CSC373

Week 2:
Greedy Algorithms

Announcements

First tutorial tomorrow!

Details on Piazza

First Assignment to be posted tomorrow (May 19) after
tutorial

Due June 1

373522 - Deepanshu Kush 2

Recap

* Divide & Conquer
» Master theorem
> Counting inversions in O(nlogn)
> Finding closest pair of points in R? in O(nlogn)
> Fast integer multiplication in O(n10gz 3)
> Fast matrix multiplication in O(n'°827)

> Finding k" smallest element (in particular, median) in O (n)

373522 - Deepanshu Kush 3

Greedy Algorithms

* Greedy/myopic algorithm outline
> Goal: find a solution x maximizing/minimizing objective function f
> Challenge: space of possible solutions x is too large
» Insight: x is composed of several parts (e.g., x is a set or a sequence)

> Approach: Instead of computing x directly...
o Compute it one part at a time

o Select the next part “greedily” to get the most immediate
“benefit” (this needs to be defined carefully for each problem)

o Polynomial running time is typically guaranteed

o Need to prove that this will always return an optimal solution
despite having no foresight

373522 - Deepanshu Kush 4

Interval Scheduling
(o Problem A

> Job j starts at time s; and finishes at time f;

> Two jobs i and j are compatible if [s;, f;) and [s;, f;) don’t overlap
o Note: we allow a job to start right when another finishes
\ > Goal: find maximum-size subset of mutually compatible jobs /

B

G

time
0 1 2 3 4 5 6 7 8 g 10 11

373522 - Deepanshu Kush 5

Interval Scheduling

* Greedy template
» Consider jobs in some “natural” order
> Take a job if it’s compatible with the ones already chosen

e What order?

> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

» Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

373522 - Deepanshu Kush 6

Example

Earliest start time: ascending order of s;

Earliest finish time: ascending order offj

Shortest interval: ascending order of f; — s;

Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

time
0 1 2 3 4 5 [7 3 g 10 11

373522 - Deepanshu Kush 7

Interval Scheduling

* Does it work? Counterexamples for
earliest start time

shortest interval

e fewest conflicts

373522 - Deepanshu Kush 8

Interval Scheduling

* Implementing greedy with earliest finish time (EFT)
> Sort jobs by finish time,say f; < f, < - < f,
o O(nlogn)

» For each job j, we need to check if it’s compatible with all previously
added jobs

o Naively, this can take O(n) time per job j, so 0(n?) total time
o We only need to check if s; = f;+, where i" is the last added job
* For any jobs i added before i¥, f; < f;*
* By keeping track of f;, we can check job jin O(1) time

> Running time: O(nlogn)

373522 - Deepanshu Kush 9

Interval Scheduling

* Proof of optimality by contradiction
> Suppose for contradiction that greedy is not optimal
» Say greedy selects jobs iy, i, ..., i} sorted by finish time

» Consider an optimal solution j4, j,, ..., J;, (also sorted by finish time)
which matches greedy for as many indices as possible

o Thatis, we want j; = iy, ..., J, = [,- for the greatest possible r
» Both i,.,4 and j,.;1 must be compatible with the previous selection
(il = jlr) iT‘ =]T’)
job i.., finishes before j,.,

}

h I le L}

Greedy:

b
»

OPT: i i i N BN

373522 - Deepanshu Kush

Interval Scheduling

* Proof of optimality by contradiction
» Consider a new solution i,15, ..., Iy, Ly i1, Jr42, -0 Jm
o We have replaced j,,1 by i,-11 in our reference optimal solution
o This is still feasible because f; . < f; . <sj fort =r+2
o This is still optimal because m jobs are selected
o But it matches the greedy solution in v 4+ 1 indices
* This is the desired contradiction

job i.., finishes before j,.,

h I le L}

Greedy:

A 4

OPT: i i i N BN

373522 - Deepanshu Kush

Interval Scheduling

* Proof of optimality by induction

> Let S; be the subset of jobs picked by greedy after considering the
first j jobs in the increasing order of finish time

o Define S, = 0

> We call this partial solution promising if there is a way to extend it to
an optimal solution by picking some subset of jobsj + 1, ...,n

odT € {j + 1, ...,n} such that 0; = §; UT is optimal
» Inductive claim: Forall t € {0,1, ..., n}, S; is promising

> If we prove this, then we are done!
o Fort = n, if §,, is promising, then it must be optimal (Why?)
o We chose t = 0 as our base case since it is “trivial”

373522 - Deepanshu Kush

Interval Scheduling

* Proof of optimality by induction
> S;is promising if 3T < {j + 1, ...,n} such that 0; = §; U T is optimal

» Inductive claim: Forall t € {0,1, ...,n}, S; is promising

» Base case: Fort = 0, Sy = @ is clearly promising
o Any optimal solution extends it

> Induction hypothesis: Suppose the claim holds fort =j — 1 and
optimal solution 0;_; extends S;_;
> Induction step: At t = j, we have two possibilities:
1) Greedy did not select job j,s0 §; = §;_4
* Job j must conflict with some job in S;_;
* Since Sj_; € 0j_41, 0;_1 also cannot include job j
* 0; = 0j_; also extends §; = §;_;

373522 - Deepanshu Kush

Interval Scheduling

* Proof of optimality by induction

> Induction step: At t = j, we have two possibilities:
2) Greedy selected job j,s0 S; = S;_; U{j }
* Consider the earliest job rin 0;_; \ Sj_1
* Consider O; obtained by replacing r with j in 0;_4
* Prove that 0 is still feasible
* O; extends §j, as desired!

