CSC373

Week 5:
Dynamic Programming (contd)

Network Flow (start)

Recap

* Dynamic Programming Basics
> Optimal substructure property
> Bellman equation
> Top-down (memoization) vs bottom-up implementations

* Dynamic Programming Examples
> Weighted interval scheduling
> Knapsack problem
> Single-source shortest paths
> Chain matrix product

373522 - Deepanshu Kush 2

This Lecture

* Some more DP

> Traveling salesman problem (TSP)

e Start of network flow
> Problem statement
> Ford-Fulkerson algorithm
»> Running time
» Correctness

373522 - Deepanshu Kush 3

Traveling Salesman
7

Input
> Complete directed graph ¢ = (V,E)
> d; j = distance from node i to node j

* Output

> Minimum distance which needs to be traveled to start from some
node v, visit every other node exactly once, and come back to v

o That is, the minimum cost of a Hamiltonian cycle

373522 - Deepanshu Kush 4

Traveling Salesman

* Approach
» Let'sstartatnodev; =1
o It’s a cycle, so the starting point does not matter
» Want to visit the other nodes in some order, say v,, ..., U,
> Total distance is dy ,, + dyy, pp, + -+ d +dy 1
o Want to minimize this distance

Un-1,Un

* Naive solution
> Check all possible orderings

>n—1)!=06 (\/ﬁ (g)n) (Stirling’s approximation)

373522 - Deepanshu Kush 5

Traveling Salesman

* DP Approach
» Consider v,, (the last node before returning to v; = 1)
olfv, =c
* Find the optimal order of visiting nodes {2, ..., n} that ends at ¢

* Need to keep track of the subset of nodes to be visited and the
end node

> OPTI[S, c] = minimum total travel distance when starting at 1, visiting
each node in S exactly once, and endingatc € §

> Answer to the original problem:
o min OPT|S, c] + d; 1, where S = {2, ...,n}

CES

373522 - Deepanshu Kush 6

Traveling Salesman

* DP Approach

» To compute OPT|S, c], we can condition over the vertex visited right
before c in the optimal trip

* Bellman equation

OPT[S,c] = min (OPTS\{C} m] + dp.)

mES c

Final solution = min (OPT {2,...,n}cl + dcq)

ce{2,..,n}

e Time: O(n - 2™) calls, O(n) time per call = 0(n? - 2M)

> Much better than the naive solution which has (/)"

373522 - Deepanshu Kush 7

Traveling Salesman

* Bellman equation

OPT[S,c] = min (OPT [S\ {c},m] + dpc)

meS\{c}

Final solution = min OPT[{2,...,n},c]+d.4
ce{2,..,n}

 Space complexity: O(n - 2™)

> But computing the optimal solution with |S| = k only requires
storing the optimal solutions with |S| =k — 1

e Question:

> Using this observation, how much can we reduce the space
complexity?

373522 - Deepanshu Kush 8

DP Concluding Remarks

* High-level steps in designing a DP algorithm
» Focus on a single decision in optimal solution
o Typically, the first/last decision
> For each possible way of making that decision...

o [Optimal substructure] Write the optimal solution of the problem
in terms of the optimal solutions to subproblems

> Generalize the problem...
o ...by looking at the type of subproblems needed

o E.g., in the weighted interval scheduling problem, we realize that
we need to solve the problem for prefixes (i.e. either for jobs

1,....,j—1or1,..,pljl)
> Write the Bellman equation, cover your base cases
> Think about optimizing the running time/space using tricks

o Often easier in the bottom-up implementation

373522 - Deepanshu Kush

Network Flow

Network Flow

()

* Input
> Adirected graph G = (V,E) @ @
> Edge capacitiesc : E = Ry 20 ” / 20
» Source node s, target node t @ 30 0 30 ‘@

10 10)

. Y v
Output ‘0 _p@
» Maximum “flow” fromstot

_ J

373522 - Deepanshu Kush

Network Flow

* Assumptions
> No edges enter s

> No edges leave t @ @
d

> Edge capacity c(e) is a non- . / 20
negative integer 2 0 %
o Later, we'll see what happens 10
. «
when c(e) can be a rational or 10 10
irrational number Y y

373522 - Deepanshu Kush

Network Flow

* Flow
> An s-t flow is a function f: E - R,
> Intuitively, f(e) is the “amount of materia

|”

carried on edge e

373522 - Deepanshu Kush

Network Flow

* Constraints on flow f

1. Respecting capacities
VeeE:0< f(e) <c(e)

2. Flow conservation
Vv eV \ {S' t} : Ze entering v f(e) = Zeleavingv f(e)

Flow in = flow out at every
node other than s and t

373522 - Deepanshu Kush

Network Flow

* fin(v) = Ze entering v f(e)
* fout(v) = Ze leaving v f(e)

* Value of flow f is v(f) = fO%(s) = f*(t)
> Q: Why is fO%(s) = fI*(£)?

e Restating the problem:

> Given a directed graph ¢ = (V, E) with edge capacities c: E = R,
find a flow f™ with the maximum value.

