
CSC373

Algorithm Design,
Analysis & Complexity

373S22 - Deepanshu Kush 1

Deepanshu Kush

Introduction

373S22 - Deepanshu Kush 2

• Instructor

➢ Deepanshu Kush

o cs.toronto.edu/~deepkush/

o Email: csc373-2022-05@cs.toronto.edu

o TAs: Mian, Lily, Yibin, Soroush

• Disclaimer!

➢ First time being an instructor, so expect a somewhat bumpy ride at the start, but hopefully,
we’ll get through it together and have fun!

➢ Use any of the feedback mediums (email, Piazza, …) to let me know if you have any
suggestions for improvement

Course Information

373S22 - Deepanshu Kush 3

• Course Page www.cs.toronto.edu/~deepkush/teaching/373s22/

• Discussion Board piazza.com/utoronto.ca/summer2022/csc373h1y

• Main mode of communication will be Piazza – make sure you sign up soon!

• Grading – MarkUs
➢ LaTeX preferred, scans are OK!

• All times will be in the Eastern time zone

• Course info sheet: Be sure to go through it! (Find it under ‘Course Info’ tab)

http://www.cs.toronto.edu/~deepkush/teaching/373s22/
piazza.com/utoronto.ca/fall2020/csc373

Lectures & Tutorials

373S22 - Deepanshu Kush 4

• Lectures for LEC 5101 (Only Section!)
➢ Wed 6-9pm, BA 1170

• Tutorials

➢ Thu 6-7pm

➢ In-person (room details on the course webpage)

Delivery

373S22 - Deepanshu Kush 5

• All lectures and tutorials in person!

• Lectures will be recorded and posted on the course webpage afterwards

Masking Policy

373S22 - Deepanshu Kush 6

• Students are required to wear a mask at all times (“intermittent, temporary
removal of masks may occur e.g. demonstration of a procedure, drinking water,
short break as per EHS/division approval”)

• We have been able to obtain an exemption for the instructor (on account of the
being recorded and its somewhat long duration)

• Feel free to write to me if you ever have concerns about health & safety
measures in the lecture/tutorial classrooms

Lecture Format

373S22 - Deepanshu Kush 7

• Delivered by me

• Will start at 10 minutes past the hour
➢ 2 10-minute breaks at the hour marks in the 3-hour slot

• In-person: Ask questions by raising your hand/Speak up

Tutorial Format

373S22 - Deepanshu Kush 8

• Delivered by the TAs

• Think of them as preparation for assignments/exams
➢ Some of the tutorial problems may be easier than assignment/exam questions

• Problem sets & solutions
➢ Problem sets will be posted to the course webpage in advance of the tutorial

➢ Solutions will be posted to the course webpage after the tutorial

• What to do
➢ Please attempt the problems before coming to the tutorials

➢ During the tutorials, the TAs will go over the solutions and explain key ideas

Tutorial Format

373S22 - Deepanshu Kush 9

• Further details
➢ The class is divided into three parts (A,B,C)

➢ Division by birth month: A = Jan-Apr, B = May-Aug, C = Sep-Dec

➢ Feel free to attend a different tutorial than the one you’re assigned

➢ If the tutorial attendance is really low, the number of tutorials per section may be reduced

Office Hours

373S22 - Deepanshu Kush 10

• Time & Place: Wed 1-3pm, Zoom during second hour
➢ If you have a conflict with this slot, feel free to schedule 1-1 office hours by emailing me

• Details
➢ I will conduct them

➢ Use the “raise hand” feature

➢ When I call your name, unmute and ask the question

➢ Try to phrase your question without giving away your approach/solution to an assignment
problem

o If this is not possible, we will go to a breakout room

Tests

373S22 - Deepanshu Kush 11

• 2 term tests, one end-of-term test (final exam/assessment)

• Time & Place
➢ First midterm is sometime during June 22-27

➢ Exact date to be announced soon (the FAS decides this centrally to avoid clashes)

➢ Second midterm on July 27 (Wednesday, during class hours)

• Delivery method: in person

• Extra Office Hours: by TAs in the week prior to a test – remind me!

