CSC373

Review

Complete your course evaluations...

Check your e-mail for a link to your evaluations, or log-in to www.portal.utoronto.ca and click the Course Evals tab!

Topics

- Divide and conquer
- Greedy algorithms
- Dynamic programming
- Network flow
- Linear programming
- Complexity

Greedy Algorithms

- Greedy algorithm outline
> We want to find the optimal solution maximizing some objective f over a large space of feasible solutions
> Solution x is composed of several parts (e.g. a set)
> Instead of directly computing x...
- Consider one element at a time in some greedy ordering
- Make a decision about that element before moving on to future elements (and without knowing what will happen for the future elements)

Greedy Algorithms

- Proof of optimality outline
> Strategy 1:
- $G_{i}=$ greedy solution after i steps
- Show that $\forall i$, there is some optimal solution $O P T_{i}$ s.t. $G_{i} \subseteq O P T_{i}$
- "Greedy solution is promising"
- By induction
- Then the final solution returned by greedy must be optimal
> Strategy 2:
- Same as strategy 1, but more direct
- Consider OPT that matches greedy solution for as many steps as possible
- If it doesn't match in all steps, find another OPT which matches for one more step (contradiction)

Dynamic Programming

- Key steps in designing a DP algorithm
> "Generalize" the problem first
- E.g. instead of computing max score between strings $X=$ x_{1}, \ldots, x_{m} and $Y=y_{1}, \ldots, y_{n}$, we compute $E[i, j]=$ max score between i-prefix of X and j-prefix of Y for all (i, j)
- The right generalization is often obtained by looking at the structure of the "subproblem" which must be solved optimally to get an optimal solution to the overall problem
> Remember the difference between DP and divide-and-conquer
> Sometimes you can save quite a bit of space by only storing solutions to those subproblems that you need in the future

Dynamic Programming

- Dynamic programming applies well to problems that have optimal substructure property
> Optimal solution to a problem contains (or can be computed easily given) optimal solution to subproblems.
- Recall: divide-and-conquer also uses this property
> You can think of divide-and-conquer as a special case of dynamic programming, where the two (or more) subproblems you need to solve don't "overlap"
> So there's no need for memoization
> In dynamic programming, one of the subproblems may in turn require solution to the other subproblem...

Dynamic Programming

- Top-Down may be preferred...
> ...when not all sub-solutions need to be computed on some inputs
> ...because one does not need to think of the "right order" in which to compute sub-solutions
- Bottom-Up may be preferred...
> ...when all sub-solutions will anyway need to be computed
> ...because it is sometimes faster as it prevents recursive call overheads and unnecessary random memory accesses

Network Flow

- Input
> A directed graph $G=(V, E)$
> Edge capacities $c: E \rightarrow \mathbb{R}_{\geq 0}$
> Source node s, target node t
- Output
> Maximum "flow" from s to t

Ford-Fulkerson Algorithm

MaxFlow (G):
// initialize:
Set $f(e)=0$ for all e in G
// while there is an s - t path in G_{f} :
While $P=$ FindPath(s,t,Residual $(G, f))!=$ None:
$f=\operatorname{Augment}(f, P)$
UpdateResidual (G, f)
EndWhile
Return f

Max Flow - Min Cut

- Theorem: In any graph, the value of the maximum flow is equal to the capacity of the minimum cut.
- Ford-Fulkerson can be used to find the min cut
> Find the max flow f^{*}
> Let $A^{*}=$ set of all nodes reachable from s in residual graph $G_{f^{*}}$
- Easy to compute using BFS
> Then ($A^{*}, V \backslash A^{*}$) is min cut

LP, Standard Formulation

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

LP, Standard Matrix Form

- Input: $c, a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$
> There are n variables and m constraints
- Goal:

Convert to Standard Form

- What if the LP is not in standard form?
> Constraints that use \geq
○ $a^{T} x \geq b \Leftrightarrow-a^{T} x \leq-b$
> Constraints that use equality
$\circ a^{T} x=b \Leftrightarrow a^{T} x \leq b, \quad a^{T} x \geq b$
\Rightarrow Objective function is a minimization
- Minimize $c^{T} x \Leftrightarrow$ Maximize $-c^{T} x$
> Variable is unconstrained
$\circ x$ with no constraint \Leftrightarrow Replace x by two variables x^{\prime} and $x^{\prime \prime}$, replace every occurrence of x with $x^{\prime}-x^{\prime \prime}$, and add constraints $x^{\prime} \geq 0, x^{\prime \prime} \geq 0$

Duality

Primal LP

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

Dual LP

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Weak duality theorem:
> For any primal feasible x and dual feasible $y, c^{T} x \leq y^{T} b$
- Strong duality theorem:
> For any primal optimal x^{*} and dual optimal $y^{*}, c^{T} x^{*}=\left(y^{*}\right)^{T} b$

P

- P (polynomial time)
> The class of all decision problems computable by a TM in polynomial time

NP

- NP (nondeterministic polynomial time)
> The class of all decision problems for which a YES answer can be verified by a TM in polynomial time given polynomial length "advice" or "witness".
> There is a polynomial-time verifier TM V and another polynomial p such that
- For all YES inputs x, there exists y with $|y|=p(|x|)$ on which $V(x, y)$ returns YES
- For all NO inputs $x, V(x, y)$ returns NO for every y
> Informally: "Whenever the answer is YES, there's a short proof of it."

co-NP

- co-NP
> Same as NP, except whenever the answer is NO, we want there to be a short proof of it

Reductions

- Problem A is p-reducible to problem B if an "oracle" (subroutine) for B can be used to efficiently solve A
> You can solve A by making polynomially many calls to the oracle and doing additional polynomial computation

NP-completeness

- NP-completeness
> A problem B is NP-complete if it is in NP and every problem A in NP is p -reducible to B
> Hardest problems in NP
> If one of them can be solved efficiently, every problem in NP can be solved efficiently, implying $\mathrm{P}=\mathrm{NP}$
- Observation:
> If A is in NP, and some NP-complete problem B is p-reducible to A, then A is NP-complete too
○ "If I could solve A, then I could solve B, then I could solve any problem in NP"

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 1: Show that B is in NP
> Some polynomial-size advice should be sufficient to verify a YES instance in polynomial time
> No advice should work for a NO instance
> Usually, the solution of the "search version" of the problem works
- But sometimes, the advice can be non-trivial
- For example, to check LP optimality, one possible advice is the values of both primal and dual variables, as we saw in the last lecture

Review of Reductions

- If you want to show that problem B is NP-complete
- Step 2: Find a known NP-complete problem A and reduce it to B (i.e. show $\mathrm{A} \leq_{p} \mathrm{~B}$)
> This means taking an arbitrary instance of A, and solving it in polynomial time using an oracle for B
- Caution 1: Remember the direction. You are "reducing known NPcomplete problem to your current problem".
- Caution 2: The size of the B-instance you construct should be polynomial in the size of the original A-instance
> This would show that if B can be solved in polynomial time, then A can be as well
> Some reductions are trivial, some are notoriously tricky...

