CSC373

Week 5:
Dynamic Programming (contd) Network Flow (start)

Recap

- Dynamic Programming Basics
> Optimal substructure property
> Bellman equation
> Top-down (memoization) vs bottom-up implementations
- Dynamic Programming Examples
> Weighted interval scheduling
> Knapsack problem
> Single-source shortest paths
- Chain matrix product

This Lecture

- Some more DP
> Traveling salesman problem (TSP)
- Start of network flow
> Problem statement
> Ford-Fulkerson algorithm
> Running time
> Correctness

Traveling Salesman

- Input
> Complete directed graph $G=(V, E)$
> $d_{i, j}=$ distance from node i to node j
- Output
> Minimum distance which needs to be traveled to start from some node v, visit every other node exactly once, and come back to v
- That is, the minimum cost of a Hamiltonian cycle

Traveling Salesman

- Approach
> Let's start at node $v_{1}=1$
- It's a cycle, so the starting point does not matter
> Want to visit the other nodes in some order, say v_{2}, \ldots, v_{n}
$>$ Total distance is $d_{1, v_{2}}+d_{v_{2}, v_{3}}+\cdots+d_{v_{n-1}, v_{n}}+d_{v_{n}, 1}$
- Want to minimize this distance
- Naïve solution
> Check all possible orderings
$>(n-1)!=\Theta\left(\sqrt{n} \cdot\left(\frac{n}{e}\right)^{n}\right)$ (Stirling's approximation)

Traveling Salesman

- DP Approach
> Consider v_{n} (the last node before returning to $v_{1}=1$)
- If $v_{n}=c$
- Find the optimal order of visiting nodes $\{2, \ldots, n\}$ that ends at c
- Need to keep track of the subset of nodes to be visited and the end node
$>O P T[S, c]=$ minimum total travel distance when starting at 1 , visiting each node in S exactly once, and ending at $c \in S$
> Answer to the original problem:
$\circ \min _{c \in S} O P T[S, c]+d_{c, 1}$, where $S=\{2, \ldots, n\}$

Traveling Salesman

- DP Approach
> To compute $O P T[S, c]$, we can condition over the vertex visited right before c in the optimal trip
- Bellman equation

$$
\begin{gathered}
O P T[S, c]=\min _{m \in S \backslash\{c\}}\left(O P T[S \backslash\{c\}, m]+d_{m, c}\right) \\
\text { Final solution }=\min _{c \in\{2, \ldots, n\}}\left(O P T[\{2, \ldots, n\}, c]+d_{c, 1}\right)
\end{gathered}
$$

- Time: $O\left(n \cdot 2^{n}\right)$ calls, $O(n)$ time per call $\Rightarrow O\left(n^{2} \cdot 2^{n}\right)$
> Much better than the naïve solution which has $(n / e)^{n}$

Traveling Salesman

- Bellman equation

$$
O P T[S, c]=\min _{m \in S \backslash\{c\}}\left(O P T[S \backslash\{c\}, m]+d_{m, c}\right)
$$

$$
\text { Final solution }=\min _{c \in\{2, \ldots, n\}} O P T[\{2, \ldots, n\}, c]+d_{c, 1}
$$

- Space complexity: $O\left(n \cdot 2^{n}\right)$
> But computing the optimal solution with $|S|=k$ only requires storing the optimal solutions with $|S|=k-1$
- Question:
> Using this observation, how much can we reduce the space complexity?

DP Concluding Remarks

- High-level steps in designing a DP algorithm
> Focus on a single decision in optimal solution
- Typically, the first/last decision
> For each possible way of making that decision...
o [Optimal substructure] Write the optimal solution of the problem in terms of the optimal solutions to subproblems
> Generalize the problem...
- ...by looking at the type of subproblems needed
- E.g., in the weighted interval scheduling problem, we realize that we need to solve the problem for prefixes (i.e. either for jobs $1, \ldots, j-1$ or $1, \ldots, p[j])$
> Write the Bellman equation, cover your base cases
> Think about optimizing the running time/space using tricks
o Often easier in the bottom-up implementation

Network Flow

Network Flow

- Input
> A directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$
> Source node s, target node t
- Output
> Maximum "flow" from s to t

