
CSC373H1 Midterm Test—Solutions Fall 2019

Question 1. Network Flow [25 marks]

Let N = (V ,E) be a network with a set of nodes V and a set of directed edges E with integer capacities.
Let F be the maximum flow value in N from node s to node t. Let P be a simple path from s to t in N
consisting of k edges, and let N+ be the network obtained from N by adding 1 to the capacity of every
edge in P .

(a) (5 marks) TRUE/FALSE: The maximum flow value in N+ is at least F + 1. (If this is true, argue why. If
this is false, provide a counter-example.)

(b) (5 marks) Prove that the maximum flow value in N+ may not be exactly F + 1.

(c) (10 marks) What is a tight upper bound on the maximum flow value in N+ in terms of F and k? You
must prove that your upper bound always holds. To show that it is tight, you must produce a network in
which the maximum flow value in N+ exactly matches your upper bound.

(d) (5 marks) Let N− be the network obtained from N by subtracting 1 from the capacity of every edge in
P (assume each edge in P had capacity at least 1 in N ). TRUE/FALSE: The maximum flow value in N− is
always strictly less than F. (If this is true, argue why. If this is false, provide a counter-example.)

Sample Solution:

(a) TRUE. This is because one can simply take a maximum flow in N with value F, and augment it
along P by one unit in N+ resulting in a flow of value F + 1.

(b) Consider the following network.
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In network N , the maximum flow is F = 2. Network N+ is obtained by increasing the capacity of every
edge on path s→ a→ b→ t by 1. The maximum flow in N+ is 4 > F + 1.

(c) We show that the tight bound is F + b k+1
2 c.

Upper bound: Take any min-cut (A,B) of network N . By max-flow-min-cut theorem, it has capacity
F. We are interested in edges of P that go from A to B (since the increase in capacity of those edges
can increase the cut capacity). Note that for every A→ B edge in P , we must have a subsequent B→ A
edge before we can have another A→ B edge. Hence, P has at most b k+1

2 c edges going A→ B. Hence,
when we increase the capacity of each edge in P by 1, the capacity of cut (A,B) increases by at most
b k+1

2 c. Hence, N+ has a cut of capacity at most F + b k+1
2 c, so by max-flow-min-cut, its max flow is at

most F + b k+1
2 c.

Lower bound: Consider the network N in the image below. The edges in red are the edges in path P .
The idea is that every edge going from left to right is a bottleneck (it has capacity 1 right now, but
if its capacity increases to 2, it can add a unit flow). Indeed, there are b k+1

2 c edges going from left to
right, and increasing all their capacities by 1 increases the max flow precisely by b k+1

2 c.
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(d) TRUE. Take any min-cut (A,B) in network N . By max-flow-min-cut, it has capacity F. Since P
goes from s ∈ A to t ∈ B, it has at least one edge going from A to B. Since the capacity of this edge is
decreasing by 1, the capacity of (A,B) in N− is at most F −1. Hence, min cut (and thus max flow) in
N− is at most F − 1.

Question 2. Integer Linear Programming [20 marks]

Recall that given an undirected graph G = (V ,E), we say that G is k-colourable if we can assign a colour
c(v) ∈ {1, . . . , k} to every vertex v ∈ V such that no two adjacent vertices have the same colour (i.e. c(u) , c(v)
for all (u,v) ∈ E). The minimum vertex coloring problem, MinColour, is defined as follows.

• Input: An undirected graph G = (V ,E).

• Output: The smallest positive integer k such that G is k-colourable.

We wish to write a binary integer program (with each variable taking value in {0,1}) to solve MinColour.

(a) (5 marks) Argue that the solution of MinColour is never greater than n (the number of nodes in G).

(b) (15 marks) Provide a binary integer linear program to solve MinColour. Clearly explain why your
objective minimizes the number of colours used and why your constraints ensure a valid colouring. For
full marks, your program should use at most O(n2) binary variables, where n is the number of nodes in G.

Sample Solution:

(a) Giving each node of G a different colour is certainly a valid colouring and uses n colours. Hence,
the minimum number of colours needed is at most n.

(b) We will keep n colours at our disposal (by part (a), these are sufficient). For each possible colour
k ∈ {1, . . . ,n}, we will use a binary variable yk to indicate whether colour k is used anywhere. For each
node i ∈ V and each possible colour k ∈ {1, . . . ,n}, we will use a binary variable xi,k to denote whether
node i is given colour k. Given this, the binary IP is as follows. The role of the objective function and
each constraint is explained in comments next to it.

Minimize
∑n

k=1 yk #Minimize number of colours used

Such that∑n
k=1 xi,k = 1,∀i ∈ V #Each node gets one colour

xi,k 6 yk ,∀i ∈ V ,k ∈ {1, . . . ,n} #Only colours that are used can be assigned

xi,k + xj,k 6 1,∀(i, j) ∈ E,k ∈ {1, . . . ,n} #Adjacent nodes cannot get the same colour

xi,k , yk ∈ {0,1},∀i ∈ V ,k ∈ {1, . . . ,n} #Binary variables
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Question 3. P/NP/coNP [10 marks]

(a) (2.5 marks) Does P = NP imply NP = coNP ? Justify your answer.

(b) (2.5 marks) Does NP = coNP imply P = NP ? Justify your answer.

(c) (2.5 marks) Given an undirected graph G and a positive integer k, the k-Colour problem asks whether
G is k-colourable (i.e. whether it has a valid colouring using at most k colours). Show that given a
polynomial-time algorithm for k-Colour, one can solve MinColour in polynomial time.

(d) (2.5 marks) Show that given a polynomial-time algorithm for MinColour, one can solve k-Colour in
polynomial time.

Sample Solution:

(a) Yes. The complement of a problem in P is also in P. Hence, if P=NP, then the complement of every
problem in NP (i.e. every coNP problem) is also in P, i.e., P=NP=coNP.

(b) Not necessarily. NP=coNP simply means that for each problem in NP=coNP, both YES and NO
answers can be verified in polynomial time. This does not trivially imply that these problems can also
be solved in polynomial time.

(c) Given a graph k, we can solve k-Colour for each k ∈ {1, . . . ,n}. (By Q2 part (a), we know that n is
sufficient.) The smallest k for which G is k-colourable is then the answer of MinColour.

(d) Given a graph G and an integer k, we can solve MinColour to obtain k∗, and then check if k∗ 6 k.
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