CSC373

Week 2:
 Greedy Algorithms

Announcements

- First tutorial tomorrow!
- Details on Piazza
- First Assignment to be posted tomorrow (May 19) after tutorial
- Due June 1

Recap

- Divide \& Conquer
> Master theorem
> Counting inversions in $O(n \log n)$
> Finding closest pair of points in \mathbb{R}^{2} in $O(n \log n)$
> Fast integer multiplication in $O\left(n^{\log _{2} 3}\right)$
$>$ Fast matrix multiplication in $O\left(n^{\log _{2} 7}\right)$
> Finding $k^{\text {th }}$ smallest element (in particular, median) in $O(n)$

Greedy Algorithms

- Greedy/myopic algorithm outline
- Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large
> Insight: x is composed of several parts (e.g., x is a set or a sequence)
> Approach: Instead of computing x directly...
- Compute it one part at a time
- Select the next part "greedily" to get the most immediate "benefit" (this needs to be defined carefully for each problem)
- Polynomial running time is typically guaranteed
- Need to prove that this will always return an optimal solution despite having no foresight

Interval Scheduling

- Problem
> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs i and j are compatible if $\left[s_{i}, f_{i}\right)$ and $\left[s_{j}, f_{j}\right.$) don't overlap
- Note: we allow a job to start right when another finishes
> Goal: find maximum-size subset of mutually compatible jobs

Interval Scheduling

- Greedy template
> Consider jobs in some "natural" order
> Take a job if it's compatible with the ones already chosen
- What order?
> Earliest start time: ascending order of s_{j}
> Earliest finish time: ascending order of f_{j}
> Shortest interval: ascending order of $f_{j}-s_{j}$
> Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Example

- Earliest start time: ascending order of s_{j}
- Earliest finish time: ascending order of f_{j}
- Shortest interval: ascending order of $f_{j}-s_{j}$
- Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Scheduling

- Does it work?

Counterexamples for
earliest start time
shortest interval
fewest conflicts

Interval Scheduling

- Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time, say $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- $O(n \log n)$
> For each job j, we need to check if it's compatible with all previously added jobs
- Naively, this can take $O(n)$ time per job j, so $O\left(n^{2}\right)$ total time
- We only need to check if $s_{j} \geq f_{i^{*}}$, where i^{*} is the last added job
- For any jobs i added before $i^{*}, f_{i} \leq f_{i^{*}}$
- By keeping track of $f_{i^{*}}$, we can check job j in $O(1)$ time
> Running time: $O(n \log n)$

Interval Scheduling

- Proof of optimality by contradiction
> Suppose for contradiction that greedy is not optimal
> Say greedy selects jobs $i_{1}, i_{2}, \ldots, i_{k}$ sorted by finish time
> Consider an optimal solution $j_{1}, j_{2}, \ldots, j_{m}$ (also sorted by finish time) which matches greedy for as many indices as possible
○ That is, we want $j_{1}=i_{1}, \ldots, j_{r}=i_{r}$ for the greatest possible r
> Both i_{r+1} and j_{r+1} must be compatible with the previous selection $\left(i_{1}=j_{1}, \ldots, i_{r}=j_{r}\right)$

Interval Scheduling

- Proof of optimality by contradiction
> Consider a new solution $i_{1}, i_{2}, \ldots, i_{r}, i_{r+1}, j_{r+2}, \ldots, j_{m}$
- We have replaced j_{r+1} by i_{r+1} in our reference optimal solution
- This is still feasible because $f_{i_{r+1}} \leq f_{j_{r+1}} \leq s_{j_{t}}$ for $t \geq r+2$
- This is still optimal because m jobs are selected
- But it matches the greedy solution in $r+1$ indices
- This is the desired contradiction

Interval Scheduling

- Proof of optimality by induction
> Let S_{j} be the subset of jobs picked by greedy after considering the first j jobs in the increasing order of finish time
- Define $S_{0}=\varnothing$
> We call this partial solution promising if there is a way to extend it to an optimal solution by picking some subset of jobs $j+1, \ldots, n$
- $\exists T \subseteq\{j+1, \ldots, n\}$ such that $O_{j}=S_{j} \cup T$ is optimal
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, S_{t}$ is promising
> If we prove this, then we are done!
- For $t=n$, if S_{n} is promising, then it must be optimal (Why?)
- We chose $t=0$ as our base case since it is "trivial"

Interval Scheduling

- Proof of optimality by induction
> S_{j} is promising if $\exists T \subseteq\{j+1, \ldots, n\}$ such that $O_{j}=S_{j} \cup T$ is optimal
> Inductive claim: For all $t \in\{0,1, \ldots, n\}, S_{t}$ is promising
> Base case: For $t=0, S_{0}=\varnothing$ is clearly promising
- Any optimal solution extends it
> Induction hypothesis: Suppose the claim holds for $t=j-1$ and optimal solution O_{j-1} extends S_{j-1}
> Induction step: At $t=j$, we have two possibilities:

1) Greedy did not select job j, so $S_{j}=S_{j-1}$

- Job j must conflict with some job in S_{j-1}
- Since $S_{j-1} \subseteq O_{j-1}, O_{j-1}$ also cannot include job j
- $O_{j}=O_{j-1}$ also extends $S_{j}=S_{j-1}$

Interval Scheduling

- Proof of optimality by induction
> Induction step: At $t=j$, we have two possibilities:

2) Greedy selected job j, so $S_{j}=S_{j-1} \cup\{j\}$

- Consider the earliest job r in $O_{j-1} \backslash S_{j-1}$
- Consider O_{j} obtained by replacing r with j in O_{j-1}
- Prove that O_{j} is still feasible
- O_{j} extends S_{j}, as desired!

