Subset Sum

-
* Problem
> Input: Set of integers S = {wy, ..., w,, }, integer W
9 > Question: Is there S* € S that adds up to exactly W?
 Example

> S =1{1,4,16,64,256,1040,1041,1093,1284,1344}, W = 37547
> Yes!
ol+16+ 64 + 256+ 1040 + 1093 + 1284 = 3754

373522 - Deepanshu Kush

Subset Sum

[- Claim: Subset Sum is in NP]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: the actual subset S’
> Algorithm: check that S’ is indeed a subset of S and sums to W
> Simple!

373522 - Deepanshu Kush

Subset Sum

[- Claim: Exact 3SAT <y Subset Sum]

> Given a formula ¢ of Exact 3SAT, we want to construct (S, W) of Subset
Sum with the same answer

> In the table in the following slide:
o Columns are for variables and clauses
o Each row is a numberin S, represented in decimal

o Number for literal € : has 1 in its variable column and in the column
of every clause where that literal appears

e Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

373522 - Deepanshu Kush

Subset

[° Claim: Exact 3SAT <p Subset Sum] =D
x B
-x 1
= =y

C=xVvyvz - BB
C3 = ; \" _;) \' 2 - Z 0
r Bo
0
dummies to get 0
clause columns 0
to sum to 4 0
. 0O

w

373522 - Deepanshu Kush

Decimal

representation

~

HOOOOOOHHOOOOH
HOOOONHOHOHHOH

HOOOOOOOOHHOO

HOONHOOOHHOOHH

HNHOOOOHOHOHOH

n1
(=]

Subset Sum

* Note

> The Subset Sum instance we constructed has “large” numbers
o Their values are exponentially large (~10#variables+iclauses)

o But the number of bits required to write them is polynomial

> Can we hope to construct Subset Sum instance with numbers whose
values are only poly(#variables, #clasuses) large?

o Unlikely, as that would prove P = NP!
o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time

* Thatis, in polynomial time if the numbers are only polynomially
large in value

373522 - Deepanshu Kush

3-Coloring

* Problem
> Input: Undirected graph ¢ = (V,E)

> Question: Can we color each vertex of ¢ using at most three colors
K such that no two adjacent vertices have the same color?

J

373522 - Deepanshu Kush

3-Coloring

[- Claim: 3-coloring is in NP]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: colors of the nodes in a valid 3-coloring
> Algorithm: check that this is a valid 3-coloring
> Simple!

373522 - Deepanshu Kush

3-Coloring

[- Claim: Exact 3SAT <,, 3-Coloring]

» Given an Exact 3SAT formula ¢, we want to construct a graph G such
that G is 3-colorable if and only if ¢ has a satisfying assignment

> G will have the following nodes:
o Type 1: true, false, base, one for each x;, one for each x;
o Type 2: additional nodes for each clause (;

> 1-1 correspondence between valid 3-colorings of type 1 nodes and valid
truth assignments:

o All literals with the same color as “true” node are set to true
o All literals with the same color as “false” node are set to false

> Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of G
giving these colors to type 1 nodes if and only if the corresponding truth
assignment is satisfying for @.

373522 - Deepanshu Kush

3-Coloring

> Create 3 new nodes T, F, and B, and connect them in a triangle
> Create a node for each literal, connect it to its negation and to B
» T-F-B must have different colors, and so must B-x;-X;
o Each literal has the color of T or F; its negation has the other color
o Valid 3-coloring & valid truth assignment (set all with color T to true)

true false

373522 - Deepanshu Kush

3-Coloring

> We also need valid 3-coloring & satisfying truth assignment
o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable & at least one of the nodes
corresponding to the literals in the clause is assigned color of T

true (@

373522 - Deepanshu Kush

3-Coloring

» Claim: Valid 3-coloring = truth assignment satisfies @
o Suppose a clause (; is not satisfied, so all its three literals must be F
o Then the 3 nodes in top layer must be B
o Then the first two nodes in bottom layer must be Fand T
o No color left for the remaining node = contradiction!

not 3-colorable if all are red

/

‘ G=x VX, Vx

contradiction

o false

373522 - Deepanshu Kush

3-Coloring

> We just proved: valid 3-coloring = satisfying assignment
» Claim: satisfying assignment = valid 3-coloring
o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F)
the other literals have, the clause widget can always be 3-colored

a literal set to true in 3-SAT assignment

/

frue

373522 - Deepanshu Kush

Review of Reductions

* If you want to show that problem B is NP-complete
e Step 1: Show that Bisin NP

> Some polynomial-size advice should be sufficient to verify a YES
instance in polynomial time

> No advice should work for a NO instance

> Usually, the solution of the “search version” of the problem works
o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

373522 - Deepanshu Kush

Review of Reductions

* If you want to show that problem B is NP-complete

e Step 2: Find a known NP-complete problem A and reduce it
to B (i.e., show A <,, B)

> This means taking an arbitrary instance of A, and solving it in
polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

> This would show that if B can be solved in polynomial time, then A
can be as well

> Some reductions are trivial, some are notoriously tricky...

