
CSC373 Summer’22

Tutorial 4 Solutions

June 9-16, 2022

Q1 Ford Fulkerson

Consider the following network:

s

a

t

d

b c

9

5

8

5

7

9

4

9
3 6

4

(a) Compute a maximum flow in this network using the Ford-Fulkerson algorithm. For each
iteration, write down the augmenting path, its bottleneck/residual capacity, and the value of the
flow at the end of the iteration.

(b) Consider the cut X0 = (S = {s, b, c, d}, T = {a, t}). Identify all forward and all backward
edges across X0. Compute the capacity of X0.

(c) Find a cut in the network whose capacity is equal to the value of the flow you computed in
part (a). (This provides a guarantee that your flow is indeed maximum.) Use the idea outlined in
the proof of correctness of the Ford-Fulkerson algorithm.

Solution to Q1

(a) The iterations are as follows.

Iteration Augmenting Path Residual Capacity Value of Flow

1 (s, a, t) 5 5
2 (s, a, c, t) 4 9
3 (s, b, c, t) 5 14
4 (s, d, t) 5 19
5 (s, b, d, t) 2 21

The residual graph at the end of each iteration is shown in the figure below. After the fifth iteration,
we are done as there are no more directed paths from s to t in the final residual graph.

1

(a) After Step 1 (b) After Step 2 (c) After Step 3

(d) After Step 4 (e) After Step 5

(b) The forward edges across X0 are (s, a), (b, a), (c, t), and (d, t). The backward edge across X0

is (a, c). The capacity of X0 is 9 + 3 + 9 + 7 = 28.

(c) From looking at the final residual graph in the figure above, the set of vertices reachable from
s are {s, a, b, c, d}. Hence, the cut ({s, a, b, c, d}, {t}) must be a minimum cut. Its capacity is
5 + 9 + 7 = 21, which matches the value of the maximum flow computed in part (a).

Q2 Graph Modifications

In this problem, we will consider what happens to the maximum flow when the flow network G is
modified slightly.

(a) TRUE/FALSE: In any network G with integer edge capacities, there always exists an edge e
such that increasing the capacity of e increases the maximum flow value in G.

(b) Suppose we are given a network G with n nodes, m edges, and integer edge capacities, and
we are also given a flow f in G of maximum value. We now increase the capacity of a specific edge
e by one. Give an O(m + n) time algorithm to find a maximum flow in the updated network.

Solution to Q2

(a) FALSE. Consider the following network.

s v t
1 1

The maximum flow in this network is 1, but clearly increasing the capacity of any single edge would

2

not increase the maximum flow as the capacity of the other edge would still serve as a bottleneck.

(b) The algorithm operates as follows.

� Construct the residual graph Gf of flow f in the original network.

� If it already contains a forward edge for e, then f is still a maximum flow.

� If it does not, add a forward edge for e with capacity 1.

� If the updated residual graph contains a path P from s to t, then augmenting a unit flow
along this path gives a new maximum flow f ′, otherwise f is still a maximum flow.

The key observation is that the Ford-Fulkerson algorithm can start from any given flow and aug-
ment it to a maximum flow. The only way the maximum flow can increase by increasing the
capacity of a single edge e is if Gf does not have a forward edge for e, and by adding such an edge,
a new s-t path is obtained. Further, since we are increasing the capacity of e by one, the added
forward edge will also have capacity 1. Thus, when we find an s-t path, its bottleneck capacity will
be 1. Thus, augmenting a unit flow along this path will remove the forward edge for e, and thus
leave no further s-t paths in the residual graph.

The running time is linear because constructing the residual graph and then finding a path from s
to t in this graph both take linear time.

Q3 Teaching Assignment

Suppose there are m courses: c1, . . . , cm. For each j ∈ {1, . . . ,m}, course cj has sj sections. There
are n professors: p1, . . . , pn. For each i ∈ {1, . . . , n}, professor pi has a teaching load of `i and likes
to teach the subset of courses Ai ⊆ {c1, . . . , cm}.

Your goal is to use the network flow paradigm to design an algorithm, which either finds an
assignment of professors to courses satisfying the following constraints or reports that no such
assignment exists.

