
CSC373 Summer ’22

Tutorial 2 Solutions

May 26, 2022

Q1 Interval Scheduling on m Machines (Clue for A1Q3!)

Let us recall the interval scheduling problem from class. We are given n jobs, where each job
Ij = [sj , fj) is an interval. Two jobs are compatible if their intervals have empty intersection. In
class, we saw how to schedule a maximum number of mutually compatible jobs on one machine:
consider the jobs one-by-one in an increasing order of their finish time (EFT), and greedily pick
the job being considered if it is compatible with the ones picked so far.

Now, suppose that we have m machines available instead of just one. A feasible schedule can be
thought of as a mapping σ : {1, . . . , n} → {0, 1, . . . ,m}, where job Ij is assigned to machine k if
σ(j) = k > 0, and unassigned if σ(j) = 0. Jobs scheduled on any single machine must still be
mutually compatible. Subject to that, we want to maximize the number of jobs scheduled, i.e.,
|{j ∈ {1, . . . , n} : σ(j) > 0}|.

(a) Consider the following Earliest Start Time (EST) algorithm.

Algorithm 1: m-ISP-EST

1 Sort the jobs in an increasing order of their start time so that s1 ≤ . . . ≤ sn
2 for j = 1, . . . , n do
3 if there is a machine k such that all jobs assigned to it are compatible with Ij then
4 Assign job Ij to any such machine k
5 else
6 Let job Ij remain unscheduled
7 end

8 end

Consider the following attempt to prove optimality of this algorithm.

1. Consider any job Ij that the algorithm does not schedule.

2. At that point, each machine must have a job scheduled that conflicts with Ij .

3. As seen in class, all m conflicting jobs must have start time earlier than sj (due to the EST
order) and finish time after sj (since they conflict with Ij).

4. Hence, there are at least m+ 1 jobs that all contain time sj in their intervals.

5. Since there are only m machines, even the optimal algorithm must drop at least one of them.

6. The optimal algorithm drops a job for every job dropped by our EST algorithm. Hence, our
EST algorithm schedules the maximum number of jobs.

Which step(s) of the argument above are flawed, and why?

(Solution to (a)) The sixth step is flawed. We would need to show that for every job dropped by
the EST algorithm, the optimal solution drops a distinct job. Otherwise, the optimal solution may
drop one job that conflicts with two or more jobs dropped by the EST algorithm, thus leading to
more jobs scheduled.

1

(b) Next, consider the Earliest Finish Time (EFT) algorithm.

Algorithm 2: m-ISP-EFT

1 Sort the jobs in an increasing order of their finish time so that f1 ≤ . . . ≤ fn
2 for j = 1, . . . , n do
3 if there is a machine k such that all jobs assigned to it are compatible with Ij then
4 Assign job Ij to any such machine k
5 else
6 Let job Ij remain unscheduled
7 end

8 end

Prove that this algorithm does not always yield an optimal solution by producing a counterexample.

(Solution to (b)) Consider an instance with m = 2 and four jobs: I1 = [1, 3), I2 = [2, 4),
I3 = [4, 5), and I4 = [3, 6). Note that these are sorted by EFT. The EFT algorithm schedules the
first two jobs on two different machines. In the third round, it has a choice to schedule I3 on either
machine. If it ends up scheduling it on the same machine as I1, then I4 will have to be dropped.
This would be suboptimal because scheduling all four jobs — I2 and I3 on one machine and I1 and
I4 on the other — is feasible.

2

Q2 Cops and Robbers

You are given an array A[1, . . . , n] with the following specifications:

� Each element A[i] is either a cop (‘c’) or a robber (‘r’).

� A cop can catch any robber who is within a distance of K units from the cop, but each cop
can catch at most one robber.

Write an algorithm to find the maximum number of robbers that can be caught.

Solution to Q2

Algorithm 3: Cops-and-Robbers

1 for c = 1, . . . , n do
2 if A[c] is a cop then
3 Find the smallest index r in [c−K, c+K] such that A[r] is a robber who is not

currently assigned to any cop
4 If such an index r exists, assign cop A[c] to catch robber A[r], else let cop A[c] be

unassigned

5 end

6 end

Correctness: Suppose for contradiction that this algorithm is not optimal. Let G denote the
greedy assignment it produces. Let OPT be an optimal solution that matches G for as many
iterations as possible. That is, for some k, OPT assigns the first k cops exactly the same way as G
does, and there is no optimal solution which matches G on the first k + 1 cops. Because G is not
optimal, k is less than the number of cops.
We derive a contradiction by proving that there is an optimal solution OPT ′ which matches G on
the first k + 1 cops. Let c denote the index of the k + 1th cop. We consider the following cases:

1. Suppose G leaves cop A[c] unassigned, while OPT assigns cop A[c] to robber A[r]. In this
case, r ∈ [c−K, c+K]. However, since OPT matches G on the first k cops, A[r] must not be
assigned to the first k cops under G. This is a contradiction as the greedy algorithm would
not have left cop A[c] be unassigned in that case.

2. Suppose G assigns cop A[c] to some robber A[r], while OPT leaves cop A[c] unassigned. If
A[r] is not assigned to any cop under OPT , then we have a contradiction as assigning A[c] to
A[r] would increase the quality of the solution. Hence, A[r] must be assigned to some other
cop A[c′] under OPT . In this case, we can create OPT ′ by assigning A[c] to A[r] and leaving
A[c′] unassigned.

3. Suppose G assigns cop A[c] to some robber A[r], while OPT assigns cop A[c] to some other
robber A[r′]. If A[r] is not assigned to any cop under OPT , then we can create OPT ′ by
switching the assignment of A[c] from A[r′] to A[r]. If A[r] is assigned to some cop A[c′] under
OPT , then we create OPT ′ by switching the assignments of A[c] and A[c′], i.e., by assigning
A[c] → A[r] and A[c′] → A[r′]. For this to work, we need to argue that A[c′] → A[r′] is a
valid assignment, i.e., that r′ ∈ [c′ −K, c′ +K].

3

Because OPT and G match on the assignment of the first k cops, we have c′ > c. Further,
because G greedily assigns cop A[c] to the first feasible robber not assigned to any previous
cops, we have r′ > r. Now, because OPT assigns A[c′] to A[r], we have c′ −K ≤ r ≤ r′. On
the other hand, because OPT also assigns A[c] to A[r′], we also have r′ ≤ c + K ≤ c′ + K.
This completes the proof of validity of A[c′]→ A[r′] assignment.

Running Time: The above algorithm clearly runs in time O(nK) because for each of O(n) cops,
it searches for the first available feasible robber in O(K) time. However, the running time can be
reduced to O(n) by keeping track of two indices c and r for the next available cop and robber, and
increasing both when a match is made or the minimum when they are too far, as the algorithm
below shows.

Algorithm 4: Cops-and-Robbers

1 Initialize c and r to the indices of the first cop and the first robber, respectively
2 while c and r are not null do
3 if |c− r| ≤ K then
4 Assign cop c to catch robber r
5 Increment both c and r to the indices of the next cop and robber, respectively

6 else if c < r then
7 Increment c to the index of the next cop
8 else
9 Increment r to the index of the next robber

10 end

11 end

4

