
CSC373 Summer ’22

Tutorial 1

Thursday, May 19, 2022

Master Theorem (General Version):
For constants a > 1 and b > 1, and an asymptotically positive function f(n), the recurrence relation
T (n) 6 a · T (n/b) +O(f(n)) has the following solution.

1. If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, then T (n) = O

(
nlogb a

)
.

2. If f(n) = Θ
(
nlogb a logk n

)
for some constant k > 0, then T (n) = O

(
nlogb a logk+1 n

)
.

3. If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0 and f satisfies the regularity condition*, then

T (n) = O (f(n)).
(*Regularity condition: For some constant c < 1 and all sufficiently large n, a·f(n/b) 6 c·f(n).)

Note: There are recurrence relations which do not fall under any of these three cases (e.g. the
recurrence relation T (n) 6 T (n/5) + T (7n/10) +O(n) from QuickSelect where the smaller instances
are not of uniform size, or the recurrence relation T (n) 6

√
n · T (

√
n) + O(n) where a and b are

not constants). If you’re interested in how more general recurrences can be solved, there are some
excellent resources available online.12

Q1 Practicing Recurrence Relations

Find the best possible asymptotic upper bound for T (n) under the following recurrence relations.3

(a) T (n) 6 3 · T (n/2) +O(n log3 n)

(b) T (n) 6 4 · T (n/2) +O(n2)

(c) T (n) 6 2 · T (n/2) +O(n log2 n)

(d) T (n) 6 2 · T (n/4) +O(n0.5001)

Q2 Monotonic Function Evaluation

Consider a monotonously decreasing function f : N → Z (that is, a function defined on natural
numbers which takes integer values and satisfies f(i) > f(i + 1) for all i ∈ N). Assuming we can
evaluate f at any point i in constant time, we want to find n = min{i ∈ N |f(i) 6 0} (that is, we
want to find the first point where f becomes non-positive). Note that n is not given to us, but
we are told that some point i with f(i) 6 0 exists (i.e. n is well-defined), and we are allowed to
express the running time of our algorithm in terms of n.

1http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf
2http://web.csulb.edu/~tebert/teaching/lectures/528/recurrence/recurrence.pdf
3Note that when proving an upper bound on the worst-case running time of an algorithm, you would encounter

equations of the form T (n) 6 . . . rather than T (n) = . . ., yielding T (n) = O(·) rather than T (n) = Θ(·). To derive a
lower bound, you need to explicitly construct instances on which the algorithm takes at least the claimed amount of
time.

1

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf
http://web.csulb.edu/~tebert/teaching/lectures/528/recurrence/recurrence.pdf


We can obviously solve the problem in O(n) time by simply evaluating f(1), f(2), f(3), . . . , f(n).
Describe an O(log n) time algorithm.

[Hint: Try to quickly get an estimate of n, and then precisely pinpoint the exact value of n in the
range you estimated.]

Q3 Maximum Subarray Sum

You are given an array A[1 . . . n], and you are asked to find the maximum subarray sum, that is,
the maximum value of

∑j
t=iA[t] over all possible (i, j) with 1 6 i 6 j 6 n. Design an O(n) time

divide and conquer algorithm for the problem.

[Hint: Once you divide the array into two equal halves, say A[1 . . .mid] and A[mid +1 . . . n], you
will get the maximum subarray sum within each half. What extra information do you need from
each half?

If you spend O(n) time in the merge step to calculate this extra information, you will get O(n log n)
running time. Can you get your recursive algorithm to return this information instead?]

2


