
Reductions for search problems

373S22 - Deepanshu Kush 80

• Problem 𝐴 is p-reducible to problem 𝐵 (denoted 𝐴 ≤𝑝 𝐵) if
an “oracle” (subroutine) for 𝐵 can be used to efficiently
solve 𝐴

• Same definition can be extended to search problems

• Have we seen examples in class before?

• Relation between the search problem Maximum Flow and
the search problem Linear Programming?

• The decision problem Circulation and the search problem
Maximum Flow?

Self-reducibility

373S22 - Deepanshu Kush 81

• What about the search vs decision versions of the same
problem?

• A problem is self-reducible if the search version reduces to
the decision version

• SAT is self-reducible (in fact, any NP-complete problem is!)

Cook-Levin Theorem

373S22 - Deepanshu Kush 82

• We did not prove “the first NP-completeness” result

• Theorem: Exact 3SAT is NP-complete
➢ We need to prove this without using any other “known NP-

complete” problem

➢ We want to directly show that every problem in NP can be reduced to
Exact 3SAT

• We will first reduce any NP problem to SAT, and then reduce
SAT to Exact 3SAT

Cook-Levin Theorem

373S22 - Deepanshu Kush 83

• We’re not going to prove it in this class, but the key idea is
as follows

➢ If a problem is in NP, then ∃ Turing machine 𝑇(𝑥, 𝑦) which

o takes as input a problem instance 𝑥 and an advice 𝑦 of size 𝑝(|𝑥|)

o verifies in 𝑞(|𝑥|) time whether 𝑥 is a YES instance

o both 𝑝 and 𝑞 are polynomials

➢ 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇

Cook-Levin Theorem

373S22 - Deepanshu Kush 84

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into whether a SAT

formula 𝜑 is satisfiable

• Recall that a Turing machine 𝑇 consists of a memory tape, a
head pointer, a state, and a transition function

• What describes 𝑇 at any given step of its computation?
➢ What is written in each cell of its memory tape?

➢ Which cell of the tape is the read/write head currently pointing to?

➢ What state is the Turing machine in?

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 85

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Variables:
➢ 𝑇𝑖,𝑗,𝑘 = True if machine’s tape cell 𝑖 contains symbol 𝑗 at step 𝑘 of the

computation

➢ 𝐻𝑖,𝑘 = True if the machine’s read/write head is at tape cell 𝑖 at step 𝑘
of the computation

➢ 𝑄𝑞,𝑘 = True if machine is in state 𝑞 at step 𝑘 of the computation

➢ Cell index 𝑖 and computation step 𝑘 only need to be polynomially
large as 𝑇 works in polynomial time

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 86

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Clauses:
➢ Express how the variables must be related using the transition

function

➢ Express that the Turing machine must reach the state 𝐴𝐶𝐶𝐸𝑃𝑇 at
some step of the computation

• This establishes that SAT is NP-complete.

• Next: SAT ≤𝑝 Exact 3SAT.

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 87

• Claim: SAT ≤𝑝 Exact 3SAT
➢ Take an instance 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ of SAT

➢ Replace each clause with multiple clauses with exactly 3 literals each

➢ For a clause with one literal, 𝐶 = ℓ1:

o Add two variables 𝑧1, 𝑧2, and replace 𝐶 with four clauses

ℓ1 ∨ 𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ 𝑧1 ∨ ҧ𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ ҧ𝑧2

o Verify that this is logically equivalent to ℓ1

➢ For a clause with two literals, 𝐶 = (ℓ1 ∨ ℓ2):

o Add variable 𝑧1 and replace it with the following:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ1 ∨ ℓ2 ∨ ҧ𝑧1

o Verify that this is logically equal to ℓ1 ∨ ℓ2

Cook-Levin Theorem

373S22 - Deepanshu Kush 88

• Claim: SAT ≤𝑝 Exact 3SAT

➢ For a clause with three literals, 𝐶 = ℓ1 ∨ ℓ2 ∨ ℓ3:

o Perfect. No need to do anything!

