Question 1. Divide-and-Conquer [20 marks]

Write a divide-and-conquer algorithm that finds the maximum difference between any two elements of a given array of n numbers (not necessarily distinct) in $O(n)$ time. For example, on input $A=$ [4.5, 10, -2, $\pi,-7.115]$, your algorithm should return 17.115.

Justify briefly that your algorithm is correct and runs within the required time bound. (For your reference, the Master Theorem states that a recurrence of the form $T(n)=a T(n / b)+\Theta\left(n^{d}\right)$ has solution $\Theta\left(n^{d}\right)$ if $a<b^{d}$, $\Theta\left(n^{d} \log n\right)$ if $a=b^{d}$, and $\Theta\left(n^{\log _{b} a}\right)$ if $a>b^{d}$.)

Note: For full marks, your answer must make use of the divide-and-conquer method. Partial marks will be given for an $O(n \log n)$ divide-and-conquer method.

Sample Solution:

The maximum difference is simply the difference between the maximum and the minimum elements. We find the pair (minimum element, maximum element) recursively (using divide-and-conquer), then return their difference.

```
\(\operatorname{MaxDiff}(A)\) :
    \(\min , \max \leftarrow \operatorname{MinMax}(A)\)
    return max - min
\(\operatorname{MinMax}(A)\) :
    if \(n=1: \quad / / n=\operatorname{size}\) of \(A\)
        return \(A[1], A[1]\)
    else:
        \(m \leftarrow\lfloor n / 2\rfloor\)
        \(n_{1}, m_{1} \leftarrow \operatorname{MinMax}(A[1 \ldots m])\)
        \(n_{2}, m_{2} \leftarrow \operatorname{MinMax}(A[(m+1) \ldots n])\)
        return \(\min \left(n_{1}, n_{2}\right), \max \left(m_{1}, m_{2}\right)\)
```

Procedure MinMax runs in time $\Theta(n)$ because its worst-case running time satisfies the recurrence $T(n)=2 T(n / 2)+\Theta(1)$, so MaxDiff also runs in time $\Theta(n)$.

Question 2. Greedy [20 marкs]

Consider the following Art Gallery Guarding problem. We are given a set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of positive numbers that specify the positions of paintings in a long hallway in an art gallery. We want to position guards in the hallway to protect every painting, using as few guards as possible. Suppose that a guard at location x can protect all paintings within 1 distance (i.e. in interval $[x-1, x+1]$), and any painting protected by at least one guard is considered protected.

We propose to solve this problem using the following greedy algorithm.
Sort the positions so $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}$.
$G \leftarrow \varnothing$ \# current set of guards' locations
$g \leftarrow-\infty \quad$ \# position of rightmost guard in $G=$ maximum number in G
for $i \leftarrow n, \ldots, 1$: \# start at the rightmost painting and move to the left
if $p_{i}-g>1: \quad \# p_{i}$ is unprotected by the guards currently in G
\# Place a guard 1 unit to the right of p_{i}.
$g \leftarrow p_{i}+1$
$G=G \cup\{g\}$
return G
(a) (2.5 marks) The above algorithm does not quite work. Provide a counterexample of painting positions where the above algorithm would use more guards than required. No justification is needed.
(b) (2.5 marks) The above algorithm can be fixed by changing a single line. What is the change needed to make the algorithm always find a solution with the minimum number of guards? For partial marks, you can propose any other greedy algorithm which always finds a solution with the minimum number of guards.
(c) (2.5 mark) What is the time complexity of your algorithm from part (b)?
(d) (10 marks) Prove that your fix to the algorithm (or any other greedy algorithm you proposed) in (b) is correct.
(e) (2.5 marks) The exhibition is then moved to another gallery where the art is put up on easels in a wide open space, i.e., each painting is placed at a 2 D point $p_{i}=\left(x_{i}, y_{i}\right)$. Suppose we use a variant of your fixed greedy algorithm from part (b), where you sort the paintings by x-coordinate, check if a painting p_{i} is greater than a unit Euclidean distance from the current guard (i.e., $\left\|p_{i}-g\right\|>1$), and if so, place a new guard at $g \leftarrow p_{i}+(1,0)$. Either prove that this algorithm will always return a solution with the minimum number of guards or provide a counterexample.
Note: The Euclidean distance is given by $\left\|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right\|=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}$.

Sample Solution:

Let $G_{0}, G_{1}, \ldots, G_{n}$ be the partial solutions generated by the algorithm. Say G_{i} is "promising" iff there is some solution G_{i}^{*} such that:

- $G_{i} \subseteq G_{i}^{*}\left(G_{i}^{*}\right.$ contains every guard position in $\left.G_{i}\right)$;
- $\forall g \in G_{i}^{*}-G_{i}, g>g_{i}=\max \left\{g^{\prime} \in G_{i}\right\}$ (every additional guard in G_{i}^{*} is positioned further right than the last guard in G_{i}) -we say G_{i}^{*} "extenda" G_{i} if it satisfies the first two properties;
- $\left|G_{i}^{*}\right|$ is minimum (G_{i}^{*} is optimum).