Network Flow

- Assumptions
> No edges enter s
> No edges leave t
> Edge capacity $c(e)$ is a nonnegative integer
- Later, we'll see what happens when $c(e)$ can be a rational or irrational number

Network Flow

- Flow
> An s - t flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}$
$>$ Intuitively, $f(e)$ is the "amount of material" carried on edge e

Network Flow

- Constraints on flow f

1. Respecting capacities

$$
\forall e \in E: 0 \leq f(e) \leq c(e)
$$

2. Flow conservation

$$
\forall v \in V \backslash\{s, t\}: \sum_{e \text { entering } v} f(e)=\sum_{e \text { leaving } v} f(e)
$$

Flow in = flow out at every node other than s and t

Network Flow

- $f^{\text {in }}(v)=\sum_{e \text { entering } v} f(e)$
- $f^{\text {out }}(v)=\sum_{e \text { leaving } v} f(e)$
- Value of flow f is $v(f)=f^{\text {out }}(s)=f^{\text {in }}(t)$
> Q : Why is $f^{\text {out }}(s)=f^{\text {in }}(t)$?
- Restating the problem:
> Given a directed graph $G=(V, E)$ with edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$, find a flow f^{*} with the maximum value.

First Attempt

- A natural greedy approach

1. Start from zero flow ($f(e)=0$ for each e).
2. While there exists an s - t path P in G such that $f(e)<c(e)$ for each $e \in P$
a. Find any such path P
b. Compute $\Delta=\min _{e \in P}(c(e)-f(e))$
c. Increase the flow on each edge $e \in P$ by Δ

- Note
> Capacity and flow conservation constraints remain satisfied

First Attempt

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

$$
\text { ending flow value = } 16
$$

flow network \mathbf{G} and flow \mathbf{f}

First Attempt

$$
\text { but max-flow value }=19
$$

flow network G and flow f

First Attempt

- Q: Why does the simple greedy approach fail?
- A: Because once it increases the flow on an edge, it is not allowed to decrease it ever in the future.
- Need a way to "reverse" bad decisions
flow network G

Reversing Bad Decisions

Suppose we start by sending
20 units of flow along this path

But the optimal configuration requires 10 fewer units of flow on $u \rightarrow v$

Reversing Bad Decisions

We can essentially send a "reverse" flow of 10 units along $v \rightarrow u$

So now we get this optimal flow

Residual Graph

- Suppose the current flow is f
- Define the residual graph G_{f} of flow f
> G_{f} has the same vertices as G
> For each edge $\mathrm{e}=(u, v)$ in G, G_{f} has at most two edges
- Forward edge $e=(u, v)$ with capacity $c(e)-f(e)$
- We can send this much additional flow on e
- Reverse edge $e^{r e v}=(v, u)$ with capacity $f(e)$
- The maximum "reverse" flow we can send is the maximum amount by which we can reduce flow on e, which is $f(e)$
- We only really add edges of capacity >0

Residual Graph

- Example!

Flow f
Residual graph G_{f}

Augmenting Paths

- Let P be an s-t path in the residual graph G_{f}
- Let bottleneck (P, f) be the smallest capacity across all edges in P
- "Augment" flow f by "sending" bottleneck (P, f) units of flow along P
> What does it mean to send x units of flow along P ?
> For each forward edge $e \in P$, increase the flow on e by x
> For each reverse edge $e^{r e v} \in P$, decrease the flow on e by x

Residual Graph

- Example!

Flow f

Residual graph G_{f}

Path $P \rightarrow$ send flow $=$ bottleneck $=10$

Residual Graph

- Example!

New flow f

New residual graph G_{f}

No s - t path because no outgoing edge from s

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Capacity constraints (easy):
> If we increase flow on e, we can do so by at most the capacity of forward edge e in G_{f}, which is $c(e)-f(e)$
- So, the new flow can be at most $f(e)+(c(e)-f(e))=c(e)$
> If we decrease flow on e, we can do so by at most the capacity of reverse edge $e^{r e v}$ in G_{f}, which is $f(e)$
- So, the new flow is at least $f(e)-f(e)=0$