Greedy selects job j

|)
Greedy: [Sj-1] J "
orT: | Sj-1] [/T 0j—1 \ Sj-1 l

Earliest job in 0j_4 \ Sj_4

373522 - Deepanshu Kush

Contradiction vs Induction

e Both methods make the same claim

> “The greedy solution after j iterations can be extended to an optimal
solution, Vj”

* They also use the same key argument

> “If the greedy solution after j iterations can be extended to an
optimal solution, then the greedy solution after j + 1 iterations can
be extended to an optimal solution as well”

> For proof by induction, this is the key induction step

» For proof by contradiction, we take the greatest j for which the
greedy solution can be extended to an optimal solution, and derive a
contradiction by extending the greedy solution after j + 1 iterations

373522 - Deepanshu Kush

Interval Partitioning
(. Problem A

> Job j starts at time s; and finishes at time f;

» Two jobs are compatible if they don’t overlap

> Goal: group jobs into fewest partitions such that jobs in the same
\ partition are compatible /

* Oneidea

> Find the maximum compatible set using the previous greedy EFT
algorithm, call it one partition, recurse on the remaining jobs.

> Doesn’t work (check by yourselves)

373522 - Deepanshu Kush

Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 4 classrooms for scheduling 10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373522 - Deepanshu Kush

Interval Partitioning

* Think of scheduling lectures for various courses into as few
classrooms as possible

* This schedule uses 3 classrooms for scheduling 10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373522 - Deepanshu Kush

Interval Partitioning

* Let’s go back to the greedy template!
III

» Go through lectures in some “natural” order

> Assign each lecture to an (arbitrary?) compatible classroom, and
create a new classroom if the lecture conflicts with every existing
classroom

* Order of lectures?
> Earliest start time: ascending order of s;
> Earliest finish time: ascending order of f;
> Shortest interval: ascending order of f; — s;

> Fewest conflicts: ascending order of ¢;, where ¢; is the number of
remaining jobs that conflict with j

373522 - Deepanshu Kush

Interval Partitioning

counterexample for earliest finish time

e At least when you
. assign each lecture to
T an arbitrary compatible
classroom, three of
counterexample for shortest interval these heuristics do not

3 work.
2

[e The fourth one works!

(next slide)

counterexample for fewest conflicts

373522 - Deepanshu Kush

Interval Partitioning

EARLIESTSTARTTIMEFIRST(n, 51, $2, ..., Sn, f1, 2 ..., fn)

SORT lectures by start time so thats; < 52 < ... < s
d «<— (0 <= number of allocated classrooms
FOR j=1TO n
IF lecture j 1s compatible with some classroom
Schedule lecture j 1in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d—d +1

RETURN schedule.

373522 - Deepanshu Kush

Interval Partitioning

* Running time

> Key step: check if the next lecture can be scheduled at some
classroom

> Store classrooms in a priority queue
o key = latest finish time of any lecture in the classroom

> Is lecture j compatible with some classroom?
o Same as “Is s; at least as large as the minimum key?”

o If yes: add lecture j to classroom k with minimum key, and
increase its key to f;

o Otherwise: create a new classroom, add lecture j, set key to f]

> 0(n) priority queue operations, O(nlogn) time

373522 - Deepanshu Kush

Interval Partitioning

* Proof of optimality (lower bound)
> # classrooms needed = “depth”
o depth = maximum number of lectures running at any time
o Recall, as before, that job i runs in [s;, f;)
> Claim: our greedy algorithm uses only these many classrooms!

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

373522 - Deepanshu Kush

Interval Partitioning

* Proof of optimality (upper bound)
> Let d = # classrooms used by greedy

> Classroom d was opened because there was a lecture j which was
incompatible with some lectures already scheduled in each of d — 1
other classrooms

> All these d lectures end after S

> Since we sorted by start time, they all start at/before s;

> So, at time s;, we have d mutually overlapping lectures
> Hence, depth > d = #classrooms used by greedy =

> Note: before we proved that #classrooms used by any algorithm
(including greedy) = depth, so greedy uses exactly as many
classrooms as the depth.

373522 - Deepanshu Kush

NOT IN SYLLABUS

* Interval scheduling and interval partitioning can be seen as
graph problems

Interval Graphs

* Input
> Graph ¢ = (V,E)
> Vertices V = jobs/lectures
> Edge (i,j) € E if jobs i and j are incompatible

* Interval scheduling = maximum independent set (MIS)

* Interval partitioning = graph coloring

373522 - Deepanshu Kush

NOT IN SYLLABUS

 MIS and graph coloring are NP-hard for general graphs

Interval Graphs

* But they’re efficiently solvable for “interval graphs”
> Graphs which can be obtained from incompatibility of intervals

> In fact, this holds even when we are not given an interval
representation of the graph

e Can we extend this result further?
> Yes! Chordal graphs |
o Every cycle with 4 or more vertices has a chord /C /

—
e

373522 - Deepanshu Kush