➢ For a clause with 4 or more literals, 𝐶 = (ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘):

o Add variables 𝑧1, 𝑧2, … , 𝑧𝑘−3 and replace it with:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ3 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ4 ∨ ҧ𝑧2 ∨ 𝑧3 ∧ ⋯
∧ ℓ𝑘−2 ∨ ҧ𝑧𝑘−4 ∨ 𝑧𝑘−3 ∧ ℓ𝑘−1 ∨ ℓ𝑘 ∨ ҧ𝑧𝑘−3

o Check:

• If any ℓ𝑖 is TRUE, then there exists an assignment of 𝑧 variables
to make this TRUE

• If all ℓ𝑖 are FALSE, then no assignment of 𝑧 variables will make
this TRUE

NP vs co-NP

373S22 - Deepanshu Kush 90

• Complements of each other
➢ NP = short proof for YES, co-NP = short proof for NO

➢ If a problem “Does there exist…” is in NP, then its complement “Does
there not exist…” is in co-NP, and vice-versa

➢ The same goes for NP-complete and co-NP-complete

• Example
➢ SAT is NP-complete (“Does there exist 𝑥 satisfying 𝜑?”)

o So “Does there exist no 𝑥 satisfying 𝜑?”, i.e., “Is 𝜑 always FALSE?”
is coNP-complete

➢ Then, Tautology (“Is 𝜑 always TRUE?”) is also coNP-complete

NP ∩ co-NP

373S22 - Deepanshu Kush 91

• Clearly, P ⊆ NP ∩ co-NP
➢ No advice needed; can just solve the problem in polytime

➢ Major open question: Is P = NP ∩ co-NP?

• NP ∩ co-NP: Short proof of both YES and NO
➢ Hunt for problems not known in P but still in NP ∩ co-NP

NP ∩ co-NP

373S22 - Deepanshu Kush 92

• Linear programming
➢ [Gale–Kuhn–Tucker 1948]: LP is in NP ∩ co-NP

➢ Question: max objective value ≥ threshold?

➢ Proof of YES: Provide a feasible solution with objective ≥ threshold

➢ Proof of NO: Provide optimal primal and dual solutions

NP ∩ co-NP

373S22 - Deepanshu Kush 93

• Linear programming
➢ But later, Khachiyan [1979] proved that LP is in P

NP ∩ co-NP

373S22 - Deepanshu Kush 94

• Primality testing (“Is 𝑛 a prime?”)
➢ [Pratt 1975]: PRIMES is in NP ∩ co-NP

➢ Proof of NO: Easy, provide a non-trivial factor

➢ Proof of YES: relies on interesting math

NP ∩ co-NP

373S22 - Deepanshu Kush 95

• Primality testing (“Is 𝑛 a prime?”)
➢ Later, Agrawal, Kayal, and Saxena [2004] proved that PRIMES is in P

o Milestone result!

NP ∩ co-NP

373S22 - Deepanshu Kush 96

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)
➢ FACTOR is in NP ∩ co-NP

o Proof of YES: Just present such a factor

o Proof of NO:

• Present the entire prime factorization of 𝑛 along with a short
proof that each presented factor is a prime

• Verifier TM can check that each factor is indeed a prime, their
product is indeed 𝑛, and none of the factors is ≤ 𝑘

• Actually, proofs of primality are not required anymore since
we know the TM can just run the AKS algorithm to check if
the factors are prime

NP ∩ co-NP

373S22 - Deepanshu Kush 97

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)
➢ Major open question: Is FACTOR in P?

o Basis of several cryptographic procedures

➢ Challenge: Factor the following number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
(A $30,000 prize was claimed in 2012 for this)

NP ∩ co-NP

373S22 - Deepanshu Kush 98

• Factoring (“Does 𝑛 have a factor ≤ 𝑘?”)

➢ [Shor 1994]: We can factor an 𝑛-bit integer in 𝑂(𝑛3) steps on a
quantum computer.

➢ *Scalable* quantum computers can help

o 2001: Factored 15 = 3 x 5

o 2012: Factored 21 = 3 x 7

Other Complexity Classes

373S22 - Deepanshu Kush 99

• Based on the exact time complexity
➢ DTIME(𝑛), NTIME(𝑛2), …

o Deterministic / nondeterministic time complexity

• Based on space complexity
➢ DSPACE(𝑛), NSPACE(log 𝑛)

• Using randomization
➢ ZPP (expected polynomial time, no errors)

o Is P = ZPP?

• Allowing probabilistic errors
➢ RP (polynomial time, one-sided error)

➢ BPP (polynomial time, two-sided erros)

