Reductions for search problems

Problem A is p-reducible to problem B (denoted A <,, B) if

an “oracle” (subroutine) for B can be used to efficiently
solve A

Same definition can be extended to search problems

Have we seen examples in class before?

* Relation between the search problem Maximum Flow and
the search problem Linear Programming?

* The decision problem Circulation and the search problem
Maximum Flow?

373522 - Deepanshu Kush

Self-reducibility

 What about the search vs decision versions of the same
problem?

* A problem is self-reducible if the search version reduces to
the decision version

e SAT is self-reducible (in fact, any NP-complete problem is!)

373522 - Deepanshu Kush

Cook-Levin Theorem

* We did not prove “the first NP-completeness” result

 Theorem: Exact 3SAT is NP-complete

> We need to prove this without using any other “known NP-
complete” problem

> We want to directly show that every problem in NP can be reduced to
Exact 3SAT

* We will first reduce any NP problem to SAT, and then reduce
SAT to Exact 3SAT

373522 - Deepanshu Kush

Cook-Levin Theorem

* We're not going to prove it in this class, but the key idea is
as follows

> If a problem is in NP, then 3 Turing machine T'(x, y) which
o takes as input a problem instance x and an advice y of size p(|x|)
o verifies in g(|x|) time whether x is a YES instance
o both p and g are polynomials

> x is a YES instance iff 3y T'(x,y) = ACCEPT

373522 - Deepanshu Kush

Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T'(x,y) = ACCEPT into whether a SAT
formula @ is satisfiable

e Recall that a Turing machine T consists of a memory tape, a
head pointer, a state, and a transition function

 What describes T at any given step of its computation?
> What is written in each cell of its memory tape?
> Which cell of the tape is the read/write head currently pointing to?
> What state is the Turing machine in?

373522 - Deepanshu Kush

Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

e Variables:

> T; j x = True if machine’s tape cell i contains symbol j at step k of the
computation

> H; = True if the machine’s read/write head is at tape cell i at step k
of the computation

> Qg x = True if machine is in state g at step k of the computation

> Cell index i and computation step k only need to be polynomially
large as T works in polynomial time

373522 - Deepanshu Kush

Cook-Levin Theorem

x is a YES instance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

Clauses:

> Express how the variables must be related using the transition
function

> Express that the Turing machine must reach the state ACCEPT at
some step of the computation

This establishes that SAT is NP-complete.
Next: SAT <,, Exact 35AT.

373522 - Deepanshu Kush

Cook-Levin Theorem

e Claim: SAT <y Exact 3SAT

» Take an instance ¢ = C; A C, A --- of SAT
> Replace each clause with multiple clauses with exactly 3 literals each

> For a clause with one literal, C = 4:
o Add two variables z;, z,, and replace C with four clauses

('gl VZ]_ VZz) N ('81 VZ_]_ VZZ) N ('81 VZl Vz_z) N ('gl VZ_1 Vz_z)
o Verify that this is logically equivalent to €4

» For a clause with two literals, C = (1 V ¥5):
o Add variable z; and replace it with the following:

1V, VZ)NHEL VL,V Z)
o Verify that this is logically equal to (1 V ¥5)

373522 - Deepanshu Kush

Cook-Levin Theorem

e Claim: SAT <y Exact 3SAT

> For a clause with three literals, C = ¢, V£, V £3:
o Perfect. No need to do anything!

> For a clause with 4 or more literals, C = (£{ V£, V-V £}):
o Add variables z4, z,, ..., Z},_3 and replace it with:

(L1 VL, VZ)NE3VZLVZ)ANE4VZo VZ3) Ao
AN(Cr-2VZg_gVZg_3) N(Ex_1 V€ V Z_3)
o Check:
* If any #; is TRUE, then there exists an assignment of z variables
to make this TRUE
* If all #; are FALSE, then no assignment of z variables will make
this TRUE

373522 - Deepanshu Kush

NP vs co-NP

 Complements of each other
> NP = short proof for YES, co-NP = short proof for NO

> If a problem “Does there exist...” is in NP, then its complement “Does
there not exist...” is in co-NP, and vice-versa

> The same goes for NP-complete and co-NP-complete

e Example
> SAT is NP-complete (“Does there exist x satisfying ¢?”)

o So “Does there exist no x satisfying ¢?”, i.e., “Is ¢ always FALSE?”
is coNP-complete

» Then, Tautology (“Is ¢ always TRUE?”) is also coNP-complete

373522 - Deepanshu Kush

NP N co-NP

e Clearly, P € NP N co-NP

> No advice needed; can just solve the problem in polytime
> Major open question: Is P = NP N co-NP?

