
Subset Sum

373S22 - Deepanshu Kush 47

• Problem
➢ Input: Set of integers 𝑆 = {𝑤1, … , 𝑤𝑛}, integer 𝑊

➢ Question: Is there 𝑆′ ⊆ 𝑆 that adds up to exactly 𝑊?

• Example
➢ 𝑆 = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, 𝑊 = 3754?

➢ Yes!

o 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754

• Claim: Subset Sum is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: the actual subset 𝑆′

➢ Algorithm: check that 𝑆′ is indeed a subset of 𝑆 and sums to 𝑊

➢ Simple!

Subset Sum

373S22 - Deepanshu Kush 48

• Claim: Exact 3SAT ≤𝑝 Subset Sum

➢ Given a formula 𝜑 of Exact 3SAT, we want to construct (𝑆, 𝑊) of Subset
Sum with the same answer

➢ In the table in the following slide:

o Columns are for variables and clauses

o Each row is a number in 𝑆, represented in decimal

o Number for literal ℓ : has 1 in its variable column and in the column
of every clause where that literal appears

• Number selected = literal set to TRUE

o “Dummy” rows: can help make the sum in a clause column 4 if and
only if at least one literal is set to TRUE

Subset Sum

373S22 - Deepanshu Kush 49

• Claim: Exact 3SAT ≤𝑝 Subset Sum

Subset Sum

373S22 - Deepanshu Kush 50

Decimal
representation

• Note
➢ The Subset Sum instance we constructed has “large” numbers

o Their values are exponentially large (~10#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠+#𝑐𝑙𝑎𝑢𝑠𝑒𝑠)

o But the number of bits required to write them is polynomial

➢ Can we hope to construct Subset Sum instance with numbers whose
values are only 𝑝𝑜𝑙𝑦(#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, #𝑐𝑙𝑎𝑠𝑢𝑠𝑒𝑠) large?

o Unlikely, as that would prove 𝑃 = 𝑁𝑃!

o Like Knapsack, Subset Sum can be solved in pseudo-polynomial time

• That is, in polynomial time if the numbers are only polynomially
large in value

Subset Sum

373S22 - Deepanshu Kush 51

3-Coloring

373S22 - Deepanshu Kush 52

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸)

➢ Question: Can we color each vertex of 𝐺 using at most three colors
such that no two adjacent vertices have the same color?

• Claim: 3-coloring is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: colors of the nodes in a valid 3-coloring

➢ Algorithm: check that this is a valid 3-coloring

➢ Simple!

3-Coloring

373S22 - Deepanshu Kush 53

3-Coloring

373S22 - Deepanshu Kush 54

• Claim: Exact 3SAT ≤𝑝 3-Coloring

➢ Given an Exact 3SAT formula 𝜑, we want to construct a graph 𝐺 such
that 𝐺 is 3-colorable if and only if 𝜑 has a satisfying assignment

➢ 𝐺 will have the following nodes:

o Type 1: true, false, base, one for each 𝑥𝑖, one for each ഥ𝑥𝑖

o Type 2: additional nodes for each clause 𝐶𝑗

➢ 1-1 correspondence between valid 3-colorings of type 1 nodes and valid
truth assignments:

o All literals with the same color as “true” node are set to true

o All literals with the same color as “false” node are set to false

➢ Claim: Fix any colors of type 1 nodes. There exists a valid 3-coloring of 𝐺
giving these colors to type 1 nodes if and only if the corresponding truth
assignment is satisfying for 𝜑.

3-Coloring

373S22 - Deepanshu Kush 55

➢ Create 3 new nodes T, F, and B, and connect them in a triangle

➢ Create a node for each literal, connect it to its negation and to B

➢ T-F-B must have different colors, and so must B-𝑥𝑖- ҧ𝑥𝑖

o Each literal has the color of T or F; its negation has the other color

o Valid 3-coloring ⇔ valid truth assignment (set all with color T to true)

…

3-Coloring

373S22 - Deepanshu Kush 56

➢ We also need valid 3-coloring ⇔ satisfying truth assignment

o For each clause, add the following gadget with 6 nodes and 13 edges

o Claim: Clause gadget is 3-colorable ⇔ at least one of the nodes
corresponding to the literals in the clause is assigned color of T

3-Coloring

373S22 - Deepanshu Kush 57

➢ Claim: Valid 3-coloring ⇒ truth assignment satisfies 𝜑

o Suppose a clause 𝐶𝑖 is not satisfied, so all its three literals must be F

o Then the 3 nodes in top layer must be B

o Then the first two nodes in bottom layer must be F and T

o No color left for the remaining node ⇒ contradiction!

