• Problem

- > Input: Set of integers $S = \{w_1, \dots, w_n\}$, integer W
- ▶ Question: Is there $S' \subseteq S$ that adds up to exactly W?

• Example

- > $S = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}, W = 3754?$
- > Yes!

 \circ 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754

- Claim: Subset Sum is in NP
 - Recall: We need to show that there is a polynomial-time algorithm which
 - Can accept every YES instance with the right polynomial-size advice
 - Will not accept a NO instance with any advice
 - Advice: the actual subset S'
 - > Algorithm: check that S' is indeed a subset of S and sums to W
 - Simple!

• Claim: Exact 3SAT \leq_p Subset Sum

- > Given a formula φ of Exact 3SAT, we want to construct (S, W) of Subset Sum with the same answer
- > In the table in the following slide:
 - Columns are for variables and clauses
 - \circ Each row is a number in *S*, represented in decimal
 - $\circ\,$ Number for literal ℓ : has 1 in its variable column and in the column of every clause where that literal appears
 - Number selected = literal set to TRUE
 - "Dummy" rows: can help make the sum in a clause column 4 if and only if at least one literal is set to TRUE

• Claim: Exact 3SAT \leq_p Subset Sum

$$C_{1} = \overline{x} \lor y \lor z$$
$$C_{2} = x \lor \overline{y} \lor z$$
$$C_{3} = \overline{x} \lor \overline{y} \lor \overline{z}$$

dummies to get clause columns to sum to 4 Decimal representation

	×	v	7	C	C	C
	Â	Ŷ	2	C1	2	03
×	1	0	0	0	1	0
¬ X	1	0	0	1	0	1
У	0	1	0	1	0	0
¬ y	0	1	0	0	1	1
z	0	0	1	1	1	0
¬ z	0	0	1	0	0	1
(0	0	0	1	0	0
	0	0	0	2	0	0
·)	0	0	0	0	1	0
) I	0	0	0	0	2	0
	0	0	0	0	0	1
	0	0	0	0	0	2
w	1	1	1	4	4	4

- Note
 - The Subset Sum instance we constructed has "large" numbers
 Their values are exponentially large (~10^{#variables+#clauses})
 But the number of bits required to write them is polynomial
 - Can we hope to construct Subset Sum instance with numbers whose values are only *poly*(*#variables*, *#clasuses*) large?

 \circ Unlikely, as that would prove P = NP!

- Like Knapsack, Subset Sum can be solved in pseudo-polynomial time
 - That is, in polynomial time if the numbers are only polynomially large in value

• Problem

- > Input: Undirected graph G = (V, E)
- Question: Can we color each vertex of G using at most three colors such that no two adjacent vertices have the same color?

• Claim: 3-coloring is in NP

- Recall: We need to show that there is a polynomial-time algorithm which
 - $\,\circ\,$ Can accept every YES instance with the right polynomial-size advice
 - $\,\circ\,$ Will not accept a NO instance with any advice
- Advice: colors of the nodes in a valid 3-coloring
- Algorithm: check that this is a valid 3-coloring
- Simple!

• Claim: Exact 3SAT \leq_p 3-Coloring

- > Given an Exact 3SAT formula φ , we want to construct a graph G such that G is 3-colorable if and only if φ has a satisfying assignment
- ➤ G will have the following nodes:
 - \circ Type 1: true, false, base, one for each x_i , one for each $\overline{x_i}$
 - \circ Type 2: additional nodes for each clause C_i
- > 1-1 correspondence between valid 3-colorings of type 1 nodes and valid truth assignments:
 - All literals with the same color as "true" node are set to true
 - $\,\circ\,$ All literals with the same color as "false" node are set to false
- Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of G giving these colors to type 1 nodes if and only if the corresponding truth assignment is satisfying for φ.

