Subset Sum

- Problem
> Input: Set of integers $S=\left\{w_{1}, \ldots, w_{n}\right\}$, integer W
> Question: Is there $S^{\prime} \subseteq S$ that adds up to exactly W ?
- Example
> $S=\{1,4,16,64,256,1040,1041,1093,1284,1344\}, W=3754$?
> Yes!
- $1+16+64+256+1040+1093+1284=3754$

Subset Sum

- Claim: Subset Sum is in NP
> Recall: We need to show that there is a polynomial-time algorithm which
o Can accept every YES instance with the right polynomial-size advice
- Will not accept a NO instance with any advice
> Advice: the actual subset S^{\prime}
$>$ Algorithm: check that S^{\prime} is indeed a subset of S and sums to W
> Simple!

Subset Sum

- Claim: Exact 3 SAT \leq_{p} Subset Sum

> Given a formula φ of Exact 3SAT, we want to construct (S, W) of Subset Sum with the same answer
> In the table in the following slide:
o Columns are for variables and clauses

- Each row is a number in S, represented in decimal
o Number for literal ℓ : has 1 in its variable column and in the column of every clause where that literal appears
- Number selected = literal set to TRUE
o "Dummy" rows: can help make the sum in a clause column 4 if and only if at least one literal is set to TRUE

Subset Sum

- Claim: Exact 3 SAT \leq_{p} Subset Sum

$$
\begin{aligned}
& C_{1}=\bar{x} \vee y \vee z \\
& C_{2}=x \vee \bar{y} \vee z \\
& C_{3}=\bar{x} \vee \bar{y} \vee \bar{z}
\end{aligned}
$$

dummies to get

clause columns
to sum to 4

\hline 0 \& 0 \& 0 \& 2 \& 0 \& 0

\hline 0 \& 0 \& 0 \& 0 \& 1 \& 0

\hline 0 \& 0 \& 0 \& 0 \& 2 \& 0

\hline 0 \& 0 \& 0 \& 0 \& 0 \& 1

\hline 0 \& 0 \& 0 \& 0 \& 0 \& 2

\hline W \& 1 \& 1 \& 1 \& 4 \& 4\end{array} \right\rvert\, $$
\begin{array}{l}4 \\
\hline\end{array}
$$\right.\)

Subset Sum

- Note
> The Subset Sum instance we constructed has "large" numbers
- Their values are exponentially large ($\sim 10^{\# v a r i a b l e s+\# c l a u s e s ~}$)
- But the number of bits required to write them is polynomial
> Can we hope to construct Subset Sum instance with numbers whose values are only poly(\#variables, \#clasuses) large?
- Unlikely, as that would prove $P=N P$!
- Like Knapsack, Subset Sum can be solved in pseudo-polynomial time
- That is, in polynomial time if the numbers are only polynomially large in value

3-Coloring

- Problem
> Input: Undirected graph $G=(V, E)$
> Question: Can we color each vertex of G using at most three colors such that no two adjacent vertices have the same color?

3-Coloring

- Claim: 3-coloring is in NP
> Recall: We need to show that there is a polynomial-time algorithm which
o Can accept every YES instance with the right polynomial-size advice - Will not accept a NO instance with any advice
> Advice: colors of the nodes in a valid 3-coloring
> Algorithm: check that this is a valid 3-coloring
> Simple!

3-Coloring

- Claim: Exact 3 SAT $\leq{ }_{p}$ 3-Coloring
> Given an Exact 3SAT formula φ, we want to construct a graph G such that G is 3-colorable if and only if φ has a satisfying assignment
$>G$ will have the following nodes:
- Type 1: true, false, base, one for each x_{i}, one for each $\overline{x_{i}}$
- Type 2: additional nodes for each clause C_{j}
> 1-1 correspondence between valid 3-colorings of type 1 nodes and valid truth assignments:
- All literals with the same color as "true" node are set to true
- All literals with the same color as "false" node are set to false
> Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of G giving these colors to type 1 nodes if and only if the corresponding truth assignment is satisfying for φ.