373522 - Deepanshu Kush

First Attempt

* A natural greedy approach

1. Start from zero flow (f (e) = 0 for each e).

2. While there exists an s-t path P in G such that f(e) < c(e) for
eache € P

a. Find any such path P
b. Compute A = Iglellgl(c(e) — f(e))

c. Increase the flow on each edgee € P by A

* Note
» Capacity and flow conservation constraints remain satisfied

373522 - Deepanshu Kush

First Attempt

flow capacity
flow network G and flow f
A
O 0
Q\\ 0/2 s 0/6
(_/_f) 0/10 / /) 0/9 ()

373522 - Deepanshu Kush

value of flow

/

t) O
C

First Attempt

flow network G and flow f

5 0/4 (-
/ \‘~'\ T
O 0/2 0 0/6 “
: &\ |
. / ‘//_\\‘ = //”\\
(s) 0/10) 0/9 <-/)_ 0/10 mupp(t) O

373522 - Deepanshu Kush

First Attempt

flow network G and flow f

() 0/4
(L / (\J)
/ \ ! 0
O 8
q,%\\ 0/2 o

0/6 ~

LN

)| 8)
P TN
(5) 0/10 (_‘/) 0/9 (_\)_ 9/ 10 _)’\‘r_/) 0 +8=38

>

373522 - Deepanshu Kush

First Attempt

flow network G and flow f

) 0/4 G
/T / (\)
7
\Q%\\Q 2 eiz &/& 0/6 “’
/"\/ / ™\

2 L 10 %
(\S) 0/10 .\\“//_ ‘9’/9#(_?/_ 8/ |0»<f_/> 8 +2=10

373522 - Deepanshu Kush

First Attempt

flow network G and flow f

./\\\ O 4 i
N ;i (\.)
T\ :
\Q & (3
o 2/2 " 6 el/ 6 /s
X . 4 ZBEN 8 N\ \/ N\
(_ /_'9'/10»\\ /_-2-/9#&) 10/10 /\f/\ 10 +6=16

373522 - Deepanshu Kush

First Attempt

ending flow value = 16

flow network G and flow f

LN P

N i (\)
0\\Q 2./2 g 6/6
\
G)— s/10—O) 8/9 O

373522 - Deepanshu Kush

10/10

First Attempt

but max-flow value = 19

flow network G and flow f

) 3/4 =
- 4 (\J>
O 9
2 2
\0\ 0/ “® B0 7, 0
X AT o ™
(_\:v/s 9/10 /\/\ 9/9 &) 10/10 (r/\\ 19

373522 - Deepanshu Kush

First Attempt

* Q: Why does the simple greedy approach fail?

* A: Because once it increases the flow on an edge, it is not
allowed to decrease it ever in the future.

* Need a way to “reverse”

flow network G

bad decisions

373522 - Deepanshu Kush

Reversing Bad Decisions

Suppose we start by sending But the optimal configuration requires
20 units of flow along this path 10 fewer units of flowonu = v
FON FON
20/20 0/10 20/20 10/10
G{ 20/30 :@ G{ 10/30 }3
0/10 20/20 10/10 20/20

373522 - Deepanshu Kush

Reversing Bad Decisions

We can essentially send a “reverse” So now we get this optimal flow
flow of 10 units alongv - u

PN FON

20/20 10/10 20/20 10/10
(10 20/30 }E) (10/30 }3)
10/10\ | 20,20 10/10 | 20/20

hof

373522 - Deepanshu Kush

Residual Graph

* Suppose the current flow is f

* Define the residual graph G of flow f

> Gf has the same vertices as G
» Foreachedgee = (u,v)inG, Gf has at most two edges

o Forward edge e = (u, v) with capacity c(e) — f(e)
 We can send this much additional flow on e

o Reverse edge e’ = (v, u) with capacity f(e)

* The maximum “reverse” flow we can send is the maximum
amount by which we can reduce flow on e, which is f(e)

o We only really add edges of capacity > 0

373522 - Deepanshu Kush

Residual Graph

* Example!
Flow f Residual graph Gy
20/20 0/10 20 10
¢ -~ ® @+ ®
0/10 20/20 10 20

A 4
\

373522 - Deepanshu Kush

Augmenting Paths

* Let P be an s-t path in the residual graph G

* Let bottleneck(P, f) be the smallest capacity across all edges
in P

« “Augment” flow f by “sending” bottleneck(P, f) units of flow
along P
> What does it mean to send x units of flow along P?
> For each forward edge e € P, increase the flow on e by x
> For each reverse edge e"®V € P, decrease the flow on e by x

373522 - Deepanshu Kush

Residual Graph

* Example!

