
CSC373

Week 2: 
Greedy Algorithms

373S22 - Deepanshu Kush 1



Announcements

373S22 - Deepanshu Kush 2

• First tutorial tomorrow!

• Details on Piazza

• First Assignment to be posted tomorrow (May 19) after 
tutorial

• Due June 1



Recap

373S22 - Deepanshu Kush 3

• Divide & Conquer

➢ Master theorem

➢ Counting inversions in 𝑂(𝑛 log 𝑛)

➢ Finding closest pair of points in ℝ2 in 𝑂 𝑛 log 𝑛

➢ Fast integer multiplication in 𝑂 𝑛log2 3

➢ Fast matrix multiplication in 𝑂 𝑛log2 7

➢ Finding 𝑘𝑡ℎ smallest element (in particular, median) in 𝑂(𝑛)



Greedy Algorithms

373S22 - Deepanshu Kush 4

• Greedy/myopic algorithm outline

➢ Goal: find a solution 𝑥 maximizing/minimizing objective function 𝑓

➢ Challenge: space of possible solutions 𝑥 is too large

➢ Insight: 𝑥 is composed of several parts (e.g., 𝑥 is a set or a sequence)

➢ Approach: Instead of computing 𝑥 directly…

o Compute it one part at a time 

o Select the next part “greedily” to get the most immediate 
“benefit” (this needs to be defined carefully for each problem) 

o Polynomial running time is typically guaranteed

o Need to prove that this will always return an optimal solution 
despite having no foresight



Interval Scheduling

373S22 - Deepanshu Kush 5

• Problem
➢ Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
➢ Two jobs 𝑖 and 𝑗 are compatible if [𝑠𝑖 , 𝑓𝑖) and [𝑠𝑗 , 𝑓𝑗) don’t overlap

o Note: we allow a job to start right when another finishes

➢ Goal: find maximum-size subset of mutually compatible jobs



Interval Scheduling

373S22 - Deepanshu Kush 6

• Greedy template
➢ Consider jobs in some “natural” order

➢ Take a job if it’s compatible with the ones already chosen

• What order?

➢ Earliest start time: ascending order of 𝑠𝑗

➢ Earliest finish time: ascending order of 𝑓𝑗

➢ Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

➢ Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of 
remaining jobs that conflict with 𝑗



Example

373S22 - Deepanshu Kush 7

• Earliest start time: ascending order of 𝑠𝑗

• Earliest finish time: ascending order of 𝑓𝑗

• Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗

• Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of 
remaining jobs that conflict with 𝑗



Interval Scheduling

373S22 - Deepanshu Kush 8

• Does it work?

earliest start time

Counterexamples for 

shortest interval

fewest conflicts



Interval Scheduling

373S22 - Deepanshu Kush 9

• Implementing greedy with earliest finish time (EFT)

➢ Sort jobs by finish time, say 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛
o 𝑂 𝑛 log 𝑛

➢ For each job 𝑗, we need to check if it’s compatible with all previously 
added jobs

o Naively, this can take 𝑂(𝑛) time per job 𝑗, so 𝑂 𝑛2 total time

o We only need to check if 𝑠𝑗 ≥ 𝑓𝑖∗, where 𝑖∗ is the last added job

• For any jobs 𝑖 added before 𝑖∗, 𝑓𝑖 ≤ 𝑓𝑖∗

• By keeping track of 𝑓𝑖∗, we can check job 𝑗 in 𝑂(1) time

➢ Running time: 𝑂 𝑛 log𝑛



Interval Scheduling

373S22 - Deepanshu Kush 10

• Proof of optimality by contradiction
➢ Suppose for contradiction that greedy is not optimal

➢ Say greedy selects jobs 𝑖1, 𝑖2, … , 𝑖𝑘 sorted by finish time

➢ Consider an optimal solution 𝑗1, 𝑗2, … , 𝑗𝑚 (also sorted by finish time) 
which matches greedy for as many indices as possible 

o That is, we want 𝑗1 = 𝑖1, … , 𝑗𝑟 = 𝑖𝑟 for the greatest possible 𝑟

➢ Both 𝑖𝑟+1 and 𝑗𝑟+1 must be compatible with the previous selection 
(𝑖1 = 𝑗1, … , 𝑖𝑟 = 𝑗𝑟)