- > Create 3 new nodes T, F, and B, and connect them in a triangle
- Create a node for each literal, connect it to its negation and to B
- > T-F-B must have different colors, and so must B- x_i - \overline{x}_i
 - $\,\circ\,$ Each literal has the color of T or F; its negation has the other color
 - \circ Valid 3-coloring \Leftrightarrow valid truth assignment (set all with color T to true)

- ➤ We also need valid 3-coloring ⇔ satisfying truth assignment
 - $\,\circ\,$ For each clause, add the following gadget with 6 nodes and 13 edges
 - Claim: Clause gadget is 3-colorable ⇔ at least one of the nodes corresponding to the literals in the clause is assigned color of T

> Claim: Valid 3-coloring \Rightarrow truth assignment satisfies φ

- \circ Suppose a clause C_i is not satisfied, so all its three literals must be F
- $\,\circ\,$ Then the 3 nodes in top layer must be B
- Then the first two nodes in bottom layer must be F and T
- \circ No color left for the remaining node \Rightarrow contradiction!

- > We just proved: valid 3-coloring \Rightarrow satisfying assignment
- > Claim: satisfying assignment \Rightarrow valid 3-coloring
 - $\,\circ\,$ Each clause has at least one literal with color T
 - Exercise: Regardless of which literal has color T and which color (T/F) the other literals have, the clause widget can always be 3-colored

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
 - Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
 - > No advice should work for a NO instance
 - > Usually, the solution of the "search version" of the problem works
 - $\,\circ\,$ But sometimes, the advice can be non-trivial
 - For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e., show A ≤_p B)
 - This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
 - Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
 - Caution 2: The size of the B-instances you construct should be polynomial in the size of the original A-instance
 - This would show that if B can be solved in polynomial time, then A can be as well
 - > Some reductions are trivial, some are notoriously tricky...

Binary Integer Linear Programming (BILP)

• Problem

- > Input: $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $k \in \mathbb{R}$
- ▶ Question: Does there exist $x \in \{0,1\}^n$ such that $c^T x \ge k$ and $Ax \le b$?
- ▷ Decision variant of "maximize $c^T x$ subject to $Ax \le b$ " but instead of any $x \in \mathbb{R}^n$ with $x \ge 0$, we are restricting x to binary.
- Does restricting search space make the problem easier or harder?
 This is actually NP-complete!

BILP Feasibility

- An even simpler problem
 - > Special case where c = k = 0, so $c^T x \ge k$ is always true

Problem

- ▶ Input: $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
- ▶ Question: Does there exist $x \in \{0,1\}^n$ such that $Ax \le b$?
- Just need to find a feasible solution
- > This is still NP-complete!

BILP Feasibility

• Claim: BILP Feasibility is in NP

- Recall: We need to show that there is a polynomial-time algorithm which
 - Can accept every YES instance with the right polynomial-size advice
 - Will not accept a NO instance with any advice
- > Advice: simply a vector x satisfying $Ax \le b$
- > Algorithm: Check if $Ax \leq b$
- Simple!

BILP Feasibility

• Claim: Exact 3SAT \leq_p BILP Feasibility

- \succ Take any formula φ of Exact 3SAT
- > Create a binary variable x_i for each variable x_i in φ \circ We'll represent its negation \overline{x}_i with $1 - x_i$
- For each clause C, we want at least one of its three literals to be TRUE
 O Just make sure their sum is at least 1

○ E.g.,
$$C = x_1 \lor \bar{x}_2 \lor \bar{x}_3 \Rightarrow x_1 + (1 - x_2) + (1 - x_3) \ge 1$$

Easy to check that

this is a polynomial reduction

 \circ Resulting system has a feasible solution if and only if φ is satisfiable

ILP Feasibility

Problem

- ▶ Input: $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$
- ▶ Question: Does there exist $x \in \mathbb{Z}^n$ such that $Ax \leq b$?
- To prove that this is NP-hard, there is an obvious reduction from BILP feasibility to ILP feasibility
- > What about membership in NP?
- > Advice: simply a vector x satisfying $Ax \le b$
- > Algorithm: Check if $Ax \leq b$
- Simple?
 - No, not clear if, in every YES instance, there's a polynomial-length "advice" vector x satisfying $Ax \le b$

On the Complexity of Integer Programming

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachusetts, and National Technical University, Athens, Greece

ABSTRACT. A simple proof that integer programming is in $N\mathcal{P}$ is given. The proof also establishes that there is a pseudopolynomial-time algorithm for integer programming with any (fixed) number of constraints.