Contradiction vs Induction

- Both methods make the same claim
> "The greedy solution after j iterations can be extended to an optimal solution, $\forall j "$
- They also use the same key argument
> "If the greedy solution after j iterations can be extended to an optimal solution, then the greedy solution after $j+1$ iterations can be extended to an optimal solution as well"
> For proof by induction, this is the key induction step
> For proof by contradiction, we take the greatest j for which the greedy solution can be extended to an optimal solution, and derive a contradiction by extending the greedy solution after $j+1$ iterations

Interval Partitioning

- Problem
> Job j starts at time s_{j} and finishes at time f_{j}
> Two jobs are compatible if they don't overlap
> Goal: group jobs into fewest partitions such that jobs in the same partition are compatible
- One idea
> Find the maximum compatible set using the previous greedy EFT algorithm, call it one partition, recurse on the remaining jobs.
> Doesn't work (check by yourselves)

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 4 classrooms for scheduling 10 lectures

Interval Partitioning

- Think of scheduling lectures for various courses into as few classrooms as possible
- This schedule uses 3 classrooms for scheduling 10 lectures

Interval Partitioning

- Let's go back to the greedy template!
> Go through lectures in some "natural" order
> Assign each lecture to an (arbitrary?) compatible classroom, and create a new classroom if the lecture conflicts with every existing classroom
- Order of lectures?
> Earliest start time: ascending order of s_{j}
> Earliest finish time: ascending order of f_{j}
> Shortest interval: ascending order of $f_{j}-s_{j}$
> Fewest conflicts: ascending order of c_{j}, where c_{j} is the number of remaining jobs that conflict with j

Interval Partitioning

counterexample for fewest conflicts
3
2
1

- At least when you assign each lecture to an arbitrary compatible classroom, three of these heuristics do not work.
- The fourth one works! (next slide)

Interval Partitioning

```
EARLIESTSTARTTimEFirst \(\left(n, s_{1}, s_{2}, \ldots, s_{n}, f_{1}, f_{2}, \ldots, f_{n}\right)\)
SORT lectures by start time so that \(s_{1} \leq s_{2} \leq \ldots \leq s_{n}\).
\(d \leftarrow 0 \longleftarrow\) number of allocated classrooms
FOR \(j=1\) TO \(n\)
    IF lecture \(j\) is compatible with some classroom
        Schedule lecture \(j\) in any such classroom \(k\).
    Else
    Allocate a new classroom \(d+1\).
    Schedule lecture \(j\) in classroom \(d+1\).
\(d \leftarrow d+1\)
RETURN schedule.
```


Interval Partitioning

- Running time
> Key step: check if the next lecture can be scheduled at some classroom
> Store classrooms in a priority queue
- key = latest finish time of any lecture in the classroom
> Is lecture j compatible with some classroom?
- Same as "Is s_{j} at least as large as the minimum key?"
- If yes: add lecture j to classroom k with minimum key, and increase its key to f_{j}
- Otherwise: create a new classroom, add lecture j, set key to f_{j}
> $O(n)$ priority queue operations, $O(n \log n)$ time

Interval Partitioning

- Proof of optimality (lower bound)
> \# classrooms needed \geq "depth"
- depth = maximum number of lectures running at any time
- Recall, as before, that job i runs in $\left[s_{i}, f_{i}\right.$)
> Claim: our greedy algorithm uses only these many classrooms!

Interval Partitioning

- Proof of optimality (upper bound)
> Let $d=$ \# classrooms used by greedy
> Classroom d was opened because there was a lecture j which was incompatible with some lectures already scheduled in each of $d-1$ other classrooms
> All these d lectures end after s_{j}
> Since we sorted by start time, they all start at/before s_{j}
> So, at time s_{j}, we have d mutually overlapping lectures
> Hence, depth $\geq d=$ \#classrooms used by greedy $■$
> Note: before we proved that \#classrooms used by any algorithm (including greedy) \geq depth, so greedy uses exactly as many classrooms as the depth.

Interval Graphs

- Interval scheduling and interval partitioning can be seen as graph problems
- Input
> Graph $G=(V, E)$
> Vertices $V=$ jobs/lectures
> Edge $(i, j) \in E$ if jobs i and j are incompatible
- Interval scheduling = maximum independent set (MIS)
- Interval partitioning = graph coloring

Interval Graphs

- MIS and graph coloring are NP-hard for general graphs
- But they're efficiently solvable for "interval graphs"
> Graphs which can be obtained from incompatibility of intervals
> In fact, this holds even when we are not given an interval representation of the graph
- Can we extend this result further?
> Yes! Chordal graphs
- Every cycle with 4 or more vertices has a chord