Claim: $\forall i \geqslant 0, G_{i}$ is promising.
Proof: By induction on i.
Base Case: $G_{0}=\varnothing$. Let G^{*} be any optimum solution. Then $G_{0} \subseteq G^{*}$ and $\forall g \in G^{*}, g>g_{0}=-\infty$. Ind. Hyp.: Suppose $i \geqslant 0$ and G_{i}^{*} extends G_{i}.
Ind. Step: Either $G_{i+1}=G_{i}$ or $G_{i+1}=G_{i} \cup\left\{p_{i+1}+1\right\}$.
Case 1: If $G_{i+1}=G_{i}$, then $G_{i+1}=G_{i} \subseteq G_{i}^{*}$ and $\forall g \in G_{i}^{*}-G_{i+1}, g \in G_{i}^{*}-G_{i} \Rightarrow g>g_{i}=g_{i+1}$.
So G_{i}^{*} already extends G_{i+1}.
Case 2: If $G_{i+1}=G_{i} \cup\left\{p_{i+1}+1\right\}$, then either $p_{i+1}+1 \in G_{i}^{*}$ or $p_{i+1}+1 \notin G_{i}^{*}$.
Subcase A: If $p_{i+1}+1 \in G_{i}^{*}$ then G_{i}^{*} already extends $G_{i+1}: G_{i+1}=G_{i} \cup\left\{p_{i+1}+1\right\} \subseteq G_{i}^{*}$ and $\forall g \in G_{i}^{*}-G_{i+1}, g>g_{i} \wedge g \neq p_{i+1}+1 \Rightarrow g>g_{i+1}=p_{i+1}+1$.
Subcase B: If $p_{i+1}+1 \notin G_{i}^{*}$ then $p_{i+1}>g_{i}+1$ (from the algorithm) so p_{i+1} is unprotected by any guard in G_{i}. This means there is some $g \in G_{i}^{*}-G_{i}$ with $g>g_{i}$ (by the I.H.) and $g \leqslant p_{i+1}+1$ (else p_{i+1} would be unprotected by G_{i}^{*}). Then, every painting protected only by g is also protected by $p_{i+1}+1$. So $G_{i+1}^{*}=G_{i}^{*}-\{g\} \cup\{p i+1+1\}$ is an optimum solution that extends G_{i+1}.
Hence, G_{i} is promising for $i=0,1, \ldots, n$. In particular, G_{n} is promising: $G_{n} \subseteq G_{n}^{*}$ and $\forall g \in G_{n}^{*}-G_{n}, g>g_{n}$, for some optimum G_{n}^{*}. But this means $G_{n}=G_{n}^{*}$, as desired.

Question 3. Dynamic Programming [20 marks]
A new country Oddistan has a currency oddollar with coins of denomination 3, 5 and 7 .
(a) (2.5 marks) Can you always purchase an item worth n oddollars, where $n>=5$, with exact change in coins. If so, explain why; otherwise, provide the smallest counterexample $n \geqslant 5$ (no justification is needed).
(b) (2.5 marks) For all n that you can pay for exactly, is the combination of coins unique? If so, explain why; otherwise, provide a example n and two ways to make up n using the coin denominations.
(c) (15 marks) A new government wants to the change the coin denominations to 3,11 and 13 . Write a dynamic programming algorithm that returns (true/false) whether an exact change can be made for n oddollars, given any integer $n>0$. Clearly define the quantity that your dynamic programming algorithm computes, write a Bellman equation, briefly argue that your Bellman equation is correct, identify the initial conditions, and analyze the time and space complexity of your algorithm.
Sample Solution:
Recursive Structure: If $N=3 x+11 y+13 z$ for some $x, y, z \in \mathbb{N}$, then either $x>0$ and $N=$ $3+3(x-1)+11 y+13 z$, or $y>0$ and $N=11+3 x+11(y-1)+13 z$, or $z>0$ and $N=$ $13+3 x+11 y+13(z-1)$.
Array: For $i=-24,-23, \ldots,-1,0,1, \ldots, N, A[i]=$ True if i nuggets can be purchased exactly (False otherwise).
Recurrence: $A[-24]=\cdots=A[-1]=$ FALSE $A[0]=\operatorname{True}(0=3 \cdot 0+11 \cdot 0+13 \cdot 0)$ $A[i]=A[i-3] \vee A[i-11] \vee A[i-13]$, for $i=1, \ldots, N$ (from argument above)

Algorithm:

$$
\begin{aligned}
& \text { for } i=-24, \ldots,-1: \\
& \quad A[i] \leftarrow \text { FALSE } \\
& A[0] \leftarrow \text { TRUE } \\
& \text { for } i=1, \ldots, N: \\
& \quad A[i]=A[i-3] \vee A[i-11] \vee A[i-13] \\
& \text { return } A[N]
\end{aligned}
$$

Runtime is $\Theta(N)$.