Flow f Residual graph Gy

Joy Joy
20/20 0/10 20/ 10
@ -~ ®» @z ®

0/10 20/20 10 20

A 4 \ 4

Vv \"

Path P — send flow = bottleneck = 10

373522 - Deepanshu Kush

Residual Graph

* Example!

New flow f New residual graph G

Joy Joy
20/20 10/10 zo/ 10
@ ~ ® @ ®

10/10 20/20 10 20

A 4 \ 4

Vv \"

No s-t path because no outgoing edge from s

373522 - Deepanshu Kush

Augmenting Paths

e Let’s argue that the new flow is a valid flow

e Capacity constraints (easy):

> If we increase flow on e, we can do so by at most the capacity of
forward edge e in Gg, which is c(e) — f(e)

o So, the new flow can be at most f(e) + (c(e) — f(e)) = c(e)

> If we decrease flow on e, we can do so by at most the capacity of
reverse edge e"®V in G¢, which is f(e)

o So, the new flow is at least f(e) — f(e) =0

373522 - Deepanshu Kush

Augmenting Paths

e Let’s argue that the new flow is a valid flow

* Flow conservation (a bit trickier):

> Each node on the path (except s and t) has exactly two incident
edges

o Both forward / both reverse = one is incoming, one is outgoing
* Flow increased on both or decreased on both

o One forward, one reverse = both incoming / both outgoing
* Flow increased on one but decreased on the other

o In each case, net flow remains 0

Edge directions asin G

C +Xx :+x C_xC_xC+xC

373522 - Deepanshu Kush

Ford-Fulkerson Algorithm

MaxFlow(G):

// initialize:
Set f(e) =0 for all e in G

// while there is an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)

EndWhile

Return f

373522 - Deepanshu Kush

Ford-Fulkerson Algorithm

* Running time:
» #Augmentations:
o At every step, flow and capacities remain integers
o For path P in Gy, bottleneck(P, f) > 0 implies bottleneck(P, f) = 1
o Each augmentation increases flow by at least 1
o Max flow (hence max #augmentations) is at most € = X, jeaving s €(€)

> Time to perform an augmentation:
o Gy has n vertices and at most 2m edges
o Finding P, computing bottleneck(P, f), updating G
* O(m +n)time

> Total time: O((m +n) - C)

373522 - Deepanshu Kush

Ford-Fulkerson Algorithm

e Total time: O((m +n) - C)
» This is pseudo-polynomial time, but NOT polynomial time

> The value of C can be exponentially large in the input length (the number
of bits required to write down the edge capacities)

* Q: Can we convert this to polynomial time?

373522 - Deepanshu Kush

Ford-Fulkerson Algorithm

* Q: Can we convert this to polynomial time?
> Not if we choose an arbitrary path in G at each step

> In the graph below, we might end up repeatedly sending 1 unit of flow
across a — b and then reversing it

o Takes X steps, which can be exponential in the input length

373522 - Deepanshu Kush

Ford-Fulkerson Algorithm

* Ways to achieve polynomial time

> Find the maximum bottleneck capacity augmenting path
o Runsin 0(m? - log C) operations
e “Weakly polynomial time”

> Find the shortest augmenting path using BFS
o Edmonds-Karp algorithm
o Runs in 0(nm?) operations
e “Strongly polynomial time”
o Can be found in CLRS

373522 - Deepanshu Kush

Max Flow Problem

e Race to reduce the running time
> 1972: 0(n m?) Edmonds-Karp
1980: 0(n mlog? n) Galil-Namaad
1983: 0(n mlogn) Sleator-Tarjan
1986: O(n mlog("z/m)) Goldberg-Tarjan
1992: O(n m + n?*€) King-Rao-Tarjan

vV V V¥V V

logn
log ™/ 1ogn

o Note: These are O(n m) whenm = w(n)
» 2013: O(n m) Orlin

o Breakthrough!

> 1996: 0 (n m > King-Rao-Tarjan

> 2021: 0((m + n'®) - log X), where X = max edge capacity
o Breakthrough based on very heavy techniques!