3-Coloring

373S22 - Deepanshu Kush 58

➢ We just proved: valid 3-coloring ⇒ satisfying assignment

➢ Claim: satisfying assignment ⇒ valid 3-coloring

o Each clause has at least one literal with color T

o Exercise: Regardless of which literal has color T and which color (T/F)
the other literals have, the clause widget can always be 3-colored

Review of Reductions

373S22 - Deepanshu Kush 59

• If you want to show that problem B is NP-complete

• Step 1: Show that B is in NP
➢ Some polynomial-size advice should be sufficient to verify a YES

instance in polynomial time

➢ No advice should work for a NO instance

➢ Usually, the solution of the “search version” of the problem works

o But sometimes, the advice can be non-trivial

o For example, to check LP optimality, one possible advice is the
values of both primal and dual variables, as we saw in the last
lecture

Review of Reductions

373S22 - Deepanshu Kush 60

• If you want to show that problem B is NP-complete

• Step 2: Find a known NP-complete problem A and reduce it
to B (i.e., show A ≤𝑝 B)
➢ This means taking an arbitrary instance of A, and solving it in

polynomial time using an oracle for B

o Caution 1: Remember the direction. You are “reducing known NP-
complete problem to your current problem”.

o Caution 2: The size of the B-instances you construct should be
polynomial in the size of the original A-instance

➢ This would show that if B can be solved in polynomial time, then A
can be as well

➢ Some reductions are trivial, some are notoriously tricky…

Binary Integer Linear
Programming (BILP)

373S22 - Deepanshu Kush 61

• Problem
➢ Input: 𝑐 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛, 𝑘 ∈ ℝ

➢ Question: Does there exist 𝑥 ∈ 0,1 𝑛 such that 𝑐𝑇𝑥 ≥ 𝑘 and 𝐴𝑥 ≤ 𝑏?

➢ Decision variant of “maximize 𝑐𝑇𝑥 subject to 𝐴𝑥 ≤ 𝑏” but instead of
any 𝑥 ∈ ℝ𝑛 with 𝑥 ≥ 0, we are restricting 𝑥 to binary.

➢ Does restricting search space make the problem easier or harder?

o This is actually NP-complete!

BILP Feasibility

373S22 - Deepanshu Kush 62

• An even simpler problem
➢ Special case where 𝑐 = 𝑘 = 0, so 𝑐𝑇𝑥 ≥ 𝑘 is always true

• Problem
➢ Input: 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

➢ Question: Does there exist 𝑥 ∈ 0,1 𝑛 such that 𝐴𝑥 ≤ 𝑏?

➢ Just need to find a feasible solution

➢ This is still NP-complete!

• Claim: BILP Feasibility is in NP

➢ Recall: We need to show that there is a polynomial-time algorithm
which

o Can accept every YES instance with the right polynomial-size advice

o Will not accept a NO instance with any advice

➢ Advice: simply a vector 𝑥 satisfying 𝐴𝑥 ≤ 𝑏

➢ Algorithm: Check if 𝐴𝑥 ≤ 𝑏

➢ Simple!

BILP Feasibility

373S22 - Deepanshu Kush 63

• Claim: Exact 3SAT ≤𝑝 BILP Feasibility

➢ Take any formula 𝜑 of Exact 3SAT

➢ Create a binary variable 𝑥𝑖 for each variable 𝑥𝑖 in 𝜑

o We’ll represent its negation ҧ𝑥𝑖 with 1 − 𝑥𝑖

➢ For each clause 𝐶, we want at least one of its three literals to be TRUE

o Just make sure their sum is at least 1

o E.g., 𝐶 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥3 ⇒ 𝑥1 + 1 − 𝑥2 + 1 − 𝑥3 ≥ 1

➢ Easy to check that

o this is a polynomial reduction

o Resulting system has a feasible solution if and only if 𝜑 is satisfiable

BILP Feasibility

373S22 - Deepanshu Kush 64

ILP Feasibility

373S22 - Deepanshu Kush 65

• Problem
➢ Input: 𝑏 ∈ ℝ𝑚, 𝐴 ∈ ℝ𝑚×𝑛

➢ Question: Does there exist 𝑥 ∈ ℤ𝑛 such that 𝐴𝑥 ≤ 𝑏?

➢ To prove that this is NP-hard, there is an obvious reduction from BILP
feasibility to ILP feasibility

➢ What about membership in NP?

➢ Advice: simply a vector 𝑥 satisfying 𝐴𝑥 ≤ 𝑏

➢ Algorithm: Check if 𝐴𝑥 ≤ 𝑏

➢ Simple?

o No, not clear if, in every YES instance, there’s a polynomial-length
“advice” vector 𝑥 satisfying 𝐴𝑥 ≤ 𝑏

373S22 - Deepanshu Kush 66

So far…

373S22 - Deepanshu Kush 67

• To establish NP-completeness of problem B, we always
reduced Exact 3SAT to B
➢ But we can reduce any other problem A that we have already

established to be NP-complete

➢ Sometimes this might lead to a simpler reduction because A might
already be “similar” to B

• Let’s see an example!