Assignments

373S22 - Deepanshu Kush 12

• 4 assignments, best 3 out of 4

• Group work

➢ In groups of up to three students

➢ Best way to learn is for each member to try each problem

• Questions will be more difficult
➢ May need to mull them over for several days; do not expect to start and finish the assignment

on the same day!

➢ May include bonus questions

• Submission on MarkUs, more details on the webpage/course info sheet

➢ May need to compress the PDF

Grading Policy

373S22 - Deepanshu Kush 13

• Best 3/4 homeworks * 10% = 30%

• 2 term tests * 20% = 40%

• Final exam * 30% = 30%

• NOTE: To pass, you must earn at least 40% on the final exam

Approximate Due Dates

373S22 - Deepanshu Kush 14

➢ Assignment 1: May 31

➢ Assignment 2: June 15

➢ Assignment 3: July 16

➢ Assignment 4: August 7

➢ Midterm 1: June 22-27

➢ Midterm 2: July 27

Textbook

373S22 - Deepanshu Kush 15

• Primary reference: lecture slides

• Primary textbook (required)
➢ [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms.

• Supplementary textbooks (optional)
➢ [DPV] Dasgupta, Papadimitriou, Vazirani: Algorithms.

➢ [KT] Kleinberg; Tardos: Algorithm Design.

Join or Lead an RSG
• Meet weekly with up to 8 classmates online

• Review and discuss course material

• Prepare for tests and exams

• Get student advice from upper year mentors

In the Fall term, over 3,000 students joined an RSG where
they met friends and reached their study goals.

Plan for success this term by joining your RSG today.

Join an RSG today: uoft.me/recognizedstudygroups

@sidneysmithcommons

Other Policies

373S22 - Deepanshu Kush 17

• Collaboration
➢ Free to discuss with classmates or read online material

➢ Must write solutions in your own words

o Easier if you do not take any pictures/notes from discussions

• Citation
➢ For each question, must cite the peer (write the name) or the online sources (provide links), if

you obtained a significant insight directly pertinent to the question

➢ Failing to do this is plagiarism!

Other Policies

373S22 - Deepanshu Kush 18

• “No Garbage” Policy

➢ Borrowed from: Prof. Allan Borodin (citation!)

➢ Applies to assignments (except for bonus questions) and tests

1. Partial marks for viable approaches

2. Zero marks if the answer makes no sense

3. 20% marks if you admit to not knowing how to approach the question (“I do not know how

to approach this question”)

• 20% > 0% !!

Other Policies

373S22 - Deepanshu Kush 19

• Late Days

➢ 4 total late days across all 4 assignments

➢ Managed by MarkUs

➢ At most 2 late days can be applied to a single assignment

➢ Already covers legitimate reasons such as illness, university activities, etc.

o Petitions will only be granted for circumstances which cannot be covered by this

How to address me

373S22 - Deepanshu Kush 20

• “Kush”, “Deepanshu”, “Deep”, “Deeps” – all is good

• Sir/Professor is okay

• But not ideal!

Questions?

373S22 - Deepanshu Kush 21

Enough with the
boring stuff.

373S22 - Deepanshu Kush 22

What will we study?

Why will we study it?

373S22 - Deepanshu Kush 23

373S22 - Deepanshu Kush 24

Muhammad ibn Musa al-Khwarizmi
c. 780 – c. 850

What is this course about?

373S22 - Deepanshu Kush 25

• Algorithms

➢ Ubiquitous in the real world

o From your smartphone to self-driving cars

o From graph problems to graphics problems

o …

➢ Important to be able to design and analyze algorithms

➢ For some problems, good algorithms are hard to find

o For some of these problems, we can formally establish complexity results

o We’ll often find that one problem is easy, but its minor variants are suddenly hard

What is this course about?