373522 - Deepanshu Kush

Back to Ford-Fulkerson

* We argued that the algorithm must terminate, and must
terminate in 0((m +n) - C) time

* But we didn’t argue correctness yet, i.e., the algorithm must
terminate with the optimal flow

373522 - Deepanshu Kush

Recall: Ford-Fulkerson

MaxFlow(G):

// initialize:
Set f(e) =0 for all e in G

// while there is an s-t path in Gf:

While P = FindPath(s,t,Residual(G,f))!=None:
f = Augment(f,P)
UpdateResidual (G, f)

EndWhile

Return f

373522 - Deepanshu Kush

Recall: Notation

* f =flow, s = source, t = target

o fout fin
> For anode u: f°%(u), f"(u) = total flow out of and into u

> For a set of nodes X: fO4(X) , f™(X) defined similarly

* Constraints
> Capacity: 0 < f(e) < c(e)
> Flow conservation: fo%(u) = f™(u) forallu # s, t

e v(f) = fOU(s) = F(t) = value of the flow

373522 - Deepanshu Kush

Cuts and Cut Capacities

* (A,B)isans-t cutifitis a partition of vertex setV (i.e., AUB =V,
ANB =0)withse Aandt € B

* Its capacity, denoted cap(A4, B), is the sum of capacities of edges leaving A

s-t cut

capacity(A,B) =25

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),

v(f) = fOU(A) — f™(A)
* Proof (on the board): Just take a sum of the flow conservation
constraint over all nodes in A

s-t cut

capacity(A,B) =25

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: For any flow f and any s-t cut (4, B),

v(f) < cap(4, B)
* Proof:

v(f) = fOH(A) - f(A)
< fOUE(A)
= Ze leaving A f(e)
< Ze leaving A C(e)

= cap(4A, B)

373522 - Deepanshu Kush

Cuts and Flows

Theorem: For any flow f and any s-t cut (4, B),
v(f) < cap(4, B)

Hence, m}gx v(f) < ming, gy cap(4, B)

> Max value of any flow < min capacity of any s-t cut

We will now prove:
> Value of flow generated by Ford-Fulkerson = capacity of some cut

Implications
> 1) Max flow = min cut
> 2) Ford-Fulkerson generates max flow.

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> [=flow returned by Ford-Fulkerson
» A" = nodes reachable from s in Gy
> B™ =remaining nodes I/ \ A”
> Note: We look at the residual graph Gy, but define the cutin G

Graph G - /
A* = nodes e
reachable from s in .

residual graph Gf

Cut=(A", BY)

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Claim: (4%, B*) is a valid cut
o § € A" by definition

o t € B* because when Ford-Fulkerson terminates, there are no s-t
pathsin G¢,sot & A

£ .
reachable from s in

residual graph Gf

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Blue edges = edges going out of A™in G
> Red edges = edges coming into A™|in G

Graph G TR .
A* = nodes .
reachable from s in N

residual graph G :ﬂ ;

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated
o Otherwise G would have its forward edge (u, v) and then v € A*
> Each red edge (v, u) must have zero flow
o Otherwise Gy would have its reverse edge (u, v) and then v € A"

£ .
reachable from s in

residual graph Gf

373522 - Deepanshu Kush

Cuts and Flows

* Theorem: Ford-Fulkerson finds maximum flow.

* Proof:
> Each blue edge (u, v) must be saturated = f4t(4*) = cap(4*, B¥)
> Each red edge (v, u) must have zero flow = f*(4*) = 0
> Sov(f) = fOU(A") — f"(A") = cap(A*,B") m

Graph G - /
A* = nodes e
reachable from s in .

residual graph Gf

Cut=(A", BY)

373522 - Deepanshu Kush

Max Flow - Min Cut

* Max Flow-Min Cut Theorem:
In any graph, the value of the maximum flow is equal to the
capacity of the minimum cut.

* Our proof already gives an algorithm to find a min cut
> Run Ford-Fulkerson to find a max flow f
> Construct its residual graph Gf
> Let A" = set of all nodes reachable from s in G

o Easy to compute using BFS
> Then (4%, V \ A®) is a min cut

373522 - Deepanshu Kush

Poll

Question

* There is a network G with positive integer edge capacities.

* You run Ford-Fulkerson.

It finds an augmenting path with bottleneck capacity 1, and after that
iteration, it terminates with a final flow value of 1.

* Which of the following statement(s) must be correct about G?

(a) G has a single s-t path.
(b) G has an edge e such that all s-t paths go through e.
(c) The minimum cut capacity in G is greater than 1.

(d) The minimum cut capacity in G is less than 1.

373522 - Deepanshu Kush

Why Study Flow Networks?

* Unlike divide-and-conquer, greedy, or DP, this doesn’t seem
like an algorithmic framework
> It seems more like a single problem

e Turns out that many problems can be reduced to this
versatile single problem

 Next lecture!

373522 - Deepanshu Kush