Interval Scheduling

373S22 - Deepanshu Kush 11

• Proof of optimality by contradiction
➢ Consider a new solution 𝑖1, 𝑖2, … , 𝑖𝑟 , 𝑖𝑟+1, 𝑗𝑟+2, … , 𝑗𝑚
o We have replaced 𝑗𝑟+1 by 𝑖𝑟+1 in our reference optimal solution

o This is still feasible because 𝑓𝑖𝑟+1 ≤ 𝑓𝑗𝑟+1 ≤ 𝑠𝑗𝑡 for 𝑡 ≥ 𝑟 + 2

o This is still optimal because 𝑚 jobs are selected

o But it matches the greedy solution in 𝑟 + 1 indices 

• This is the desired contradiction



Interval Scheduling

373S22 - Deepanshu Kush 12

• Proof of optimality by induction
➢ Let 𝑆𝑗 be the subset of jobs picked by greedy after considering the 

first 𝑗 jobs in the increasing order of finish time

o Define 𝑆0 = ∅

➢ We call this partial solution promising if there is a way to extend it to 
an optimal solution by picking some subset of jobs 𝑗 + 1,… , 𝑛

o ∃𝑇 ⊆ {𝑗 + 1,… , 𝑛} such that 𝑂𝑗 = 𝑆𝑗 ∪ 𝑇 is optimal

➢ Inductive claim: For all 𝑡 ∈ {0,1, … , 𝑛}, 𝑆𝑡 is promising

➢ If we prove this, then we are done!

o For 𝑡 = 𝑛, if 𝑆𝑛 is promising, then it must be optimal (Why?)

o We chose 𝑡 = 0 as our base case since it is “trivial”



Interval Scheduling

373S22 - Deepanshu Kush 13

• Proof of optimality by induction
➢ 𝑆𝑗 is promising if ∃𝑇 ⊆ {𝑗 + 1,… , 𝑛} such that 𝑂𝑗 = 𝑆𝑗 ∪ 𝑇 is optimal

➢ Inductive claim: For all 𝑡 ∈ {0,1, … , 𝑛}, 𝑆𝑡 is promising

➢ Base case: For 𝑡 = 0, 𝑆0 = ∅ is clearly promising 

o Any optimal solution extends it

➢ Induction hypothesis: Suppose the claim holds for 𝑡 = 𝑗 − 1 and 
optimal solution 𝑂𝑗−1 extends 𝑆𝑗−1

➢ Induction step: At 𝑡 = 𝑗, we have two possibilities:

1) Greedy did not select job 𝑗, so 𝑆𝑗 = 𝑆𝑗−1
• Job 𝑗 must conflict with some job in 𝑆𝑗−1
• Since 𝑆𝑗−1 ⊆ 𝑂𝑗−1, 𝑂𝑗−1 also cannot include job 𝑗

• 𝑂𝑗 = 𝑂𝑗−1 also extends 𝑆𝑗 = 𝑆𝑗−1



Interval Scheduling

373S22 - Deepanshu Kush 14

• Proof of optimality by induction

➢ Induction step: At 𝑡 = 𝑗, we have two possibilities:

2) Greedy selected job 𝑗, so 𝑆𝑗 = 𝑆𝑗−1 ∪ 𝑗

• Consider the earliest job 𝑟 in 𝑂𝑗−1 ∖ 𝑆𝑗−1
• Consider 𝑂𝑗 obtained by replacing 𝑟 with 𝑗 in 𝑂𝑗−1
• Prove that 𝑂𝑗 is still feasible

• 𝑂𝑗 extends 𝑆𝑗, as desired!

𝑆𝑗−1

𝑆𝑗−1 𝑂𝑗−1 ∖ 𝑆𝑗−1

Greedy selects job 𝑗

𝑗

𝑟

Earliest job in 𝑂𝑗−1 ∖ 𝑆𝑗−1



Contradiction vs Induction

373S22 - Deepanshu Kush 15

• Both methods make the same claim 
➢ “The greedy solution after 𝑗 iterations can be extended to an optimal 

solution, ∀𝑗” 

• They also use the same key argument
➢ “If the greedy solution after 𝑗 iterations can be extended to an 

optimal solution, then the greedy solution after 𝑗 + 1 iterations can 
be extended to an optimal solution as well”

➢ For proof by induction, this is the key induction step

➢ For proof by contradiction, we take the greatest 𝑗 for which the 
greedy solution can be extended to an optimal solution, and derive a 
contradiction by extending the greedy solution after 𝑗 + 1 iterations



Interval Partitioning

373S22 - Deepanshu Kush 16

• Problem
➢ Job 𝑗 starts at time 𝑠𝑗 and finishes at time 𝑓𝑗
➢ Two jobs are compatible if they don’t overlap

➢ Goal: group jobs into fewest partitions such that jobs in the same 
partition are compatible

• One idea
➢ Find the maximum compatible set using the previous greedy EFT 

algorithm, call it one partition, recurse on the remaining jobs.