373S22 - Deepanshu Kush 26

• Algorithms

➢ Algorithms in specialized environments or using advanced techniques

o Distributed, parallel, streaming, sublinear time, spectral, genetic…

➢ Other concerns with algorithms

o Fairness, ethics, …

➢ …mostly beyond the scope of this course

What is this course about?

373S22 - Deepanshu Kush 27

• Designing fast algorithms
➢ Divide and Conquer

➢ Greedy

➢ Dynamic programming

➢ Network flow

➢ Linear programming

• Proving that no fast algorithms are likely possible
➢ Reductions & NP-completeness

• What to do if no fast algorithms are likely possible
➢ Approximation algorithms (if time permits)

➢ Randomized algorithms (if time permits)

What is this course about?

373S22 - Deepanshu Kush 28

• How do we know which paradigm is right for a given problem?
➢ A very interesting question!

➢ Subject of much ongoing research…

o Sometimes, you just know it when you see it…

• How do we analyze an algorithm?
➢ Proof of correctness

➢ Proof of running time

o We’ll try to prove the algorithm is efficient in the worst case

o In practice, average case matters just as much (or even more)

What is this course about?

373S22 - Deepanshu Kush 29

• What does it mean for an algorithm to be efficient in the worst case?
➢ Polynomial time

➢ It should use at most poly(n) steps on any n-bit input

o 𝑛, 𝑛2, 𝑛100, 100𝑛6 + 237𝑛2 + 432, …

➢ If the input to an algorithm is a number 𝑥, the number of bits of input is log 𝑥

o This is because it takes log 𝑥 bits to represent the input 𝑥 in binary

o So the running time should be polynomial in log 𝑥, not in 𝑥

➢ How much is too much?

What is this course about?

373S22 - Deepanshu Kush 30

What is this course about?

373S22 - Deepanshu Kush 31

What is this course about?

373S22 - Deepanshu Kush 32

• What if we can’t find an efficient algorithm for a problem?

➢ Try to prove that the problem is hard

➢ Formally establish complexity results

➢ NP-completeness, NP-hardness, …

• We’ll often find that one problem may be easy, but its simple variants may
suddenly become hard

➢ Minimum spanning tree (MST) vs bounded degree MST

➢ 2-colorability vs 3-colorability

I’m not convinced.

Will I really ever need to
know how to design
abstract algorithms?

373S22 - Deepanshu Kush 33

At the very least…

This will help you prepare for your
technical job interview!

Real Microsoft interview question:

373S22 - Deepanshu Kush 34

• Given an array 𝑎, find indices (𝑖, 𝑗) with
the largest 𝑗 − 𝑖 such that 𝑎 𝑗 > 𝑎[𝑖]

• Greedy? Divide & conquer?

Disclaimer

373S22 - Deepanshu Kush 35

• The course is theoretical in nature
➢ You’ll be working with abstract notations, proving correctness of algorithms, analyzing the

running time of algorithms, designing new algorithms, and proving complexity results.

➢ Think of it as a maths course – you learn only by doing! Try to become a voracious problem
solver.

• Something for everyone…
➢ If you’re somewhat scared going into the course

➢ If you’re already comfortable with the proofs, and want challenging problems

Related/Follow-up Courses

373S22 - Deepanshu Kush 36

• Direct follow-up
➢ CSC473: Advanced Algorithms

➢ CSC438: Computability and Logic

➢ CSC463: Computational Complexity and Computability

• Algorithms in other contexts
➢ CSC304: Algorithmic Game Theory and Mechanism Design (promoting my buddy Nisarg!)

➢ CSC384: Introduction to Artificial Intelligence

➢ CSC436: Numerical Algorithms

➢ CSC418: Computer Graphics

Divide & Conquer

373S22 - Deepanshu Kush 37

History?

