CSC373

Week 2: Greedy Algorithms

Announcements

- First tutorial tomorrow!
- Details on Piazza
- First Assignment to be posted tomorrow (May 19) after tutorial
- Due June 1

Recap

• Divide & Conquer

- Master theorem
- > Counting inversions in $O(n \log n)$
- > Finding closest pair of points in \mathbb{R}^2 in $O(n \log n)$
- > Fast integer multiplication in $O(n^{\log_2 3})$
- > Fast matrix multiplication in $O(n^{\log_2 7})$
- > Finding k^{th} smallest element (in particular, median) in O(n)

Greedy Algorithms

- Greedy/myopic algorithm outline
 - ➤ Goal: find a solution x maximizing/minimizing objective function f
 - Challenge: space of possible solutions x is too large
 - Insight: x is composed of several parts (e.g., x is a set or a sequence)
 - > Approach: Instead of computing *x* directly...
 - Compute it one part at a time
 - Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
 - Polynomial running time is typically guaranteed
 - Need to prove that this will always return an optimal solution despite having no foresight

Problem

- > Job *j* starts at time s_j and finishes at time f_j
- Two jobs *i* and *j* are compatible if [s_i, f_i) and [s_j, f_j) don't overlap
 Note: we allow a job to start right when another finishes
- Goal: find maximum-size subset of mutually compatible jobs

Greedy template

- Consider jobs in some "natural" order
- > Take a job if it's compatible with the ones already chosen

• What order?

- > Earliest start time: ascending order of s_i
- > Earliest finish time: ascending order of f_i
- > Shortest interval: ascending order of $f_j s_j$
- Fewest conflicts: ascending order of c_j, where c_j is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_i
- Earliest finish time: ascending order of f_i
- Shortest interval: ascending order of $f_j s_j$
- Fewest conflicts: ascending order of c_j , where c_j is the number of remaining jobs that conflict with j

• Does it work?

		- 1			
	_			_	

Counterexamples for

earliest start time

shortest interval

fewest conflicts

- Implementing greedy with earliest finish time (EFT)
 - Sort jobs by finish time, say $f_1 ≤ f_2 ≤ \cdots ≤ f_n$ $O(n \log n)$
 - For each job j, we need to check if it's compatible with all previously added jobs
 - \circ Naively, this can take O(n) time per job j, so $O(n^2)$ total time
 - We only need to check if $s_j \ge f_{i^*}$, where i^* is the *last added job*
 - For any jobs *i* added before i^* , $f_i \leq f_{i^*}$
 - By keeping track of f_{i^*} , we can check job j in O(1) time
 - > Running time: $O(n \log n)$

- Proof of optimality by contradiction
 - Suppose for contradiction that greedy is not optimal
 - > Say greedy selects jobs i_1, i_2, \dots, i_k sorted by finish time
 - Consider an optimal solution j₁, j₂, ..., j_m (also sorted by finish time) which matches greedy for as many indices as possible

 \circ That is, we want $j_1 = i_1, \dots, j_r = i_r$ for the greatest possible r

> Both i_{r+1} and j_{r+1} must be compatible with the previous selection $(i_1 = j_1, ..., i_r = j_r)$

- Proof of optimality by contradiction
 - > Consider a new solution $i_1, i_2, \dots, i_r, \frac{i_{r+1}}{j_{r+2}}, \dots, j_m$
 - \circ We have replaced j_{r+1} by i_{r+1} in our reference optimal solution
 - This is still feasible because $f_{i_{r+1}} \le f_{j_{r+1}} \le s_{j_t}$ for $t \ge r+2$
 - \circ This is still optimal because m jobs are selected
 - \circ But it matches the greedy solution in r+1 indices
 - This is the desired contradiction

- Proof of optimality by induction
 - Let S_j be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
 Define S₀ = Ø
 - We call this partial solution *promising* if there is a way to extend it to an optimal solution by picking some subset of jobs *j* + 1, ..., *n* ∃*T* ⊆ {*j* + 1, ..., *n*} such that *O_j* = *S_j* ∪ *T* is optimal
 - > Inductive claim: For all $t \in \{0, 1, ..., n\}$, S_t is promising
 - If we prove this, then we are done!
 For t = n, if S_n is promising, then it must be optimal (Why?)
 We chose t = 0 as our base case since it is "trivial"