Augmenting Paths

- Let's argue that the new flow is a valid flow
- Flow conservation (a bit trickier):
> Each node on the path (except s and t) has exactly two incident edges
- Both forward / both reverse \Rightarrow one is incoming, one is outgoing
- Flow increased on both or decreased on both
- One forward, one reverse \Rightarrow both incoming / both outgoing
- Flow increased on one but decreased on the other
- In each case, net flow remains 0

Edge directions as in G

Ford-Fulkerson Algorithm

MaxFlow(G):

// initialize:

Set $f(e)=0$ for all e in G
// while there is an $s-t$ path in G_{f} :
While $P=$ FindPath(s,t,Residual $(G, f))!=$ None:
$f=\operatorname{Augment}(f, P)$
UpdateResidual(G, f)
EndWhile
Return f

Ford-Fulkerson Algorithm

- Running time:
> \#Augmentations:
- At every step, flow and capacities remain integers
- For path P in G_{f}, bottleneck $(P, f)>0$ implies bottleneck $(P, f) \geq 1$
- Each augmentation increases flow by at least 1
- Max flow (hence max \#augmentations) is at most $C=\sum_{e \text { leaving } s} c(e)$
> Time to perform an augmentation:
- G_{f} has n vertices and at most $2 m$ edges
\circ Finding P, computing bottleneck (P, f), updating G_{f}
- $O(m+n)$ time
> Total time: $O((m+n) \cdot C)$

Ford-Fulkerson Algorithm

- Total time: $O((m+n) \cdot C)$
> This is pseudo-polynomial time, but NOT polynomial time
> The value of C can be exponentially large in the input length (the number of bits required to write down the edge capacities)
- Q: Can we convert this to polynomial time?

Ford-Fulkerson Algorithm

- Q: Can we convert this to polynomial time?
> Not if we choose an arbitrary path in G_{f} at each step
> In the graph below, we might end up repeatedly sending 1 unit of flow across $a \rightarrow b$ and then reversing it
- Takes X steps, which can be exponential in the input length

Ford-Fulkerson Algorithm

- Ways to achieve polynomial time
> Find the maximum bottleneck capacity augmenting path
- Runs in $O\left(m^{2} \cdot \log C\right)$ operations
- "Weakly polynomial time"
> Find the shortest augmenting path using BFS
- Edmonds-Karp algorithm
- Runs in $O\left(\mathrm{~nm}^{2}\right)$ operations
- "Strongly polynomial time"
- Can be found in CLRS
> ...

Max Flow Problem

- Race to reduce the running time
> 1972: $O\left(\mathrm{n} \mathrm{m}^{2}\right)$ Edmonds-Karp
> 1980: $O\left(n m \log ^{2} n\right)$ Galil-Namaad
> 1983: $O(n m \log n)$ Sleator-Tarjan
$>$ 1986: $O\left(n m \log \left(n^{2} / m\right)\right)$ Goldberg-Tarjan
> 1992: $O\left(n m+n^{2+\epsilon}\right)$ King-Rao-Tarjan
> 1996: $O\left(n m \frac{\log n}{\log m / n \log n}\right)$ King-Rao-Tarjan
- Note: These are $O(n m)$ when $m=\omega(n)$
> 2013: O(nm) Orlin
- Breakthrough!
> 2021: $O\left(\left(m+n^{1.5}\right) \cdot \log X\right)$, where $X=$ max edge capacity
- Breakthrough based on very heavy techniques!

Back to Ford-Fulkerson

- We argued that the algorithm must terminate, and must terminate in $O((m+n) \cdot C)$ time
- But we didn't argue correctness yet, i.e., the algorithm must terminate with the optimal flow

Recall: Ford-Fulkerson

MaxFlow(G):

// initialize:

Set $f(e)=0$ for all e in G
// while there is an $s-t$ path in G_{f} :
While $P=$ FindPath(s,t,Residual $(G, f))!=$ None:
$f=\operatorname{Augment}(f, P)$
UpdateResidual(G, f)
EndWhile
Return f

Recall: Notation

- $f=$ flow, $s=$ source, $t=$ target
- fout, $f^{\text {in }}$
> For a node u : $f^{\text {out }}(u), f^{\text {in }}(u)=$ total flow out of and into u
> For a set of nodes $X: f^{\text {out }}(X), f^{\text {in }}(X)$ defined similarly
- Constraints
> Capacity: $0 \leq f(e) \leq c(e)$
> Flow conservation: $f^{\text {out }}(u)=f^{\text {in }}(u)$ for all $u \neq s, t$
- $v(f)=f^{\text {out }}(s)=f^{\text {in }}(t)=$ value of the flow