* NP N co-NP: Short proof of both YES and NO

» Hunt for problems not known in P but still in NP N co-NP

373522 - Deepanshu Kush

NP N co-NP

* Linear programming
> [Gale—Kuhn—Tucker 1948]: LP is in NP N co-NP
» Question: max objective value = threshold?
> Proof of YES: Provide a feasible solution with objective = threshold
> Proof of NO: Provide optimal primal and dual solutions

Cuarren XTX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!
By Davip GaLg, Harorp W, Kuax, anp Aveert W. Tucker ?

The basic “scalar” problem of linear programming is to maximize (or
minimize) a linear funetion of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “‘vector” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, I1T]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the “scalar’ and “vector”
problems as speeial cases, and to relate these general problems to the
theory of zero-sum two-person games.

373522 - Deepanshu Kush

NP N co-NP

* Linear programming
> But later, Khachiyan [1979] proved that LP is in P

YPHAX
BBIYHCIHUTEABHON MATEMATHKN H MATEMATHYECKOR OH3AKH

Tom 20 Ausaps 1980 ®espaian B |

YR 519.852

MNOJJAHOMWAJIBHBIE AJITOPHTMbI B IMHENHOM
INPOTPAMMHPOBAHMHI

JA.I'. XATHAH
(Mocrea)

[locTpoeHsbl TOYHEIE AJTOPHTMBL nuueﬁm\)m OpOrpaMMHEpPOBAHESA, TPYAOEM-
KOCTh KOTOPHIX OrpapudeHa MOJHMHOMOM OT [JINHEI ABOMYHON 3AIMHCH 3aadM.

373522 - Deepanshu Kush

NP N co-NP

* Primality testing (“Is n a prime?”)
> [Pratt 1975]: PRIMES is in NP N co-NP
> Proof of NO: Easy, provide a non-trivial factor
> Proof of YES: relies on interesting math

373522 - Deepanshu Kush

SIAM). Comrit
Val. 4, No. §, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE®
VAUGHAN R, PRATT?

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property hoids for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log3 # operations of a Turing machine
for any fixed a.

The proof system used for certifying primes is as follows,

Axiom. (x, v 1)

INFERENCE RULES.

R, (p.x.a).q v (p.x,qa) provided x*~ ' 2 1 {mod p) and ¢l(p — 1)
Ry: (pox,p— 1) p provided x*~' = | (mod p).

THEOREM 1. p is a theorem = p is a prime
THEOREM 2. p is a theorem = p has a proof of [4 log, p) lines

NP N co-NP

* Primality testing (“Is n a prime?”)
> Later, Agrawal, Kayal, and Saxena [2004] proved that PRIMES is in P
o Milestone result!

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.

373522 - Deepanshu Kush

NP N co-NP

* Factoring (“Does n have a factor < k?”)
> FACTOR isin NP N co-NP

o Proof of YES: Just present such a factor

o Proof of NO:

* Present the entire prime factorization of n along with a short
proof that each presented factor is a prime

» Verifier TM can check that each factor is indeed a prime, their
product is indeed n, and none of the factorsis < k

* Actually, proofs of primality are not required anymore since
we know the TM can just run the AKS algorithm to check if
the factors are prime

373522 - Deepanshu Kush

NP N co-NP

* Factoring (“Does n have a factor < k?”)
» Major open question: Is FACTOR in P?
o Basis of several cryptographic procedures

> Challenge: Factor the following number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
(A $30,000 prize was claimed in 2012 for this)

373522 - Deepanshu Kush

NP N co-NP

* Factoring (“Does n have a factor < k?”)

> [Shor 1994]: We can factor an n-bit integer in 0(n3) steps on a
quantum computer.

> *Scalable* quantum computers can help
o 2001: Factored 15=3 x5
o0 2012: Factored 21 =3x7

373522 - Deepanshu Kush

Other Complexity Classes

Based on the exact time complexity
> DTIME(n), NTIME(n?), ...
o Deterministic / nondeterministic time complexity

Based on space complexity
> DSPACE(n), NSPACE(logn)

Using randomization

> ZPP (expected polynomial time, no errors)
o Is P=7PP?

Allowing probabilistic errors
> RP (polynomial time, one-sided error)
> BPP (polynomial time, two-sided erros)

373522 - Deepanshu Kush