- Proof of optimality by induction
 - > S_j is *promising* if ∃ $T \subseteq \{j + 1, ..., n\}$ such that $O_j = S_j \cup T$ is optimal
 - > Inductive claim: For all $t \in \{0, 1, ..., n\}$, S_t is promising
 - Base case: For t = 0, S₀ = Ø is clearly promising
 O Any optimal solution extends it
 - > Induction hypothesis: Suppose the claim holds for t = j 1 and optimal solution O_{j-1} extends S_{j-1}
 - > Induction step: At t = j, we have two possibilities:
 - 1) Greedy did not select job *j*, so $S_j = S_{j-1}$
 - Job *j* must conflict with some job in S_{j-1}
 - Since $S_{j-1} \subseteq O_{j-1}$, O_{j-1} also cannot include job j
 - $O_j = O_{j-1}$ also extends $S_j = S_{j-1}$

- Proof of optimality by induction
 - > Induction step: At t = j, we have two possibilities:
 - 2) Greedy selected job j, so $S_j = S_{j-1} \cup \{ j \}$
 - Consider the earliest job r in $O_{j-1} \setminus S_{j-1}$
 - Consider O_j obtained by replacing r with j in O_{j-1}
 - Prove that O_i is still feasible
 - O_j extends S_j, as desired!

Contradiction vs Induction

- Both methods make the same claim
 - "The greedy solution after *j* iterations can be extended to an optimal solution, ∀*j*"
- They also use the same key argument
 - "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after j + 1 iterations can be extended to an optimal solution as well"
 - > For proof by induction, this is the key induction step
 - For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after j + 1 iterations

Problem

- > Job *j* starts at time s_j and finishes at time f_j
- > Two jobs are compatible if they don't overlap
- Goal: group jobs into fewest partitions such that jobs in the same partition are compatible

• One idea

- Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
- > Doesn't work (check by yourselves)

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

- Let's go back to the greedy template!
 - Go through lectures in some "natural" order
 - > Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
 - > Earliest start time: ascending order of s_i
 - > Earliest finish time: ascending order of f_i
 - > Shortest interval: ascending order of $f_j s_j$
 - Fewest conflicts: ascending order of c_j, where c_j is the number of remaining jobs that conflict with j

- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

EARLIESTSTARTTIMEFIRST($n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n$)

SORT lectures by start time so that $s_1 \leq s_2 \leq \ldots \leq s_n$.

 $d \leftarrow 0 \quad \longleftarrow \quad \text{number of allocated classrooms}$

For j = 1 to n

IF lecture *j* is compatible with some classroomSchedule lecture *j* in any such classroom *k*.ELSE

Allocate a new classroom d + 1

Schedule lecture *j* in classroom d + 1.

 $d \leftarrow d \ +1$

RETURN schedule.

• Running time

- Key step: check if the next lecture can be scheduled at some classroom
- Store classrooms in a priority queue
 - \circ key = latest finish time of any lecture in the classroom
- > Is lecture *j* compatible with some classroom?
 - \circ Same as "Is s_i at least as large as the minimum key?"
 - If yes: add lecture j to classroom k with minimum key, and increase its key to f_j
 - \circ Otherwise: create a new classroom, add lecture *j*, set key to f_j
- > O(n) priority queue operations, $O(n \log n)$ time

- Proof of optimality (lower bound)
 - > # classrooms needed \geq "depth"
 - depth = maximum number of lectures running at any time • Recall, as before, that job *i* runs in $[s_i, f_i]$
 - > Claim: our greedy algorithm uses only these many classrooms!

- Proof of optimality (upper bound)
 - Let d = # classrooms used by greedy
 - ➤ Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of d - 1 other classrooms
 - > All these d lectures end after s_i
 - > <u>Since we sorted by start time</u>, they all start at/before s_i
 - > So, at time s_i , we have d mutually overlapping lectures
 - > Hence, depth ≥ d =#classrooms used by greedy ■
 - ➤ Note: before we proved that #classrooms used by any algorithm (including greedy) ≥ depth, so greedy uses exactly as many classrooms as the depth.

Interval Graphs

 Interval scheduling and interval partitioning can be seen as graph problems

Input

- > Graph G = (V, E)
- Vertices V = jobs/lectures
- > Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

NOT IN SYLLABUS

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
 - > Graphs which can be obtained from incompatibility of intervals
 - In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
 - Yes! Chordal graphs
 - $\,\circ\,$ Every cycle with 4 or more vertices has a chord

