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The following is adapted from a CSC2429 presentation as well as the lecture notes of Ryan O’Donnell scribed
by Franklin Ta.

1 Max-Cut Problem

Let G = (V,E) be a weighted undirected graph with |V | = n and where each edge (i, j) has weight wij ≥ 0.
The goal of MAXCUT is to find a subset S ⊂ V which maximizes the sum of the weights of edges cross-
ing the partition (S, V \S). Equivalently, we want to find a function f : V → {0, 1} so as to minimize∑
uv∈E wuv[f(u) 6= f(v)].1

1.1 ILP Formuation and 1/2-Approximation

Let {xv}v∈V , {ze}e∈E ∈ {0, 1} where xv encodes the partition that v is in and zuv encodes whether or not the
edge uv is cut. Then our ILP is

max
∑
uv∈E

wuvzuv

subject to: zuv ≤ xu + xv,

zuv ≤ 2− (xu + xv)

Observe how the inequalities behaves when u and v are in the same partition and when they are in different
partitions. If u and v are in the same partition then either zuv ≤ xu + xv = 0 or zuv ≤ 2− (xu + xv) = 0 (the
former when xu = xv = 0 and the latter when xu = xv = 1. Thus zuv = 0 and the edge uv canot be cut. Only
when xu 6= xv do we have zuv ≤ xu + xv = 1 and zuv ≤ 2− (xu + xv) = 1 so zuv can be set to one.

The obvious relaxation sets xv, ze ∈ [0, 1], but this is not a good LP relaxation. If xv = 1/2 for all v then ze = 1
for all e and OPTLP = 1 for all graphs.

There is a however a simple 1/2-Approximation: randomly assign f(v) to 0 or 1. Then

E [size of the cut] = E

[ ∑
uv∈E

wuv[f(u) 6= f(v)]

]
=
∑
uv∈E

wuv Pr [f(u) 6= f(v)] (linearity of expectations)

=
∑
uv∈E

wuv
2

(u and v randomly assigned)

=
OPT

2
.

Why is the last inequality true?2

Since Max-Cut is an NP -Complete problem3, we do not expect a polynomial time algorithm which solves it
exactly.

1These are Iverson brackets. x is a statement and [x] = 1 if and only if x is true otherwise [x] = 0.
2Remember that we want to find a cut which maximizes the sum of edge-weights crossing this cut. Since the weights are non-negative,

the best you could do is to have every edge cross the cut.
3NP -complete problems are the “hardest” problems in the set of all non-deterministically polynomial-time decision problems. This

is a notion you will learn about later in the course. As it turns out, many important problems — e.g. SAT, traveling salesman, graph
3-coloring, etc. — are in this class.

1

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture10.pdf
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1.2 Goemans Williamson Algorithm (Standard Vector Program)

We can formulate the problem as the following quadratic program:

Maximize:
∑

(i,j)∈E

wij(1− xixj)
2

(1)

Subject to: xi ∈ {−1,+1}, for i ∈ [n] (2)

where xi is associated with vertex vi and xixj = 1 if and only if vi and vj are placed in the same set. Let
OPT denote the optimum solution to this quadratic program.

Next we introduce the vector programming relaxation of the above quadratic program:

Maximize:
∑

(i,j)∈E

wij(1− ui · uj)

2
(3)

Subject to: ‖ui‖2 = 1 and ui ∈ Rn, for i ∈ [n]. (4)

To see that this is indeed a relaxation, take ui = (xi, 0, ..., 0) for each i ∈ [n]. These ui’s satisfy the constraints
(‖ui‖2 = 1 and ui ∈ Rn) and ui · uj = xixj . Thus, if OPTV P denotes the optimum solution to the vector
program, then OPTV P ≥ OPT .
The above vector program is equivalent to the following semidefinite program:

Maximize:
∑

(i,j)∈E

wij(1−Xij)

2
(5)

Subject to: Xii = 1 for i ∈ [n] and X � 0 (6)

whereX has entriesXij; to see that these two forms are equivalent remark thatX � 0 if and only ifX = UTU .
If we take the columns of U to be the set of vectors {ui} of the vector program, then feasible solutions of SDP
corresponds to feasible solutions of the vector program and vice versa.

We can solve this SDP in polynomial time and obtain an optimal solution X∗. Cholesky factorize X∗ into
(U)TU and let the columns of U , ui ∈ Rn, be the solutions to the vector program. We want to round each
ui to xi ∈ {−1,+1}. Then the set {xi}ni=1 will be a solution to our original quadratic program. Apply
randomized rounding as follows: pick r = (r1, ..., rn) by drawing each ri independently from the distribution
N (0, 1). Then let

xi =

{
1 ui · r ≥ 0

−1 otherwise
.

It is helpful to have the geometric picture in mind: each ui is a vector which lies on the (n− 1)-dimensional
unit sphere. The hyper-plane with normal r splits the sphere in-half. All vectors ui in the same half of the
sphere gets mapped to the same value c ∈ {−1, 1} and all vectors uj in the other half gets mapped to −c.
To show the constant of approximation, we consider the probability that an edge (i, j) gets cut. This is
equivalent to the probability that ui and uj fall in different halves of the sphere cut by the hyper-plane.
Consider the projecting of the normalized vector r onto the span of {ui,uj}. See Figure 1.
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Figure 1: If the normalized r lies in the shaded region then ui · r and ui · r have different sign.

Thus the probability that r · ui and r · uj have different sign is 2θ
2π = θ

π . Since θ = arccos(ui · uj),

Pr[(i, j) is in the cut] =
arccos(ui · uj)

π
. (7)

We state without proof that

arccos(x)

π
≥ 0.878

(
1− x
2

)
(8)

for x ∈ [−1, 1]— it helps to observe that the constant 0.878 approximately minimizes f(x) = 2 arccos(x)
π(1−x) . Thus

the expected sum of weights obtained by the algorithm is

E[W ] =
∑

(i,j)∈E

wij Pr[(i, j) is in the cut]

=
∑

(i,j)∈E

wij
arccos(ui · uj)

π
by 7

≥ 0.878 ·

 ∑
(i,j)∈E

wij
1− ui · uj

2

 by 8

= 0.878 ·OPTV P

Since the vector program is a relaxation of the original quadratic program, it is the case that E[W ] ≥ 0.878 ·
OPTV P ≥ 0.878 · OPT . Further, since this algorithm is constructive, the cut found can have value at most
OPT so OPT ≥ E[W ] ≥ 0.878 ·OPTV P .
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