➢ Doesn’t work (check by yourselves)



Interval Partitioning

373S22 - Deepanshu Kush 17

• Think of scheduling lectures for various courses into as few 
classrooms as possible

• This schedule uses 4 classrooms for scheduling 10 lectures



Interval Partitioning

373S22 - Deepanshu Kush 18

• Think of scheduling lectures for various courses into as few 
classrooms as possible

• This schedule uses 3 classrooms for scheduling 10 lectures



Interval Partitioning

373S22 - Deepanshu Kush 19

• Let’s go back to the greedy template!
➢ Go through lectures in some “natural” order

➢ Assign each lecture to an (arbitrary?) compatible classroom, and 
create a new classroom if the lecture conflicts with every existing 
classroom

• Order of lectures?
➢ Earliest start time: ascending order of 𝑠𝑗
➢ Earliest finish time: ascending order of 𝑓𝑗
➢ Shortest interval: ascending order of 𝑓𝑗 − 𝑠𝑗
➢ Fewest conflicts: ascending order of 𝑐𝑗, where 𝑐𝑗 is the number of 

remaining jobs that conflict with 𝑗



Interval Partitioning

373S22 - Deepanshu Kush 20

• At least when you 
assign each lecture to 
an arbitrary compatible 
classroom, three of 
these heuristics do not 
work.

• The fourth one works! 
(next slide)



Interval Partitioning

373S22 - Deepanshu Kush 21



Interval Partitioning

373S22 - Deepanshu Kush 22

• Running time

➢ Key step: check if the next lecture can be scheduled at some 
classroom

➢ Store classrooms in a priority queue 

o key = latest finish time of any lecture in the classroom

➢ Is lecture 𝑗 compatible with some classroom?

o Same as “Is 𝑠𝑗 at least as large as the minimum key?”

o If yes: add lecture 𝑗 to classroom 𝑘 with minimum key, and 
increase its key to 𝑓𝑗

o Otherwise: create a new classroom, add lecture 𝑗, set key to 𝑓𝑗

➢ 𝑂(𝑛) priority queue operations, 𝑂(𝑛 log 𝑛) time



Interval Partitioning

373S22 - Deepanshu Kush 23

• Proof of optimality (lower bound)
➢ # classrooms needed ≥ “depth”

o depth = maximum number of lectures running at any time

o Recall, as before, that job 𝑖 runs in 𝑠𝑖 , 𝑓𝑖
➢ Claim: our greedy algorithm uses only these many classrooms!



Interval Partitioning

373S22 - Deepanshu Kush 24

• Proof of optimality (upper bound)
➢ Let 𝑑 = # classrooms used by greedy

➢ Classroom 𝑑 was opened because there was a lecture 𝑗 which was 
incompatible with some lectures already scheduled in each of 𝑑 − 1
other classrooms

➢ All these 𝑑 lectures end after 𝑠𝑗

➢ Since we sorted by start time, they all start at/before 𝑠𝑗

➢ So, at time 𝑠𝑗, we have 𝑑 mutually overlapping lectures

➢ Hence, depth ≥ 𝑑 = #classrooms used by greedy ∎

➢ Note: before we proved that #classrooms used by any algorithm 
(including greedy) ≥ depth, so greedy uses exactly as many 
classrooms as the depth.



Interval Graphs

373S22 - Deepanshu Kush 25

• Interval scheduling and interval partitioning can be seen as 
graph problems

• Input
➢ Graph 𝐺 = (𝑉, 𝐸)

➢ Vertices 𝑉 = jobs/lectures

➢ Edge 𝑖, 𝑗 ∈ 𝐸 if jobs 𝑖 and 𝑗 are incompatible

• Interval scheduling = maximum independent set (MIS)

• Interval partitioning = graph coloring

NOT IN SYLLABUS



Interval Graphs

373S22 - Deepanshu Kush 26

• MIS and graph coloring are NP-hard for general graphs

• But they’re efficiently solvable for “interval graphs”
➢ Graphs which can be obtained from incompatibility of intervals

➢ In fact, this holds even when we are not given an interval 
representation of the graph

• Can we extend this result further?
➢ Yes! Chordal graphs

o Every cycle with 4 or more vertices has a chord

NOT IN SYLLABUS