KEY WORDS AND PHRASES: integer linear programming, P, NP, pseudopolynomial algorithms

CR CATEGORIES' 5 25, 5.3, 5.4

So far...

- To establish NP-completeness of problem B, we always reduced Exact 3SAT to B
 - But we can reduce any other problem A that we have already established to be NP-complete
 - Sometimes this might lead to a simpler reduction because A might already be "similar" to B
- Let's see an example!

Problem

- > Input: Undirected graph G = (V, E), integer k
- > Question: Does there exist a vertex cover of size k?
 - That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in *S*?

Example:

- Does this graph have a vertex cover of size 4?
 - Yes!
- Does this graph have a vertex cover of size 3?
 - No!

Problem

- > Input: Undirected graph G = (V, E), integer k
- > Question: Does there exist a vertex cover of size k?
 - That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in *S*?

Question:

- Did we see this graph in the last lecture?
 - Yes!
 - For independent set of size 6

= vertex cover

= independent set

Problem

- > Input: Undirected graph G = (V, E), integer k
- > Question: Does there exist a vertex cover of size k?
 - That is, does there exist $S \subseteq V$ with |S| = k such that every edge is incident to at least one vertex in *S*?

Question:

- Did we see this graph in the last lecture?
 - Yes!
 - For independent set of size 6

= vertex cover

= independent set

- Vertex cover and independent set are intimately connected!
- Claim: G has a vertex cover of size k if and only if G has an independent set of size n − k
- Stronger claim: S is a vertex cover if and only if V\S is an independent set

- Claim: S is a vertex cover if and only if V\S is an independent set
- Proof:
 - \succ *S* is a vertex cover
 - > IFF: For every $(u, v) \in E$, at least one of $\{u, v\}$ is in S
 - > IFF: For every $(u, v) \in E$, at most one of $\{u, v\}$ is in $V \setminus S$
 - > IFF: No two vertices of $V \setminus S$ are connected by an edge
 - > IFF: $V \setminus S$ is an independent set

- Claim: Independent Set \leq_p Vertex Cover
 - > Take an arbitrary instance (G, k) of Independent Set
 - > We want to check if there is an independent set of size k
 - > Just convert it to the instance (G, n k) of Vertex Cover
 - > Simple!
 - A reduction from Exact 3SAT would have basically repeated the reduction we already did for Exact 3SAT \leq_p Independent Set
 - Note: I didn't argue that Vertex Cover is in NP
 This is simple as usual. Just give the actual vertex cover as the advice.

Set Cover

• Problem

- Input: A universe of elements U, a family of subsets S, and an integer k
- > Question: Do there exist k sets from S whose union is U?

• Example

>
$$U = \{1,2,3,4,5,6,7\}$$

> $S = \{\{1,3,7\}, \{2,4,6\}, \{4,5\}, \{1\}, \{1,2,6\}\}$
> $k = 3$? Yes! $\{\{1,3,7\}, \{4,5\}, \{1,2,6\}\}$
> $k = 2$? No!

Set Cover

• Claim: Set Cover is in NP

> Easy. Let the advice be the actual k sets whose union is U.

• Claim: Vertex Cover \leq_p Set Cover

- > Given an instance of vertex cover with graph G = (V, E) and integer k, create the following set cover instance
 - \circ Set U = E
 - For each $v \in V$, S contains a set S_v of all the edges incident on v
 - \circ Selecting k set whose union is U = selecting k vertices such that union of their incident edges covers all edges
 - $\,\circ\,$ Hence, the two problems obviously have the same answer

Polynomial-Time Reductions

• We did not prove "the first NP-completeness" result

- Theorem: Exact 3SAT is NP-complete
 - > We need to prove this without using any other "known NPcomplete" problem
 - We want to directly show that every problem in NP can be reduced to Exact 3SAT
- We will first reduce any NP problem to SAT, and then reduce SAT to Exact 3SAT