373S22 - Deepanshu Kush 38

• Maybe you saw a subset of these algorithms?
➢ Mergesort - 𝑂 𝑛 log 𝑛

➢ Karatsuba algorithm for fast multiplication - 𝑂 𝑛log2 3 rather than 𝑂 𝑛2

➢ Largest subsequence sum in 𝑂 𝑛

➢ …

• Have you seen some divide & conquer algorithms before?
➢ Maybe in CSC236/CSC240 and/or CSC263/CSC265

Divide & Conquer

373S22 - Deepanshu Kush 39

• General framework
➢ Break (a large chunk of) a problem into two smaller subproblems of the same type

➢ Solve each subproblem recursively and independently

➢ At the end, quickly combine solutions from the two subproblems and/or solve any remaining
part of the original problem

• Hard to formally define when a given algorithm is divide-and-conquer…

• Let’s see some examples!

Counting Inversions

373S22 - Deepanshu Kush 40

• Problem
➢ Given an array 𝑎 of length 𝑛, count the number of pairs (𝑖, 𝑗) such that 𝑖 < 𝑗 but 𝑎 𝑖 > 𝑎[𝑗]

• Applications
➢ Voting theory

➢ Collaborative filtering

➢ Measuring the “sortedness” of an array

➢ Sensitivity analysis of Google's ranking function

➢ Rank aggregation for meta-searching on the Web

➢ Nonparametric statistics (e.g., Kendall's tau distance)

Counting Inversions

373S22 - Deepanshu Kush 41

• Problem
➢ Count (𝑖, 𝑗) such that 𝑖 < 𝑗 but 𝑎 𝑖 > 𝑎[𝑗]

• Brute force
➢ Check all Θ 𝑛2 pairs

• Divide & conquer
➢ Divide: break array into two equal halves 𝑥 and 𝑦

➢ Conquer: count inversions in each half recursively

➢ Combine:

o Solve (we’ll see how): count inversions with one entry in 𝑥 and one in 𝑦

o Merge: add all three counts

Counting Inversions

373S22 - Deepanshu Kush 42

• From Kevin Wayne’s slides

Counting Inversions

373S22 - Deepanshu Kush 43

Counting Inversions

373S22 - Deepanshu Kush 44

Counting Inversions

373S22 - Deepanshu Kush 45

• How do we formally prove correctness?
➢ Induction on 𝑛 is usually very helpful

➢ Allows you to assume correctness of subproblems

• Running time analysis
➢ Suppose 𝑇(𝑛) is the worst-case running time for inputs of size 𝑛

➢ Our algorithm satisfies 𝑇 𝑛 ≤ 2 𝑇 Τ𝑛
2 + 𝑂(𝑛)

➢ Master theorem says this is 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Master Theorem

373S22 - Deepanshu Kush 46

• Here’s the master theorem
➢ Useful for analyzing divide-and-conquer running time

➢ If you haven’t already seen it, please spend some time understanding it

➢ Theorem: Let 𝑎 ≥ 1 and 𝑏 > 1 be constants, 𝑓(𝑛) be a function, and 𝑇(𝑛) be defined on non-

negative integers by the recurrence 𝑇 𝑛 ≤ 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑓 𝑛 , where 𝑛/𝑏 can be

𝑛

𝑏
.

Let 𝑑 = log𝑏 𝑎. Then:

o If 𝑓 𝑛 = 𝑂 𝑛𝑑−𝜖 for some constant 𝜖 > 0, then 𝑇 𝑛 = 𝑂 𝑛𝑑 .

o If 𝑓 𝑛 = 𝑂 𝑛𝑑 log𝑘 𝑛 for some 𝑘 ≥ 0, then 𝑇 𝑛 = 𝑂 𝑛𝑑 log𝑘+1 𝑛 .

o If 𝑓 𝑛 = 𝑂 𝑛𝑑+𝜖 for some constant 𝜖 > 0, then 𝑇 𝑛 = 𝑂 𝑓 𝑛 .

Master Theorem

373S22 - Deepanshu Kush 47

Intuition: Compare f(n) with nlog
b

a. The larger determines the recurrence solution.