Vertex Cover

373S22 - Deepanshu Kush 68

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a vertex cover of size 𝑘?

o That is, does there exist 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘 such that every edge is
incident to at least one vertex in 𝑆?

= vertex coverExample:
• Does this graph have a

vertex cover of size 4?
• Yes!

• Does this graph have a
vertex cover of size 3?
• No!

Vertex Cover

373S22 - Deepanshu Kush 69

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a vertex cover of size 𝑘?

o That is, does there exist 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘 such that every edge is
incident to at least one vertex in 𝑆?

= independent set

Question:
• Did we see this graph in

the last lecture?
• Yes!
• For independent set

of size 6

= vertex cover

Vertex Cover

373S22 - Deepanshu Kush 70

• Problem
➢ Input: Undirected graph 𝐺 = (𝑉, 𝐸), integer 𝑘

➢ Question: Does there exist a vertex cover of size 𝑘?

o That is, does there exist 𝑆 ⊆ 𝑉 with 𝑆 = 𝑘 such that every edge is
incident to at least one vertex in 𝑆?

= independent set

Question:
• Did we see this graph in

the last lecture?
• Yes!
• For independent set

of size 6

= vertex cover

Vertex Cover

373S22 - Deepanshu Kush 71

• Vertex cover and independent set are intimately connected!

• Claim: 𝐺 has a vertex cover of size 𝑘 if and only if 𝐺 has an
independent set of size 𝑛 − 𝑘

• Stronger claim: 𝑆 is a vertex cover if and only if 𝑉\S is an
independent set

Vertex Cover

373S22 - Deepanshu Kush 72

• Claim: 𝑆 is a vertex cover if and only if 𝑉\S is an independent
set

• Proof:
➢ 𝑆 is a vertex cover

➢ IFF: For every 𝑢, 𝑣 ∈ 𝐸, at least one of {𝑢, 𝑣} is in 𝑆

➢ IFF: For every 𝑢, 𝑣 ∈ 𝐸, at most one of {𝑢, 𝑣} is in 𝑉\S

➢ IFF: No two vertices of 𝑉\S are connected by an edge

➢ IFF: 𝑉\S is an independent set ∎

Vertex Cover

373S22 - Deepanshu Kush 73

• Claim: Independent Set ≤𝑝 Vertex Cover

➢ Take an arbitrary instance (𝐺, 𝑘) of Independent Set

➢ We want to check if there is an independent set of size 𝑘

➢ Just convert it to the instance (𝐺, 𝑛 − 𝑘) of Vertex Cover

➢ Simple!

o A reduction from Exact 3SAT would have basically repeated the
reduction we already did for Exact 3SAT ≤𝑝 Independent Set

➢ Note: I didn’t argue that Vertex Cover is in NP

o This is simple as usual. Just give the actual vertex cover as the advice.

Set Cover

373S22 - Deepanshu Kush 74

• Problem
➢ Input: A universe of elements 𝑈, a family of subsets 𝑆, and an integer 𝑘

➢ Question: Do there exist 𝑘 sets from 𝑆 whose union is 𝑈?

• Example
➢ 𝑈 = {1,2,3,4,5,6,7}

➢ 𝑆 = 1,3,7 , 2,4,6 , 4,5 , 1 , 1,2,6

➢ 𝑘 = 3? Yes! 1,3,7 , 4,5 , {1,2,6}

➢ 𝑘 = 2? No!

• Claim: Set Cover is in NP

➢ Easy. Let the advice be the actual 𝑘 sets whose union is 𝑈.

• Claim: Vertex Cover ≤𝑝 Set Cover

➢ Given an instance of vertex cover with graph 𝐺 = (𝑉, 𝐸) and integer 𝑘,
create the following set cover instance

o Set 𝑈 = 𝐸

o For each 𝑣 ∈ 𝑉, 𝑆 contains a set 𝑆𝑣 of all the edges incident on 𝑣

o Selecting 𝑘 set whose union is 𝑈 = selecting 𝑘 vertices such that
union of their incident edges covers all edges

o Hence, the two problems obviously have the same answer

Set Cover

373S22 - Deepanshu Kush 75

373S22 - Deepanshu Kush 76

Cook-Levin Theorem

373S22 - Deepanshu Kush 77

• We did not prove “the first NP-completeness” result

• Theorem: Exact 3SAT is NP-complete
➢ We need to prove this without using any other “known NP-