- We're not going to prove it in this class, but the key idea is as follows
 - > If a problem is in NP, then ∃ Turing machine T(x, y) which
 takes as input a problem instance x and an advice y of size p(|x|)
 verifies in q(|x|) time whether x is a YES instance
 both p and q are polynomials
 - > x is a YES instance iff $\exists y T(x, y) = ACCEPT$

- x is a YES instance iff $\exists y T(x, y) = ACCEPT$
 - > We need to convert $\exists y T(x, y) = ACCEPT$ into whether a SAT formula φ is satisfiable
- Recall that a Turing machine T consists of a memory tape, a head pointer, a state, and a transition function
- What describes *T* at any given step of its computation?
 - > What is written in each cell of its memory tape?
 - > Which cell of the tape is the read/write head currently pointing to?
 - > What state is the Turing machine in?

- x is a YES instance iff $\exists y T(x, y) = ACCEPT$
 - > We need to convert $\exists y T(x, y) = ACCEPT$ into $\exists z \varphi(z) = TRUE$, where z consists of Boolean variables and φ is a SAT formula
- Variables:
 - > $T_{i,j,k}$ = True if machine's tape cell *i* contains symbol *j* at step *k* of the computation
 - *H_{i,k}* = True if the machine's read/write head is at tape cell *i* at step *k* of the computation
 - > $Q_{q,k}$ = True if machine is in state q at step k of the computation
 - Cell index i and computation step k only need to be polynomially large as T works in polynomial time

- x is a YES instance iff $\exists y T(x, y) = ACCEPT$
 - > We need to convert $\exists y T(x, y) = ACCEPT$ into $\exists z \varphi(z) = TRUE$, where z consists of Boolean variables and φ is a SAT formula
- Clauses:
 - Express how the variables must be related using the transition function
 - Express that the Turing machine must reach the state ACCEPT at some step of the computation
- This establishes that SAT is NP-complete.
- Next: SAT \leq_p Exact 3SAT.

• Claim: SAT \leq_p Exact 3SAT

- \succ Take an instance $\varphi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \cdots$ of SAT
- Replace each clause with multiple clauses with exactly 3 literals each
- > For a clause with one literal, $C = \ell_1$:
 - \circ Add two variables z_1 , z_2 , and replace C with four clauses

 $(\ell_1 \lor z_1 \lor z_2) \land (\ell_1 \lor \bar{z_1} \lor z_2) \land (\ell_1 \lor z_1 \lor \bar{z_2}) \land (\ell_1 \lor \bar{z_1} \lor \bar{z_2})$

 $_{\odot}$ Verify that this is logically equivalent to ℓ_{1}

> For a clause with two literals, $C = (\ell_1 \lor \ell_2)$:

 \circ Add variable z_1 and replace it with the following:

 $(\ell_1 \lor \ell_2 \lor z_1) \land (\ell_1 \lor \ell_2 \lor \bar{z_1})$

 $_{\odot}$ Verify that this is logically equal to $(\ell_{1} \lor \ell_{2})$

- Claim: SAT \leq_p Exact 3SAT
 - For a clause with three literals, C = ℓ₁ ∨ ℓ₂ ∨ ℓ₃:
 Perfect. No need to do anything!
 - For a clause with 4 or more literals, C = (ℓ₁ ∨ ℓ₂ ∨ ··· ∨ ℓ_k):
 Add variables $z_1, z_2, ..., z_{k-3}$ and replace it with:

$$\begin{array}{c} (\ell_1 \vee \ell_2 \vee z_1) \wedge (\ell_3 \vee \bar{z_1} \vee z_2) \wedge (\ell_4 \vee \bar{z_2} \vee z_3) \wedge \cdots \\ \wedge (\ell_{k-2} \vee \bar{z_{k-4}} \vee z_{k-3}) \wedge (\ell_{k-1} \vee \ell_k \vee \bar{z_{k-3}}) \end{array}$$

- \circ Check:
 - If any ℓ_i is TRUE, then there exists an assignment of z variables to make this TRUE
 - If all ℓ_i are FALSE, then no assignment of z variables will make this TRUE