3-Coloring

> Create 3 new nodes T, F, and B, and connect them in a triangle
> Create a node for each literal, connect it to its negation and to B
> T-F-B must have different colors, and so must $\mathrm{B}-x_{i}-\bar{x}_{i}$

- Each literal has the color of T or F; its negation has the other color
- Valid 3-coloring \Leftrightarrow valid truth assignment (set all with color T to true)

3-Coloring

> We also need valid 3-coloring \Leftrightarrow satisfying truth assignment

- For each clause, add the following gadget with 6 nodes and 13 edges
\circ Claim: Clause gadget is 3-colorable \Leftrightarrow at least one of the nodes corresponding to the literals in the clause is assigned color of T

3-Coloring

$>$ Claim: Valid 3-coloring \Rightarrow truth assignment satisfies φ

- Suppose a clause C_{i} is not satisfied, so all its three literals must be F
- Then the 3 nodes in top layer must be B
- Then the first two nodes in bottom layer must be F and T
\circ No color left for the remaining node \Rightarrow contradiction!

3-Coloring

> We just proved: valid 3-coloring \Rightarrow satisfying assignment
$>$ Claim: satisfying assignment \Rightarrow valid 3-coloring

- Each clause has at least one literal with color T
- Exercise: Regardless of which literal has color T and which color (T/F) the other literals have, the clause widget can always be 3-colored

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
> Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
> No advice should work for a NO instance
> Usually, the solution of the "search version" of the problem works
- But sometimes, the advice can be non-trivial
- For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e., show $\mathrm{A} \leq_{p} \mathrm{~B}$)
> This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
- Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
- Caution 2: The size of the B-instances you construct should be polynomial in the size of the original A-instance
> This would show that if B can be solved in polynomial time, then A can be as well
> Some reductions are trivial, some are notoriously tricky...

Binary Integer Linear Programming (BILP)

- Problem
> Input: $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}, k \in \mathbb{R}$
> Question: Does there exist $x \in\{0,1\}^{n}$ such that $c^{T} x \geq k$ and $A x \leq b$?
> Decision variant of "maximize $c^{T} x$ subject to $A x \leq b$ " but instead of any $x \in \mathbb{R}^{n}$ with $x \geq 0$, we are restricting x to binary.
> Does restricting search space make the problem easier or harder?
- This is actually NP-complete!

BILP Feasibility

- An even simpler problem
> Special case where $c=k=0$, so $c^{T} x \geq k$ is always true
- Problem
> Input: $b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
> Question: Does there exist $x \in\{0,1\}^{n}$ such that $A x \leq b$?
> Just need to find a feasible solution
> This is still NP-complete!

BILP Feasibility

- Claim: BILP Feasibility is in NP
> Recall: We need to show that there is a polynomial-time algorithm which
o Can accept every YES instance with the right polynomial-size advice - Will not accept a NO instance with any advice
> Advice: simply a vector x satisfying $A x \leq b$
> Algorithm: Check if $A x \leq b$
> Simple!

BILP Feasibility

- Claim: Exact 3 SAT \leq_{p} BILP Feasibility
> Take any formula φ of Exact 3SAT
> Create a binary variable x_{i} for each variable x_{i} in φ
- We'll represent its negation \bar{x}_{i} with $1-x_{i}$
> For each clause C, we want at least one of its three literals to be TRUE
- Just make sure their sum is at least 1
- E.g., $C=x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3} \Rightarrow x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right) \geq 1$
> Easy to check that
- this is a polynomial reduction
- Resulting system has a feasible solution if and only if φ is satisfiable

ILP Feasibility

- Problem
> Input: $b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
> Question: Does there exist $x \in \mathbb{Z}^{n}$ such that $A x \leq b$?
> To prove that this is NP-hard, there is an obvious reduction from BILP feasibility to ILP feasibility
> What about membership in NP?
> Advice: simply a vector x satisfying $A x \leq b$
> Algorithm: Check if $A x \leq b$
> Simple?
- No, not clear if, in every YES instance, there's a polynomial-length "advice" vector x satisfying $A x \leq b$

On the Complexity of Integer Programming

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachusetts, and National Technical University, Athens, Greece
abstract. A simple proof that integer programming is in $\mathcal{N O P}$ is given. The proof also establishes that there is a pseudopolynomial-tıme algorithm for integer programming with any (fixed) number of constraints.