� Each professor pi must be assigned exactly `i courses.

� Each course cj must be assigned to exactly sj professors.

� No professor should be be assigned a course that they do not like to teach.

� No professor can teach multiple sections of the same course.

(a) Describe your full algorithm. That is, describe the network flow instance created (nodes, edges,
and edge capacities) and how your algorithm uses a maximum flow in this instance to determine if
a valid assignment of professors to courses exists, and output one if it does.

(b) Prove that your reduction is correct. That is, prove that there exists a valid assignment of
professors to courses if and only if your algorithm finds one.

(c) What is the worst-case running time of your full algorithm if you use the näıve Ford-Fulkerson
algorithm to solve the network designed in part (a)?

3

Solution to Q3

(a) Create a flow network instance with the set of vertices {s, t, p1, . . . , pn, c1, . . . , cm} and the
following edges:

� (s, pi) with capacity `i, for each pi;

� (cj , t) with capacity sj , for each cj ;

� (pi, cj) with capacity 1, for each pi and cj such that pi prefers to teach cj (i.e. cj ∈ Ai).

The full algorithm is as follows.

1. Compute a maximum flow f in the above instance via the Ford-Fulkerson algorithm. Note
that it will return an integral flow.

2. If f(s, pi) = `i for each professor pi and f(cj , t) = `j for each course cj , then a feasible
assignment exists. Assign professor pi to teach course cj whenever f(pi, cj) = 1.

3. Otherwise, report that a feasible assignment does not exist.

(b) We will say that an integral flow f in the above network is “saturated” if f(s, pi) = `i for
each professor pi and f(cj , t) = `j for each course cj . To prove that the algorithm is correct,
we will establish a 1-1 correspondence between saturated integral flows f and feasible assign-
ments obtained; specifically, the correspondence will be the following: professor pi teaches course
cj ⇐⇒ f(pi, cj) = 1. We will prove this in both directions separately. (Note: In this problem, it
is possible to directly establish an “if and only if” argument to prove both directions together, but
this needs to be done carefully. In general, it will be safer to prove both directions separately.)

Saturated integral flow ⇒ valid assignment: First, take any saturated integral flow f . Con-
struct the corresponding assignment according to the above correspondence. We want to prove that
this is a valid assignment. Note that because f is saturated, each pi has an incoming flow of `i and
each cj has an outgoing flow of sj . Since the edges from professors to courses have unit capacity
and the flow is integral, each pi has `i outgoing edges carrying a unit flow (and the rest carrying
no flow) and each cj has exactly sj incoming edges carrying a unit flow (and the rest carrying no
flow). Hence, by our correspondence, we have that each pi is assigned to teach a single section each
in exactly `i courses of their liking and each course is assigned exactly sj professors, which implies
that the assignment is valid.

Valid assignment ⇒ saturated integral flow: Conversely, take any valid assignment and con-
struct a saturated flow f according to the above correspondence. By the construction, it is clear
that f is integral. Further, since each professor pi is teaching a single section each in `i courses and
each course is assigned sj professors, each pi has an outgoing flow of `i and each cj has an incoming
flow of sj . Hence, setting f(s, pi) = `i for each pi and f(cj , t) = sj for each cj satisfies the flow
conservation constraints, generating a valid and saturated flow.

Thus, we have established that our algorithm, which checks the existence of a saturated integral
flow and converts it to a valid assignment using the above correspondence, is correct.

4

(c) This flow network instance has m+n+ 2 vertices and m+n+
∑n

i=1 |Ai| ≤ m+n+m ·n edges.
The sum of capacities of edges leaving s is

∑n
i=1 `i ≤

∑n
i=1m = n · m.1 Hence, the worst-case

running time of the näıve Ford-Fulkerson algorithm is O(n2 ·m2), which is polynomial in the input
length.

1Technically, we are not given that `i ≤ m for each i, but it is clear that this is necessary for a feasible solution to
exist. Hence, we can reasonably imagine that we will be given an input satisfying this constraint. Alternatively, you
can add an explicit preprocessing step in the algorithm, which returns “No feasible solution exists” if it is violated.

5