complete” problem

➢ We want to directly show that every problem in NP can be reduced to
Exact 3SAT

• We will first reduce any NP problem to SAT, and then reduce
SAT to Exact 3SAT

Cook-Levin Theorem

373S22 - Deepanshu Kush 78

• We’re not going to prove it in this class, but the key idea is
as follows

➢ If a problem is in NP, then ∃ Turing machine 𝑇(𝑥, 𝑦) which

o takes as input a problem instance 𝑥 and an advice 𝑦 of size 𝑝(|𝑥|)

o verifies in 𝑞(|𝑥|) time whether 𝑥 is a YES instance

o both 𝑝 and 𝑞 are polynomials

➢ 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇

Cook-Levin Theorem

373S22 - Deepanshu Kush 79

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into whether a SAT

formula 𝜑 is satisfiable

• Recall that a Turing machine 𝑇 consists of a memory tape, a
head pointer, a state, and a transition function

• What describes 𝑇 at any given step of its computation?
➢ What is written in each cell of its memory tape?

➢ Which cell of the tape is the read/write head currently pointing to?

➢ What state is the Turing machine in?

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 80

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Variables:
➢ 𝑇𝑖,𝑗,𝑘 = True if machine’s tape cell 𝑖 contains symbol 𝑗 at step 𝑘 of the

computation

➢ 𝐻𝑖,𝑘 = True if the machine’s read/write head is at tape cell 𝑖 at step 𝑘
of the computation

➢ 𝑄𝑞,𝑘 = True if machine is in state 𝑞 at step 𝑘 of the computation

➢ Cell index 𝑖 and computation step 𝑘 only need to be polynomially
large as 𝑇 works in polynomial time

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 81

• 𝑥 is a YES instance iff ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇
➢ We need to convert ∃𝑦 𝑇 𝑥, 𝑦 = 𝐴𝐶𝐶𝐸𝑃𝑇 into ∃𝑧 𝜑 𝑧 = 𝑇𝑅𝑈𝐸,

where 𝑧 consists of Boolean variables and 𝜑 is a SAT formula

• Clauses:
➢ Express how the variables must be related using the transition

function

➢ Express that the Turing machine must reach the state 𝐴𝐶𝐶𝐸𝑃𝑇 at
some step of the computation

• This establishes that SAT is NP-complete.

• Next: SAT ≤𝑝 Exact 3SAT.

NOT IN SYLLABUS

Cook-Levin Theorem

373S22 - Deepanshu Kush 82

• Claim: SAT ≤𝑝 Exact 3SAT
➢ Take an instance 𝜑 = 𝐶1 ∧ 𝐶2 ∧ ⋯ of SAT

➢ Replace each clause with multiple clauses with exactly 3 literals each

➢ For a clause with one literal, 𝐶 = ℓ1:

o Add two variables 𝑧1, 𝑧2, and replace 𝐶 with four clauses

ℓ1 ∨ 𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ1 ∨ 𝑧1 ∨ ҧ𝑧2 ∧ ℓ1 ∨ ҧ𝑧1 ∨ ҧ𝑧2

o Verify that this is logically equivalent to ℓ1

➢ For a clause with two literals, 𝐶 = (ℓ1 ∨ ℓ2):

o Add variable 𝑧1 and replace it with the following:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ1 ∨ ℓ2 ∨ ҧ𝑧1

o Verify that this is logically equal to ℓ1 ∨ ℓ2

Cook-Levin Theorem

373S22 - Deepanshu Kush 83

• Claim: SAT ≤𝑝 Exact 3SAT

➢ For a clause with three literals, 𝐶 = ℓ1 ∨ ℓ2 ∨ ℓ3:

o Perfect. No need to do anything!

➢ For a clause with 4 or more literals, 𝐶 = (ℓ1 ∨ ℓ2 ∨ ⋯ ∨ ℓ𝑘):

o Add variables 𝑧1, 𝑧2, … , 𝑧𝑘−3 and replace it with:

ℓ1 ∨ ℓ2 ∨ 𝑧1 ∧ ℓ3 ∨ ҧ𝑧1 ∨ 𝑧2 ∧ ℓ4 ∨ ҧ𝑧2 ∨ 𝑧3 ∧ ⋯
∧ ℓ𝑘−2 ∨ ҧ𝑧𝑘−4 ∨ 𝑧𝑘−3 ∧ ℓ𝑘−1 ∨ ℓ𝑘 ∨ ҧ𝑧𝑘−3

o Check:

• If any ℓ𝑖 is TRUE, then there exists an assignment of 𝑧 variables
to make this TRUE

• If all ℓ𝑖 are FALSE, then no assignment of 𝑧 variables will make
this TRUE