KEY WORDS AND PHRASES: integer linear programming, $\mathscr{P}, \mathscr{N} \mathscr{P}$, pseudopolynomial algorithms
CR CATEGORIES• 5 25, 5.3, 5.4

So far...

- To establish NP-completeness of problem B, we always reduced Exact 3SAT to B
> But we can reduce any other problem A that we have already established to be NP-complete
> Sometimes this might lead to a simpler reduction because A might already be "similar" to B
- Let's see an example!

Vertex Cover

- Problem
> Input: Undirected graph $G=(V, E)$, integer k
$>$ Question: Does there exist a vertex cover of size k ?
- That is, does there exist $S \subseteq V$ with $|S|=k$ such that every edge is incident to at least one vertex in S ?

Example:

- Does this graph have a vertex cover of size 4?
- Yes!
- Does this graph have a vertex cover of size 3?
- No!

Vertex Cover

- Problem
> Input: Undirected graph $G=(V, E)$, integer k
$>$ Question: Does there exist a vertex cover of size k ?
- That is, does there exist $S \subseteq V$ with $|S|=k$ such that every edge is incident to at least one vertex in S ?

Question:

- Did we see this graph in the last lecture?
- Yes!
- For independent set of size 6

O vertex cover
= independent set

Vertex Cover

- Problem
> Input: Undirected graph $G=(V, E)$, integer k
$>$ Question: Does there exist a vertex cover of size k ?
- That is, does there exist $S \subseteq V$ with $|S|=k$ such that every edge is incident to at least one vertex in S ?

Question:

- Did we see this graph in the last lecture?
- Yes!
- For independent set of size 6

= vertex cover
= independent set

Vertex Cover

- Vertex cover and independent set are intimately connected!
- Claim: G has a vertex cover of size k if and only if G has an independent set of size $n-k$
- Stronger claim: S is a vertex cover if and only if $V \backslash S$ is an independent set

Vertex Cover

- Claim: S is a vertex cover if and only if $V \backslash S$ is an independent set
- Proof:
$>S$ is a vertex cover
$>$ IFF: For every $(u, v) \in E$, at least one of $\{u, v\}$ is in S
$>$ IFF: For every $(u, v) \in E$, at most one of $\{u, v\}$ is in $V \backslash S$
> IFF: No two vertices of $V \backslash \mathrm{~S}$ are connected by an edge
> IFF: $V \backslash \mathrm{~S}$ is an independent set $■$

Vertex Cover

- Claim: Independent Set \leq_{p} Vertex Cover
> Take an arbitrary instance (G, k) of Independent Set
> We want to check if there is an independent set of size k
> Just convert it to the instance $(G, n-k)$ of Vertex Cover
> Simple!
- A reduction from Exact 3SAT would have basically repeated the reduction we already did for Exact 3 SAT \leq_{p} Independent Set
> Note: I didn't argue that Vertex Cover is in NP
- This is simple as usual. Just give the actual vertex cover as the advice.

Set Cover

- Problem
> Input: A universe of elements U, a family of subsets S, and an integer k
> Question: Do there exist k sets from S whose union is U ?
- Example
> $U=\{1,2,3,4,5,6,7\}$
$>S=\{\{1,3,7\},\{2,4,6\},\{4,5\},\{1\},\{1,2,6\}\}$
$>k=3$? Yes! $\{\{1,3,7\},\{4,5\},\{1,2,6\}\}$
$>k=2$? No!

Set Cover

- Claim: Set Cover is in NP
> Easy. Let the advice be the actual k sets whose union is U.
- Claim: Vertex Cover \leq_{p} Set Cover
> Given an instance of vertex cover with graph $G=(V, E)$ and integer k, create the following set cover instance
- Set $U=E$
o For each $v \in V, S$ contains a set S_{v} of all the edges incident on v
- Selecting k set whose union is $U=$ selecting k vertices such that union of their incident edges covers all edges
o Hence, the two problems obviously have the same answer

Polynomial-Time Reductions

Cook-Levin Theorem

- We did not prove "the first NP-completeness" result
- Theorem: Exact 3SAT is NP-complete
> We need to prove this without using any other "known NPcomplete" problem
> We want to directly show that every problem in NP can be reduced to Exact 3SAT
- We will first reduce any NP problem to SAT, and then reduce SAT to Exact 3SAT