373522 - Deepanshu Kush

Binary Integer Linear
Programming (BILP)

4)
 Problem

> Input: c € R",b € R™, A € R"™" k € R
> Question: Does there exist x € {0,1}" such that c’x > k and Ax < b?

_

> Decision variant of “maximize ¢ x subject to Ax < b” but instead of
any x € R™ with x > 0, we are restricting x to binary.

> Does restricting search space make the problem easier or harder?
o This is actually NP-complete!

373522 - Deepanshu Kush

BILP Feasibility

* An even simpler problem
> Special case where c = k = 0, so cTx > k is always true

(« Problem h
> Input: b € R™, 4 € R™*"
_* Question: Does there exist x € {0,1}" such that Ax < b?)

> Just need to find a feasible solution
> This is still NP-complete!

373522 - Deepanshu Kush

BILP Feasibility

[- Claim: BILP Feasibility is in NP]

> Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice
o Will not accept a NO instance with any advice

> Advice: simply a vector x satisfying Ax < b
> Algorithm: Check if Ax < b
> Simple!

373522 - Deepanshu Kush

BILP Feasibility

[- Claim: Exact 3SAT <, BILP Feasibility]

» Take any formula ¢ of Exact 3SAT

» Create a binary variable x; for each variable x; in ¢
o We’'ll represent its negation X; with 1 — x;

> For each clause C, we want at least one of its three literals to be TRUE
o Just make sure their sum is at least 1
oEg,C=x;Vi,Vizg=>x;+(1—x)+(1—2x3)=>1

> Easy to check that
o this is a polynomial reduction
o Resulting system has a feasible solution if and only if ¢ is satisfiable

373522 - Deepanshu Kush

ILP Feasibility

(e Problem h
> Input: b € R™, 4 € R™*"
> Question: Does there exist x € Z™ such that Ax < b?)

> To prove that this is NP-hard, there is an obvious reduction from BILP
feasibility to ILP feasibility

> What about membership in NP?

» Advice: simply a vector x satisfying Ax < b
> Algorithm: Check if Ax < b

> Simple?

o No, not clear if, in every YES instance, there’s a polynomial-length
“advice” vector x satisfying Ax < b

373522 - Deepanshu Kush

On the Complexity of Integer Programming

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachuselts,
and National Technical University, Athens, Greece

ABSTRACT. A simple proof that integer programming s in .4/ 1s given. The proof also establishes that
there 1s a pseudopolynomial-ime algorithm for integer programming with any (fixed) number of
constraints.

KEY WORDS AND PHRASES: nteger linear programming, %, A7, pseudopolynomial algorthms

CR CATEGORIES" 525,5.3,54

373522 - Deepanshu Kush

So far...

* To establish NP-completeness of problem B, we always
reduced Exact 3SAT to B

> But we can reduce any other problem A that we have already
established to be NP-complete

> Sometimes this might lead to a simpler reduction because A might
already be “similar” to B

e Let’s see an example!

373522 - Deepanshu Kush

Vertex Cover

* Problem I
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
_ incident to at least one vertex in §?)

Example: @ -=vertex cover
* Does this graph have a
vertex cover of size 47?

* Yes!
* Does this graph have a
vertex cover of size 37?

* No!

373522 - Deepanshu Kush

Vertex Cover

'+ Problem I
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
_ incident to at least one vertex in §?)

Question: @ -=vertex cover
* Did we see this graph in
the last lecture? @ -independent set
* Yes!
* For independent set
of size 6

373522 - Deepanshu Kush

Vertex Cover

'+ Problem I
> Input: Undirected graph ¢ = (V,E), integer k
> Question: Does there exist a vertex cover of size k?

o That is, does there exist S € V with |S| = k such that every edge is
_ incident to at least one vertex in §?)

Question: @ -=vertex cover
* Did we see this graph in
the last lecture? @ -independent set
* Yes!
* For independent set
of size 6

373522 - Deepanshu Kush

Vertex Cover

* Vertex cover and independent set are intimately connected!

* Claim: G has a vertex cover of size k if and only if G has an
independent set of sizen — k

* Stronger claim: S is a vertex cover if and only if V'\S is an
independent set

373522 - Deepanshu Kush

Vertex Cover

* Claim: § is a vertex cover if and only if I/\S is an independent
set

* Proof:
> S is a vertex cover
> IFF: For every (u,v) € E, at least one of {u, v}isin S
> IFF: For every (u,v) € E, at most one of {u, v}isin V\S
> IFF: No two vertices of V\S are connected by an edge
> IFF: V\S is an independent set m

373522 - Deepanshu Kush

Vertex Cover

* Claim: Independent Set <,, Vertex Cover

> Take an arbitrary instance (G, k) of Independent Set
> We want to check if there is an independent set of size k
> Just convert it to the instance (G, n — k) of Vertex Cover
> Simple!
o A reduction from Exact 3SAT would have basically repeated the
reduction we already did for Exact 3SAT <,, Independent Set

> Note: | didn’t argue that Vertex Cover is in NP
o This is simple as usual. Just give the actual vertex cover as the advice.