Closest Pair in ℝ2

373S22 - Deepanshu Kush 48

• Problem:
➢ Given 𝑛 points of the form (𝑥𝑖 , 𝑦𝑖) in the plane, find the closest pair of points.

• Applications:
➢ Basic primitive in graphics and computer vision

➢ Geographic information systems, molecular modeling, air traffic control

➢ Special case of nearest neighbor

• Brute force: Θ 𝑛2

Intuition from 1D?

373S22 - Deepanshu Kush 49

• In 1D, the problem would be easily 𝑂(𝑛 log 𝑛)
➢ Sort and check!

• Sorting attempt in 2D
➢ Find closest points by x coordinate

➢ Find closest points by y coordinate

➢ Doesn’t work! (Exercise: come up with a counterexample)

• Non-degeneracy assumption
➢ No two points have the same x or y coordinate

Closest Pair in ℝ2

373S22 - Deepanshu Kush 50

• Let’s try divide-and-conquer!
➢ Divide: points in equal halves by drawing a vertical line 𝐿

➢ Conquer: solve each half recursively

➢ Combine: find closest pair with one point on each side of 𝐿

➢ Return the best of 3 solutions

Seems like Ω(𝑛2)

Closest Pair in ℝ2

373S22 - Deepanshu Kush 51

• Combine
➢ We can restrict our attention to points within 𝛿 of 𝐿 on each side, where 𝛿 = best of the

solutions within the two halves

Closest Pair in ℝ2

373S22 - Deepanshu Kush 52

• Combine (let 𝛿 = best of solutions in two halves)
➢ Only need to look at points within 𝛿 of 𝐿 on each side,

➢ Sort points on the strip by 𝑦 coordinate

➢ Only need to check each point with next 11 points in sorted list!

Wait, what? Why 11?

Why 11?

373S22 - Deepanshu Kush 53

• Claim:
➢ If two points are at least 12 positions apart in the sorted list,

their distance is at least 𝛿

• Proof:
➢ No two points lie in the same

𝛿/2 × 𝛿/2 box

➢ Two points that are more than two rows apart are at distance
at least 𝛿

Running Time Analysis

373S22 - Deepanshu Kush 54

• Running time for the combine operation
➢ Finding points on the strip: 𝑂(𝑛)

➢ Sorting points on the strip by their y-coordinate: 𝑂 𝑛 log 𝑛

➢ Testing each point against 11 points: 𝑂(𝑛)

• Total running time: 𝑇 𝑛 ≤ 2𝑇
𝑛

2
+ 𝑂 𝑛 log 𝑛

• By the Master theorem, this yields 𝑇 𝑛 = 𝑂 𝑛 log2 𝑛
➢ Can be improved to 𝑂 𝑛 log 𝑛 by doing a single global sort by y-coordinate at the beginning

Recap: Karatsuba’s Algorithm

373S22 - Deepanshu Kush 55

• Fast way to multiply two 𝑛 digit integers 𝑥 and 𝑦

• Brute force: 𝑂(𝑛2) operations

• Karatsuba’s observation:
➢ Divide each integer into two parts

o 𝑥 = 𝑥1 ∗ 10 Τ𝑛
2 + 𝑥2, 𝑦 = 𝑦1 ∗ 10 Τ𝑛

2 + 𝑦2

o 𝑥𝑦 = 𝑥1𝑦1 ∗ 10𝑛 + 𝑥1𝑦2 + 𝑥2𝑦1 ∗ 10 Τ𝑛
2 + (𝑥2𝑦2)

➢ Four Τ𝑛
2-digit multiplications can be replaced by three

o 𝑥1𝑦2 + 𝑥2𝑦1 = 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

➢ Running time

o 𝑇 𝑛 ≤ 3 𝑇 Τ𝑛
2 + 𝑂(𝑛) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 3

Strassen’s Algorithm

373S22 - Deepanshu Kush 56

• Generalizes Karatsuba’s insight to design a fast algorithm for multiplying two 𝑛 ×
𝑛 matrices
➢ Call 𝑛 the “size” of the problem

𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22

➢ Naively, this requires 8 multiplications of size 𝑛/2

o 𝐴11 ∗ 𝐵11, 𝐴12 ∗ 𝐵21, 𝐴11 ∗ 𝐵12, 𝐴12 ∗ 𝐵22, …

➢ Strassen’s insight: replace 8 multiplications by 7

o Running time: 𝑇 𝑛 ≤ 7 𝑇 Τ𝑛
2 + 𝑂(𝑛2) ⇒ 𝑇 𝑛 = 𝑂 𝑛log2 7

Strassen’s Algorithm

373S22 - Deepanshu Kush 57

𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
∗

𝐵11 𝐵12

𝐵21 𝐵22

Median & Selection

373S22 - Deepanshu Kush 58

• Selection:
➢ Given array 𝐴 of 𝑛 comparable elements, find 𝑘th smallest
➢ 𝑘 = 1 is min, 𝑘 = 𝑛 is max, 𝑘 = Τ𝑛 + 1 2 is median
➢ 𝑂 𝑛 is easy for min/max

• What about 𝑘-selection?
➢ 𝑂(𝑛𝑘) by modifying bubble sort
➢ 𝑂 𝑛 log 𝑛 by sorting
➢ 𝑂 𝑛 + 𝑘 log 𝑛 using min-heap
➢ 𝑂(𝑘 + 𝑛 log 𝑘) using max-heap

• Q: What about just 𝑂(𝑛)?

• A: Yes! Selection is easier than sorting.

QuickSelect

373S22 - Deepanshu Kush 59

• Find a pivot 𝑝

• Divide 𝐴 into two sub-arrays
➢ 𝐴𝑙𝑒𝑠𝑠 = elements ≤ 𝑝, 𝐴𝑚𝑜𝑟𝑒 = elements > 𝑝

➢ If 𝐴𝑙𝑒𝑠𝑠 ≥ 𝑘, return 𝑘-th smallest in 𝐴𝑙𝑒𝑠𝑠, otherwise return (𝑘 − 𝐴𝑙𝑒𝑠𝑠)-th smallest element
in 𝐴𝑚𝑜𝑟𝑒

• Problem?
➢ If pivot is close to the min or the max, then we basically get 𝑇 𝑛 ≤ 𝑇 𝑛 − 1 + 𝑂(𝑛), which

only gives us 𝑇 𝑛 = 𝑂 𝑛2

➢ We want to reduce 𝑛 − 1 to a fraction of 𝑛 (e.g., 𝑛/2, 5𝑛/6, etc)

Finding a Good Pivot

373S22 - Deepanshu Kush 60

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

Finding a Good Pivot

373S22 - Deepanshu Kush 61

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

Finding a Good Pivot

373S22 - Deepanshu Kush 62

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find the median of 𝑛/5 medians

Finding a Good Pivot

373S22 - Deepanshu Kush 63

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find the median of 𝑛/5 medians

• Use this median of medians as the pivot in quickselect

• Q: Why does this work?

Analysis

373S22 - Deepanshu Kush 64

• How many elements can be ≤ 𝑝∗?
➢ Out of 𝑛/5 medians, 𝑛/10 are > 𝑝∗

Analysis

373S22 - Deepanshu Kush 65

• How many elements can be ≤ 𝑝∗?
➢ Out of 𝑛/5 medians, 𝑛/10 are > 𝑝∗

Analysis

373S22 - Deepanshu Kush 66

• Τ𝑛
10 of the Τ𝑛

5 medians are ≤ 𝑝∗

➢ For each such median, there are 3 elements ≤ 𝑝∗

➢ So there can be at most Τ7𝑛
10 elements that can be > 𝑝∗

Analysis

373S22 - Deepanshu Kush 67

• Thus, 𝐴𝑚𝑜𝑟𝑒 ≤ Τ7𝑛
10

➢ Similarly, 𝐴𝑙𝑒𝑠𝑠 ≤ Τ7𝑛
10

➢ (These are rough calculations…)

• How does this factor into overall algorithm analysis?