Cook-Levin Theorem

- We're not going to prove it in this class, but the key idea is as follows
> If a problem is in NP, then \exists Turing machine $T(x, y)$ which
- takes as input a problem instance x and an advice y of size $p(|x|)$
\circ verifies in $q(|x|)$ time whether x is a YES instance
\circ both p and q are polynomials
$>x$ is a YES instance iff $\exists y T(x, y)=A C C E P T$

Cook-Levin Theorem

- x is a YES instance iff $\exists y T(x, y)=A C C E P T$
> We need to convert $\exists y T(x, y)=A C C E P T$ into whether a SAT formula φ is satisfiable
- Recall that a Turing machine T consists of a memory tape, a head pointer, a state, and a transition function
- What describes T at any given step of its computation?
- What is written in each cell of its memory tape?
$>$ Which cell of the tape is the read/write head currently pointing to?
> What state is the Turing machine in?

Cook-Levin Theorem

- x is a YES instance iff $\exists y T(x, y)=A C C E P T$
$>$ We need to convert $\exists y T(x, y)=A C C E P T$ into $\exists z \varphi(z)=T R U E$, where z consists of Boolean variables and φ is a SAT formula
- Variables:
> $T_{i, j, k}=$ True if machine's tape cell i contains symbol j at step k of the computation
$>H_{i, k}=$ True if the machine's read/write head is at tape cell i at step k of the computation
> $Q_{q, k}=$ True if machine is in state q at step k of the computation
> Cell index i and computation step k only need to be polynomially large as T works in polynomial time

Cook-Levin Theorem

- x is a YES instance iff $\exists y T(x, y)=A C C E P T$
> We need to convert $\exists y T(x, y)=A C C E P T$ into $\exists z \varphi(z)=T R U E$, where z consists of Boolean variables and φ is a SAT formula
- Clauses:
- Express how the variables must be related using the transition function
> Express that the Turing machine must reach the state ACCEPT at some step of the computation
- This establishes that SAT is NP-complete.
- Next: SAT \leq_{p} Exact 3SAT.

Cook-Levin Theorem

- Claim: SAT \leq_{p} Exact 3SAT
> Take an instance $\varphi=C_{1} \wedge C_{2} \wedge \cdots$ of SAT
> Replace each clause with multiple clauses with exactly 3 literals each
> For a clause with one literal, $C=\ell_{1}$:
- Add two variables z_{1}, z_{2}, and replace C with four clauses

$$
\left(\ell_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(\ell_{1} \vee \bar{z}_{1} \vee z_{2}\right) \wedge\left(\ell_{1} \vee z_{1} \vee \bar{z}_{2}\right) \wedge\left(\ell_{1} \vee \bar{z}_{1} \vee \bar{z}_{2}\right)
$$

- Verify that this is logically equivalent to ℓ_{1}
> For a clause with two literals, $C=\left(\ell_{1} \vee \ell_{2}\right)$:
\circ Add variable z_{1} and replace it with the following:

$$
\left(\ell_{1} \vee \ell_{2} \vee z_{1}\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \bar{z}_{1}\right)
$$

\circ Verify that this is logically equal to $\left(\ell_{1} \vee \ell_{2}\right)$

Cook-Levin Theorem

- Claim: SAT \leq_{p} Exact 3SAT
> For a clause with three literals, $C=\ell_{1} \vee \ell_{2} \vee \ell_{3}$:
- Perfect. No need to do anything!
> For a clause with 4 or more literals, $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$:
\circ Add variables $z_{1}, z_{2}, \ldots, z_{k-3}$ and replace it with:

$$
\begin{aligned}
& \left(\ell_{1} \vee \ell_{2} \vee z_{1}\right) \wedge\left(\ell_{3} \vee \bar{z}_{1} \vee z_{2}\right) \wedge\left(\ell_{4} \vee \bar{z}_{2} \vee z_{3}\right) \wedge \cdots \\
& \wedge\left(\ell_{k-2} \vee \bar{z}_{k-4} \vee z_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \bar{z}_{k-3}\right)
\end{aligned}
$$

- Check:
- If any ℓ_{i} is TRUE, then there exists an assignment of z variables to make this TRUE
- If all ℓ_{i} are FALSE, then no assignment of z variables will make this TRUE

