Question 1. Network Flow [25 marks]
Let $N=(V, E)$ be a network with a set of nodes V and a set of directed edges E with integer capacities. Let F be the maximum flow value in N from node s to node t. Let P be a simple path from s to t in N consisting of k edges, and let N^{+}be the network obtained from N by adding 1 to the capacity of every edge in P.
(a) (5 marks) TRUE/FALSE: The maximum flow value in N^{+}is at least $F+1$. (If this is true, argue why. If this is false, provide a counter-example.)
(b) (5 marks) Prove that the maximum flow value in N^{+}may not be exactly $F+1$.
(c) (10 marks) What is a tight upper bound on the maximum flow value in N^{+}in terms of F and k ? You must prove that your upper bound always holds. To show that it is tight, you must produce a network in which the maximum flow value in N^{+}exactly matches your upper bound.
(d) (5 marks) Let N^{-}be the network obtained from N by subtracting 1 from the capacity of every edge in P (assume each edge in P had capacity at least 1 in N). TRUE/FALSE: The maximum flow value in N^{-}is always strictly less than F. (If this is true, argue why. If this is false, provide a counter-example.)

Sample Solution:

(a) TRUE. This is because one can simply take a maximum flow in N with value F, and augment it along P by one unit in N^{+}resulting in a flow of value $F+1$.
(b) Consider the following network.

In network N, the maximum flow is $F=2$. Network N^{+}is obtained by increasing the capacity of every edge on path $s \rightarrow a \rightarrow b \rightarrow t$ by 1 . The maximum flow in N^{+}is $4>F+1$.
(c) We show that the tight bound is $F+\left\lfloor\frac{k+1}{2}\right\rfloor$.

Upper bound: Take any min-cut (A, B) of network N. By max-flow-min-cut theorem, it has capacity F. We are interested in edges of P that go from A to B (since the increase in capacity of those edges can increase the cut capacity). Note that for every $A \rightarrow B$ edge in P, we must have a subsequent $B \rightarrow A$ edge before we can have another $A \rightarrow B$ edge. Hence, P has at most $\left\lfloor\frac{k+1}{2}\right\rfloor$ edges going $A \rightarrow B$. Hence, when we increase the capacity of each edge in P by 1 , the capacity of cut (A, B) increases by at most $\left\lfloor\frac{k+1}{2}\right\rfloor$. Hence, N^{+}has a cut of capacity at most $F+\left\lfloor\frac{k+1}{2}\right\rfloor$, so by max-flow-min-cut, its max flow is at most $F+\left\lfloor\frac{k+1}{2}\right\rfloor$.

Lower bound: Consider the network N in the image below. The edges in red are the edges in path P. The idea is that every edge going from left to right is a bottleneck (it has capacity 1 right now, but if its capacity increases to 2 , it can add a unit flow). Indeed, there are $\left\lfloor\frac{k+1}{2}\right\rfloor$ edges going from left to right, and increasing all their capacities by 1 increases the max flow precisely by $\left\lfloor\frac{k+1}{2}\right\rfloor$.

(d) TRUE. Take any min-cut (A, B) in network N. By max-flow-min-cut, it has capacity F. Since P goes from $s \in A$ to $t \in B$, it has at least one edge going from A to B. Since the capacity of this edge is decreasing by 1 , the capacity of (A, B) in N^{-}is at most $F-1$. Hence, min cut (and thus max flow) in N^{-}is at most $F-1$.

Question 2. Integer Linear Programming [20 marks]

Recall that given an undirected graph $G=(V, E)$, we say that G is k-colourable if we can assign a colour $c(v) \in\{1, \ldots, k\}$ to every vertex $v \in V$ such that no two adjacent vertices have the same colour (i.e. $c(u) \neq c(v)$ for all $(u, v) \in E$). The minimum vertex coloring problem, MinColour, is defined as follows.

- Input: An undirected graph $G=(V, E)$.
- Output: The smallest positive integer k such that G is k-colourable.

We wish to write a binary integer program (with each variable taking value in $\{0,1\}$) to solve MinColour.
(a) (5 marks) Argue that the solution of MinColour is never greater than n (the number of nodes in G).
(b) (15 marks) Provide a binary integer linear program to solve MinColour. Clearly explain why your objective minimizes the number of colours used and why your constraints ensure a valid colouring. For full marks, your program should use at most $O\left(n^{2}\right)$ binary variables, where n is the number of nodes in G.

Sample Solution:

(a) Giving each node of G a different colour is certainly a valid colouring and uses n colours. Hence, the minimum number of colours needed is at most n.
(b) We will keep n colours at our disposal (by part (a), these are sufficient). For each possible colour $k \in\{1, \ldots, n\}$, we will use a binary variable y_{k} to indicate whether colour k is used anywhere. For each node $i \in V$ and each possible colour $k \in\{1, \ldots, n\}$, we will use a binary variable $x_{i, k}$ to denote whether node i is given colour k. Given this, the binary IP is as follows. The role of the objective function and each constraint is explained in comments next to it.

Minimize $\sum_{k=1}^{n} y_{k}$
Such that

$$
\begin{array}{lr}
\sum_{k=1}^{n} x_{i, k}=1, \forall i \in V & \text { \#Each node gets one colour } \\
x_{i, k} \leqslant y_{k}, \forall i \in V, k \in\{1, \ldots, n\} & \text { \#Only colours that are used can be assigned } \\
x_{i, k}+x_{j, k} \leqslant 1, \forall(i, j) \in E, k \in\{1, \ldots, n\} & \text { \#Adjacent nodes cannot get the same colour } \\
x_{i, k}, y_{k} \in\{0,1\}, \forall i \in V, k \in\{1, \ldots, n\} & \text { \#Binary variables }
\end{array}
$$

\#Minimize number of colours used

Question 3. P/NP/coNP [10 marks]
(a) (2.5 marks) Does $P=N P$ imply $N P=c o N P$? Justify your answer.
(b) (2.5 marks) Does $N P=$ coN P imply $P=N P$? Justify your answer.
(c) (2.5 marks) Given an undirected graph G and a positive integer k, the k-Colour problem asks whether G is k-colourable (i.e. whether it has a valid colouring using at most k colours). Show that given a polynomial-time algorithm for k-Colour, one can solve MinColour in polynomial time.
(d) (2.5 marks) Show that given a polynomial-time algorithm for MinColour, one can solve k-Colour in polynomial time.

Sample Solution:

(a) Yes. The complement of a problem in P is also in P. Hence, if $\mathrm{P}=\mathrm{NP}$, then the complement of every problem in NP (i.e. every coNP problem) is also in P , i.e., $\mathrm{P}=\mathrm{NP}=$ coNP.
(b) Not necessarily. $\mathrm{NP}=$ coNP simply means that for each problem in $\mathrm{NP}=$ coNP, both YES and NO answers can be verified in polynomial time. This does not trivially imply that these problems can also be solved in polynomial time.
(c) Given a graph k, we can solve k-Colour for each $k \in\{1, \ldots, n\}$. (By Q2 part (a), we know that n is sufficient.) The smallest k for which G is k-colourable is then the answer of MinColour.
(d) Given a graph G and an integer k, we can solve MinColour to obtain k^{*}, and then check if $k^{*} \leqslant k$.

