definition

o 𝑡 ∈ 𝐵∗ because when Ford-Fulkerson terminates, there are no 𝑠-𝑡
paths in 𝐺𝑓, so 𝑡 ∉ 𝐴∗

Graph 𝐺

𝐺𝑓

Cuts and Flows

373S22 - Deepanshu Kush 55

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Blue edges = edges going out of 𝐴∗ in 𝐺

➢ Red edges = edges coming into 𝐴∗ in 𝐺

Graph 𝐺

𝐺𝑓

Cuts and Flows

373S22 - Deepanshu Kush 56

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Each blue edge 𝑢, 𝑣 must be saturated

o Otherwise 𝐺𝑓 would have its forward edge 𝑢, 𝑣 and then 𝑣 ∈ 𝐴∗

➢ Each red edge (𝑣, 𝑢) must have zero flow

o Otherwise 𝐺𝑓 would have its reverse edge (𝑢, 𝑣) and then 𝑣 ∈ 𝐴∗

Graph 𝐺

𝐺𝑓

Cuts and Flows

373S22 - Deepanshu Kush 57

• Theorem: Ford-Fulkerson finds maximum flow.

• Proof:
➢ Each blue edge 𝑢, 𝑣 must be saturated ⇒ 𝑓𝑜𝑢𝑡 𝐴∗ = 𝑐𝑎𝑝(𝐴∗, 𝐵∗)

➢ Each red edge (𝑣, 𝑢) must have zero flow ⇒ 𝑓𝑖𝑛 𝐴∗ = 0

➢ So 𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴∗ − 𝑓𝑖𝑛(𝐴∗) = 𝑐𝑎𝑝 𝐴∗, 𝐵∗ ∎

Graph 𝐺

𝐺𝑓

Max Flow - Min Cut

373S22 - Deepanshu Kush 58

• Max Flow-Min Cut Theorem:
In any graph, the value of the maximum flow is equal to the
capacity of the minimum cut.

• Our proof already gives an algorithm to find a min cut
➢ Run Ford-Fulkerson to find a max flow 𝑓

➢ Construct its residual graph 𝐺𝑓
➢ Let 𝐴∗ = set of all nodes reachable from 𝑠 in 𝐺𝑓
o Easy to compute using BFS

➢ Then (𝐴∗, 𝑉 ∖ 𝐴∗) is a min cut

Poll

373S22 - Deepanshu Kush 59

Question

• There is a network 𝐺 with positive integer edge capacities.

• You run Ford-Fulkerson.

• It finds an augmenting path with bottleneck capacity 1, and after that
iteration, it terminates with a final flow value of 1.

• Which of the following statement(s) must be correct about 𝐺?

(a) 𝐺 has a single 𝑠-𝑡 path.

(b) 𝐺 has an edge 𝑒 such that all 𝑠-𝑡 paths go through 𝑒.

(c) The minimum cut capacity in 𝐺 is greater than 1.

(d) The minimum cut capacity in 𝐺 is less than 1.

Why Study Flow Networks?

373S22 - Deepanshu Kush 62

• Unlike divide-and-conquer, greedy, or DP, this doesn’t seem
like an algorithmic framework
➢ It seems more like a single problem

• Turns out that many problems can be reduced to this
versatile single problem

• Next lecture!