Analysis

373S22 - Deepanshu Kush 68

• Divide 𝑛 elements into Τ𝑛
5 groups of 5 each

• Find the median of each group

• Find 𝑝∗ = median of Τ𝑛
5 medians

• Create 𝐴𝑙𝑒𝑠𝑠 and 𝐴𝑚𝑜𝑟𝑒 according to 𝑝∗

• Run selection on one of 𝐴𝑙𝑒𝑠𝑠 or 𝐴𝑚𝑜𝑟𝑒

• 𝑇 𝑛 ≤ 𝑇 Τ𝑛
5 + 𝑇 Τ7𝑛

10 + 𝑂(𝑛)

• Note: Τ𝑛
5 + Τ7𝑛

10 = Τ9𝑛
10

➢ Only a fraction of 𝑛, so using a similar analysis to the one in the Master theorem, 𝑇 𝑛 = 𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

𝑇(𝑛/5)

𝑇(7𝑛/10)

Residual Notes

373S22 - Deepanshu Kush 69

• Lower bounds on the worst-case running time

➢ Note that we only derived upper bounds on the worst-case running time of the form 𝑇 𝑛 =
𝑂 𝑛2 or 𝑇 𝑛 = 𝑂 𝑛

➢ If we want to claim that our algorithm does not run faster than what is claimed in this upper
bound, we have to produce a matching lower bound, e.g., 𝑇 𝑛 = Ω 𝑛2 or 𝑇 𝑛 = Ω 𝑛

➢ This is typically done by producing a family of examples, one for each value of 𝑛, such that the
algorithm’s running time on these examples grows like 𝑛2 or 𝑛 as the value of 𝑛 grows

Residual Notes

373S22 - Deepanshu Kush 70

• Best algorithm for a problem?
➢ Typically hard to determine

➢ We still don’t know best algorithms for multiplying two 𝑛-digit integers or two 𝑛 × 𝑛 matrices

o Integer multiplication

• Breakthrough in March 2019: first 𝑂(𝑛 log 𝑛) time algorithm

• It is conjectured that this is asymptotically optimal

o Matrix multiplication

• 1969 (Strassen): 𝑂(𝑛2.807)

• 1990: 𝑂(𝑛2.376)

• 2013: 𝑂(𝑛2.3729)

• 2014: 𝑂(𝑛2.3728639)

Residual Notes

373S22 - Deepanshu Kush 71

• Best algorithm for a problem?
➢ Usually, we design an algorithm and then analyze its running time

➢ Sometimes we can do the reverse:

o E.g., if you know you want an 𝑂(𝑛2 log 𝑛) algorithm

o Master theorem suggests that you can get it by
𝑇 𝑛 = 4 𝑇 ൗ𝑛

2 + 𝑂 𝑛2

o So maybe you want to break your problem into 4 problems of size 𝑛/2 each, and then do
𝑂(𝑛2) computation to combine

Residual Notes

373S22 - Deepanshu Kush 72

• Access to input
➢ For much of this analysis, we are assuming random access to elements of input

➢ So we’re ignoring underlying data structures (e.g. doubly linked list, binary tree, etc.)

• Machine operations
➢ We’re only counting the number of comparison or arithmetic operations

➢ So we’re ignoring issues like how real numbers are stored in the closest pair problem

➢ When we get to P vs NP, representation will matter

Residual Notes

373S22 - Deepanshu Kush 73

• Size of the problem
➢ Can be any reasonable parameter of the problem

➢ E.g., for matrix multiplication, we used 𝑛 as the size

➢ But an input consists of two matrices with 𝑛2 entries

➢ It doesn’t matter whether we call 𝑛 or 𝑛2 the size of the problem

➢ The actual running time of the algorithm won’t change