373522 - Deepanshu Kush

Set Cover

(« Problem B
> Input: A universe of elements U, a family of subsets S, and an integer k
. Question: Do there exist k sets from S whose union is U? y
e Example

> U =1{1,2,3,4,5,6,7}

> S =1{{1,3,7},{2,4,6},{4,5},{1},{1,2,6}}
> k =37 Yes! {{1,3,7},{4,5},{1,2,6}}

> k =22 No!

373522 - Deepanshu Kush

Set Cover

[- Claim: Set Cover is in NP]

> Easy. Let the advice be the actual k sets whose union is U.

[- Claim: Vertex Cover <p Set Cover]

> Given an instance of vertex cover with graph G = (V, E) and integer k,
create the following set cover instance

oSetU =E
o Foreach v € V, § contains a set S, of all the edges incident on v

o Selecting k set whose union is U = selecting k vertices such that
union of their incident edges covers all edges

o Hence, the two problems obviously have the same answer

373522 - Deepanshu Kush

Polynomial-Time Reductions

constraint satisfaction

Dick Karp (1972)

X0
" cﬁg\x =3 1985 Turing Award

32 %

o
INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
v \ 4
SET COVER TSP

packing and covering sequencing partitioning numerical

373522 - Deepanshu Kush

Cook-Levin Theorem

* We did not prove “the first NP-completeness” result

 Theorem: Exact 3SAT is NP-complete

> We need to prove this without using any other “known NP-
complete” problem

> We want to directly show that every problem in NP can be reduced to
Exact 3SAT

* We will first reduce any NP problem to SAT, and then reduce
SAT to Exact 3SAT

373522 - Deepanshu Kush

Cook-Levin Theorem

* We're not going to prove it in this class, but the key idea is
as follows

> If a problem is in NP, then 3 Turing machine T'(x, y) which
o takes as input a problem instance x and an advice y of size p(|x|)
o verifies in g(|x|) time whether x is a YES instance
o both p and g are polynomials

> x is a YES instance iff 3y T'(x,y) = ACCEPT

373522 - Deepanshu Kush

Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T'(x,y) = ACCEPT into whether a SAT
formula @ is satisfiable

e Recall that a Turing machine T consists of a memory tape, a
head pointer, a state, and a transition function

 What describes T at any given step of its computation?
> What is written in each cell of its memory tape?
> Which cell of the tape is the read/write head currently pointing to?
> What state is the Turing machine in?

373522 - Deepanshu Kush

Cook-Levin Theorem

e xisaYESinstance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

e Variables:

> T; j x = True if machine’s tape cell i contains symbol j at step k of the
computation

> H; = True if the machine’s read/write head is at tape cell i at step k
of the computation

> Qg x = True if machine is in state g at step k of the computation

> Cell index i and computation step k only need to be polynomially
large as T works in polynomial time

373522 - Deepanshu Kush

Cook-Levin Theorem

x is a YES instance iff 3y T(x,y) = ACCEPT

> We need to convert 3y T(x,y) = ACCEPT into 3z ¢(z) = TRUE,
where z consists of Boolean variables and ¢ is a SAT formula

Clauses:

> Express how the variables must be related using the transition
function

> Express that the Turing machine must reach the state ACCEPT at
some step of the computation

This establishes that SAT is NP-complete.
Next: SAT <,, Exact 35AT.

373522 - Deepanshu Kush

Cook-Levin Theorem

e Claim: SAT <y Exact 3SAT

» Take an instance ¢ = C; A C, A --- of SAT
> Replace each clause with multiple clauses with exactly 3 literals each

> For a clause with one literal, C = 4:
o Add two variables z;, z,, and replace C with four clauses

('gl VZ]_ VZz) N ('81 VZ_]_ VZZ) N ('81 VZl Vz_z) N ('gl VZ_1 Vz_z)
o Verify that this is logically equivalent to €4

» For a clause with two literals, C = (1 V ¥5):
o Add variable z; and replace it with the following:

1V, VZ)NHEL VL,V Z)
o Verify that this is logically equal to (1 V ¥5)

373522 - Deepanshu Kush

Cook-Levin Theorem

e Claim: SAT <y Exact 3SAT

> For a clause with three literals, C = ¢, V£, V £3:
o Perfect. No need to do anything!

> For a clause with 4 or more literals, C = (£{ V£, V-V £}):
o Add variables z4, z,, ..., Z},_3 and replace it with:

(L1 VL, VZ)NE3VZLVZ)ANE4VZo VZ3) Ao
AN(Cr-2VZg_gVZg_3) N(Ex_1 V€ V Z_3)
o Check:
* If any #; is TRUE, then there exists an assignment of z variables
to make this TRUE
* If all #; are FALSE, then no assignment of z variables will make
this TRUE

373522 - Deepanshu Kush