Cuts and Cut Capacities

- (A, B) is an s - t cut if it is a partition of vertex set V (i.e., $A \cup B=V$, $A \cap B=\emptyset)$ with $s \in A$ and $t \in B$
- Its capacity, denoted $\operatorname{cap}(A, B)$, is the sum of capacities of edges leaving A

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f)=f^{\text {out }}(A)-f^{\text {in }}(A)
$$

- Proof (on the board): Just take a sum of the flow conservation constraint over all nodes in A

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f) \leq \operatorname{cap}(A, B)
$$

- Proof:

$$
\begin{aligned}
v(f) & =f^{\text {out }}(A)-f^{\text {in }}(A) \\
& \leq f^{\text {out }}(A) \\
& =\sum_{e \text { leaving } A} f(e) \\
& \leq \sum_{e \text { leaving } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Cuts and Flows

- Theorem: For any flow f and any s - t cut (A, B),

$$
v(f) \leq \operatorname{cap}(A, B)
$$

- Hence, $\max _{f} v(f) \leq \min _{(A, B)} \operatorname{cap}(A, B)$
> Max value of any flow \leq min capacity of any $s-t$ cut
- We will now prove:
> Value of flow generated by Ford-Fulkerson = capacity of some cut
- Implications
> 1) Max flow = min cut
> 2) Ford-Fulkerson generates max flow.

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> $f=$ flow returned by Ford-Fulkerson
> $A^{*}=$ nodes reachable from s in G_{f}
$>B^{*}=$ remaining nodes $V \backslash A^{*}$
> Note: We look at the residual graph G_{f}, but define the cut in G

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Claim: $\left(A^{*}, B^{*}\right)$ is a valid cut
○ $s \in A^{*}$ by definition
- $t \in B^{*}$ because when Ford-Fulkerson terminates, there are no $s-t$ paths in G_{f}, so $t \notin A^{*}$

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Blue edges = edges going out of A^{*} in G
> Red edges = edges coming into A^{*} in G

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Each blue edge (u, v) must be saturated
\circ Otherwise G_{f} would have its forward edge (u, v) and then $v \in A^{*}$
> Each red edge (v, u) must have zero flow
- Otherwise G_{f} would have its reverse edge (u, v) and then $v \in A^{*}$

Cuts and Flows

- Theorem: Ford-Fulkerson finds maximum flow.
- Proof:
> Each blue edge (u, v) must be saturated $\Rightarrow f^{\text {out }}\left(A^{*}\right)=\operatorname{cap}\left(A^{*}, B^{*}\right)$
> Each red edge (v, u) must have zero flow $\Rightarrow f^{\text {in }}\left(A^{*}\right)=0$
$>$ So $v(f)=f^{\text {out }}\left(A^{*}\right)-f^{\text {in }}\left(A^{*}\right)=\operatorname{cap}\left(A^{*}, B^{*}\right) ■$

Max Flow - Min Cut

- Max Flow-Min Cut Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Our proof already gives an algorithm to find a min cut
> Run Ford-Fulkerson to find a max flow f
> Construct its residual graph G_{f}
$>$ Let $A^{*}=$ set of all nodes reachable from s in G_{f}
- Easy to compute using BFS
> Then $\left(A^{*}, V \backslash A^{*}\right)$ is a min cut

Poll

Question

- There is a network G with positive integer edge capacities.
- You run Ford-Fulkerson.
- It finds an augmenting path with bottleneck capacity 1 , and after that iteration, it terminates with a final flow value of 1.
- Which of the following statement(s) must be correct about G ?
(a) G has a single $s-t$ path.
(b) G has an edge e such that all s - t paths go through e.
(c) The minimum cut capacity in G is greater than 1.
(d) The minimum cut capacity in G is less than 1 .

Why Study Flow Networks?

- Unlike divide-and-conquer, greedy, or DP, this doesn't seem like an algorithmic framework
> It seems more like a single problem
- Turns out that many problems can be reduced to this versatile single problem
- Next lecture!

